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Some theorems about two-dimensional polyhedra
by

A. Kosinski (Warszawa)

The main aim of this paper is to give a topological characterization
of 2-dimensional polyhedra. This is done in § 3, theorem 3.1. Besides
the topological notions from set-theoretical topology we also use the
notion of the plane and of the 1-dimensional polyhedron. Since both
can be defined in terms of the set-theoretical topology (see [7] and [13])
the characterization we give is ‘“good” in the sense that all notions
which serve to characterize 2-dimensional polyhedra in theorem 3.1
derive — directly or indirectly — from set-theoretical topology.

" Another question is as to whether theorem 3.1 is ‘useful”, i. e. what
can be proved by using it. As sunch a justification we can quote the
solution of the following problem of Borsuk: is 4 a polyhedron if A X B
is a polyhedron? It can be proved by means of theorem 3.1 that
the answer is positive if dim.4 < 2 (see [9]). A recent example of Bing
shows that without the condition dimA < 2 the answer is no longer
positive.

Theorem 3.1 also easily implies the well-known theorem stating
that in dimension 2 local triangulability is equivalent to triangulability.

§ 1 containg all the auxiliary notions, lemmas and notations which
will be used throughout the paper. § 2 is devoted to the study of 2-di-
mensional ANR-s satisfying the following condition: the set of points
which do not possess a neighbourhood homeomorphic with the plane
is of dimension <0. Tt is proved that an ANR satisfying this condition
is a polyhedron. This theorem does not follow from theorem 3.1. It char-
acterizes only & special clags of 2-dimensional polyhedra, but this class
containg in particular all 2-dimensional closed pseudomanifolds. An ex-
plicit topological characterization of 2-dimensional closed pseudomani-
folds is given in 2.4.

In the closing § 4 we establith a link between the notions of an
r-point (see [10]) and of 2-dimensional polyhedra.

The main results of §3 of this paper were announced without
proof in [8].
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8§ 1. The word “space” will always mean a metric and separable
space. A space is a continuwm if it is compact and connected and contains
more than one point. A continuum which is locally connected will be
called a Peano continuum.

We shall say that p disconnects a (connected) space K if K —p is
not connected. A connected and locally connected space which is not
disconnected by any point will be called eyclic.

A point p e X will be called a local disconnecting point of K if p
disconnects an open and connected subset of K.

ANR will denote an absolute neighbourhood retract and AR — an
absolute retract. By a polyhedron we shall mean a space homeomorphic
with a finite Eueclidean polyhedron in the sense of {1], p. 128-129 and 149.
A graph will be a polyhedron of dimension <.

@, will denote a 2-element, I(@,) will be the interior of @,, i. e. an
open 2-element; F(Q,) = Q,—1(Q,).

If K is a space, then reg,H means the subset of K consisting
of those points which have neighbourhoods homeomorphic with the
Euclidean n-space. If p ereg, K, we shall say that p is n-regular. We
shall write reg K for reg,K.

If K is compact and connected and K =reg, K, then K is a closed
manifold. It is well-known that 2-manifolds are polyhedra ([14]).

We shall use the Oech homology theory with coefficients mod 2.
Our standard reference in algebraic topology will be [6].

1.1. Identifications. Given a semi-continuous decomposition of
% space K, there exists a continuous mapping f: K—K* of the space K
onto the space K* such that the inverse-images of points of K are pre-
cisely the elements of the decomposition. If with the exception of the
element T, all other elements of the decomposition are points we shall
say that K* is obtained from K by the identification of T,. In this case
the identification mapping f: K->K* maps homeomorphically K —T,
onto K*—f(T,).

(1.1.1) Let B=DBC A and let f be a mapping of 4 onto O such that
f is a homeomorphism on A—B. If A, B and {(B) are locally contractible,
then such is also f(A).

It is » special case of a theorem of Borsuk [4], theorem (T). It follows
from (1.1.1) that if A is an ANR of finite dimension and B= BC 4
is an ANR, then the space obtained from 4 by the identification of B
is an ANR.
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(1.1.2) Let B= BC A. Let C be a closed and connected subset of A
such that C—B %0 5= C~B. Let {: A—~A* be the identification mapping
induced by the identification of B.

If C~B is not connected, then f(B) disconnects locally 1(C).

The proot is straightforward.

1.2. Strongly cyclic elements. The set of local disconnecting
points in a space K will be denoted by Lx. If K is locally contractible,
then & certain decomposition of  may be obtained by using the set Lg
and this decomposition refines that of a space into cyclic elements.

