

On a family of power consisting of R-uncomparable dendrites

by

K. Sieklucki (Warszawa)

K. Borsuk has introduced the notion of \Re -type ([1], p. 322) and proved that the set of different \Re -types among 2-dimensional compacta has power c. It is a consequence of the theorem, proved in that paper ([1], p. 327), on the existence of the family of power c consisting of \Re -uncomparable 2-dimensional AR-sets. The purpose of the present paper is to prove that even among 1-dimensional AR-sets (i. e. among dendrites (1)) there exist c different \Re -types. More strictly we shall prove that

On the plane $E^{\mathfrak p}$ there exists a family of power c consisting of ${\mathfrak R}$ -uncomparable dendrites.

It is easy to construct such a family having power n, where n is a natural number. (See [1], p. 322.) Beginning the construction of the family of power c we shall prove first that there exists an

1. \Re -decreasing sequence of dendrites. Let d_0 be a closed segment on the plane E^2 with the endpoints (0,0), (0,1) and let $T(d_0)$ denote 'the dendrite (Fig. 1) consisting of the points of d_0 and those points $(x,y) \in E^2$ for which

$$x = \frac{2i-1}{2^j}$$
, $0 < y \leqslant \frac{1}{2^{j+1}}$ where $i = 1, 2, ..., 2^{j-1}$; $j = 1, 2, ...$

while $K(d_0)$ denotes the dendrite (Fig. 2) consisting of the points of d_0 and those points $(x,y) \in E^2$ for which

$$x = \frac{2i-1}{2^{j}}, \quad 0 < |y| \leqslant \frac{1}{2^{j+1}} \quad \text{where} \quad i = 1, 2, \dots, 2^{j-1}; \ j = 1, 2, \dots$$

If $d \in E^2$ is a closed segment parallel either to the axis of abscissae or to the axis of ordinates and φ denotes the affine mapping preserving

⁽¹⁾ A dendrite is a locally conected continuum containing no simple closed curve. See for example [2], p. 224.

the orientation of E^2 and setting d on d_0 in such a manner that the angle between the vectors [(0,0),(0,1)] and $[\varphi^{-1}(0,0),\varphi^{-1}(0,1)]$ belongs to the interval $\langle -\frac{1}{2}\pi, 0 \rangle$, then we define $T(d) = \varphi^{-1}(T(d_0))$, $K(d) = \varphi^{-1}(K(d_0))$. Now let A be a plane dendrite for which the interior (with respect to A) of the set of points having the order equal to 2 splits into a family of

components $\{d_{\alpha}\}$ where d_{α} is an open segment parallel either to the axis of abscissae or to the axis of ordinates. Then we define $T(A) = \bigcup T(\bar{d}_a)$, $K(A) = \bigcup K(\bar{d}_a)$. It follows from this definition that

1° The sets $T^n(d_0) = \underbrace{T \circ \ldots \circ T}_n(d_0)$ and $K^n(d_0) = \underbrace{K \circ \ldots \circ K}_n(d_0)$ are dendrites for n = 1, 2, ...

2° The sets $T^{\infty}(d_0) = \lim_{n = \infty} T^n(d_0)$, $K^{\infty}(d_0) = \lim_{n = \infty} K^n(d_0)$ are dendrites. 3° The set $K^{\infty} \circ T^n(d_0) = \lim_{m = \infty} K^m \circ T^n(d_0)$ is a dendrite for n = 1, 2, ...

Let B_n denote the dendrite obtained from $K^{\infty} \circ T^n(d_n)$ by adding the segments

$$\overline{(0,0),(-1,1)}, \quad \overline{(0,0),(-1,\frac{1}{2})}, \quad \overline{(0,0),(-1,-\frac{1}{2})}, \quad \overline{(0,0),(-1,-1)}.$$

In Figure 3 the first three dendrites of the sequence $\{B_n\}$ are only sketched. It is easy to see that for $n' < n'', \ B_{n'} \geqslant_{\infty} B_{n''}$ holds. We shall prove that $B_{n'} > B_{n''}$ also holds.

We shall say that a point $p \in B_n$ such that $Ord_p B_n = 3$ is a point of the k-th grade $(1 \le k \le n)$ if

$$p \in \left\{egin{array}{ll} d_0 & ext{for} & k=1 \ T(d_0)\!-\!d_0 & ext{for} & k=2 \ T^{k-1}(d_0)\!-\!T^{k-2}\!(d_0) & ext{for} & 3 \leqslant k \leqslant n \ . \end{array}
ight.$$

If the point $p \in B_n$ has order 3 and grade k, then that component of the set $B_n - \{p\}$ which contains no point of order 3 and grade k we shall call the branch over p. It can easily be seen that for each point $p \in B_n$ such

that $\operatorname{Ord}_{p}B_{n}=3$ there exists exactly one branch over p, which we shall denote by G(p).

Let us assume that for n' < n'', $B_{n'} \leq B_{n''}$ holds. Then there exists a homeomorphism h mapping $B_{n'}$ into $B_{n''}$. Since the origin of the coordinates is the only point of order 5, we have h((0,0)) = (0,0). Looking at the image $h(d_0)$ we see at once that there exists a segment d_1 such that $(0,0) \in d_1 \subset d_0$ and $d_1 \subset h(d_0)$. Hence we infer that there exist points of order 3 and grade 1: p_1' , p_1'' such that $h(p_1') = p_1''$ and $h(G(p_1')) \subset G(p_1'')$.

Fig. 3

Similarly we infer (if n' > 1) that there exist points of order 3 and grade 2: p_2', p_2'' such that $h(p_2') = p_2''$ and $h(G(p_2')) \subset G(p_2'')$. We can repeat this reasoning n' times till we obtain points of order 3 and grade n': $p'_{n'}, p''_{n'}$ such that $h(p'_{n'}) = p''_{n'}$ and $h(G(p'_{n'})) \subset G(p''_{n'})$ which is impossible because in the set $\overline{G(p'_{n'})}$ each arc with the endpoint $p'_{n'}$ contains a dense subset of points of order 4, while in the set $\overline{G(p''_{n'})}$ each arc with the endpoint $p_{n'}^{"}$ contains a neighbourhood of $p_{n'}^{"}$ consisting of points of order not exceeding 3.

2. \Re -uncomparable sequence of dendrites. Let C_n denote a dendrite obtained from B_n by adding n+6 segments starting from

the point (-1,1) and not cutting B_n beyond that point. Let us suppose that n' < n''. Since $C_{n'}$ is the dendrite of order n' + 6 and $C_{n''}$ is the dendrite of order n'' + 6, $C_{n''}$ is not homeomorphic with a subset of $C_{n'}$. But if there exists a homeomorphism h mapping $C_{n'}$ into $C_{n''}$, then, the point (-1,1) being the only point of order $\geqslant 6$, we have h((-1,1)) = (-1,1) and $h(B_{n'}) \subset B_{n''}$, contrary to the results of part 1.

3. The family of power c consisting of \Re -uncomparable dendrites. Let us consider the plane dendrite D (Fig. 4) consisting of the segment $\overline{(0,0),(0,1)}$ and those point $(x,y)\in E^2$ for which

$$x = r \cos \pi \left(1 - \frac{1}{2i}\right), \quad y = r \sin \pi \left(1 - \frac{1}{2i}\right) \quad \text{and} \quad 0 < r \leqslant \frac{1}{i} \quad \text{for} \quad i = 1, 2, \dots$$
 or

$$x = r\cos\frac{\pi}{2i} + 1$$
, $y = r\sin\frac{\pi}{2i}$ and $0 < r \le \frac{1}{i}$ for $i = 1, 2, ...$

Let us take the sequence $p_m \in D$ where $p_m = (0, 1-1/2^m)$ for m=1, 2, ...Denoting by $\mathfrak A$ the family of all natural sequences $\{n_m\}$ such that every

natural number appears exactly once in the sequence $\{n_m\}$ we have $\overline{\mathfrak{A}}=\mathfrak{c}$. Let $\tau=\{n_m\}\in\mathfrak{A}$ and let h_m denote a homeomorphism mapping C_{n_m} into E^2 in such a manner that $h_m((0\,,\,1))=p_m,\; D\cap h_m(C_{n_m})=\{p_m\}$ and $\delta(h_m(C_{n_m}))\leqslant 1/2^{m+2}$. Then it is easy to see that the set $D_\tau=C\cup_{m=1}^\infty h_m(C_{n_m})$ (sketchy in Figure 4) is a dendrite and the family $\{D_\tau\}$ is of the power \mathfrak{c} .

Let us suppose that for $\tau' \neq \tau''$ there exists a homeomorphism h mapping for example $D_{\tau'}$ into $D_{\tau''}$. Since the points (0,0) and (0,1) are the only points of order ω , and in the presence of the order type of points p_1, p_2, \ldots we infer that h((0,0)) = (0,0), h((0,1)) = (0,1) and

 $h(\overline{(0,0)},\overline{(0,1)})=(\overline{0,0)},\overline{(0,1)}$. Hence by the definition of sequences $\{n_m\}$ we conclude that there exist different indices n',n'' such that $C_{n'}$ is homeomorphic with a subset of $C_{n''}$, which is impossible in view of the results of the 2nd part. This proves the family $\{D_{\mathfrak{r}}\}$ of power \mathfrak{c} , that constructed above, consists of \mathfrak{R} -uncomparable dendrites.

References

- [1] K. Borsuk, Concerning the classification of topological spaces from the standpoint of the theory of retracts, Fund. Math. this volume, p. 321-330.
 - [2] C. Kuratowski, Topologie II, Warszawa 1952.

Reçu par la Rédaction le 24. 6. 1958