Somse properties of the set Lx and of the decomposition of the space
into strongly cyeclic elements will be nused in the sequel. We list them
here and the proofs will be published in [11]..

(1.2.1) Let K be an ANR and let A CK be a Peano continuum. Let
B be the family of those components of K—A whose boundary contains
more than one point but is of dimension zero.

Then B <8, and if BeB then Fr(B) < ,.

(1.2.2) Let K be locally compact, connected and locally contractible.
If C disconnects K, and dimC = 0, then C ~Lg #0.

Now let K be an ANR. The following subsets of K will be called
strongly cyclic elements of K:

2. every point of Lg;

b. for every point p ¢ Lx the set of all such x ¢ K that no finite set
disconnects K between p and .

Strongly cyclic élements having more than one point will be called
true strongly cyclic elements. We shall use the abbreviation t.s.c.e.
and s.c.e.

(1.2.3) Ewvery s.c.e. is a retract of K.
(1.2.4) If E is a t.s.c.e., then Lg is a finite set not disconnecting E.

(1.2.5) With the exception of a finite number, all s.c.e. are contractible
tn themselves.

(1.2.6) If B,, K, are two different t.s.c.e. then Hy ~ B, is finite.

1.8. Polyhedra. We include the following two elementary lemmas:

(1.3.1) Let a compact space K = K, wE,u..wvK, where K; are
polyhedra and K; ~ K; is o subcomplex of both K; and K; for all ¢, j. Then
K i3 a polyhedron and \ JK;~K; is a subpolyhedron of K.

%]

In particular K is a polyhedron if K; are polyhedra and K;n~K;
is finite for all 4,4, 1 57.
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(1.3.2) Let K be a compact space and let K* be obtatned from K by
the identification of a finite subset. In order that K be & polyhedron it is
necessary and sufficient that K* be such.

1.4. Manifolds with boundary imbeddable in the plane.

(1.4.1) Let K be a compact 2-dimensional manifold with boundary F.
In order that K be imbeddable in the plane it is necessary and sufficient
that the inclusion homomorphism Hy(F)—H,(K) be onto.

Let K, be the closed manifold obtained from K by attaching to
each component of F a closed 2-cell. We shall consider K as a subset
of K,. Obviously, K is imbeddable in the plane if and only if K, is
a, sphere.

Suppose that K, is a sphere. Then the exactness of the Mayer-Vie-
toris sequence ([6], § 15)

() o Hy(F) > H(R)+ Hy(B— )~ Hy(Ey) —>.ry

implies that H,(F)—H,(K) is onto. Thus the condition is necessary.

Suppose now that H;(F)—H,(K) is onto. Then using again the
sequence (i) we infer that H,(K)—H,(K;) is trivial. But on the other
hand, Hy(K,, K) being obviously zero, we infer from the exactness of
the sequence

i H(K) > H () —Hy Ky, ) ...

that H,(K)—H,(X,) is onto. It follows that H,(K,)= 0. But there is
only one 2-dimensional manifold K, satisfying this condition: it is
a sphere.

(1.4.2) Let K be a compact 2-manifold with boundary F, imbeddable
in the plane, and let F, be a component of F. Let f, be a homeomorphism
mapping T, onto F(Q,). Then there exists a homeomorphism | mapping K
into Q,, extending f, and such that the diameter of every component of
Q.—F(K) is arbitrarily small.

The trivial proof will be omitted.

§ 2. The set of irregular points in an ANR of dimension 7, i. e. the
set K —reg, K, may also be of dimension n; there exist even «-dimens-
ional ANR’s which have no n-regular points at all. The simplest example
of this sort may be obtained as follows: Let K be a one-dimensional
ANR such that the set of points which are of order 2 is dense in X,
let @, be a closed n-cell and let K, = K X@,.,. Were (p, q) e I{,, n-Te-
gular, we should infer by theorem 3 in [5] that p in 1-regular, which
contradicts our assumption on K. Nevertheless, if the dimension of the
set of irregular points in a set K is inferior to the dimension of X, its
structure is no longer quite arbitrary. In fact, we shall prove (theo-
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rem 2.3) that if the set of irregular points in an 2-dimensional ANR
is of dimension <0, then it is finite and the space is a polyhedron.

The proof of this theorem will be the main aim of this section.
In 2.1 we prove some auxiliary lemmas concerning essentially compactif-
ications of 2-dimensional open manifolds by the addition of ome point.
These lemmas may also be deduced from known theorems about 2 - di-
mensional non-compact manifolds. The essential part of the proof of
theorem 2.3 starts from 2.2.

In (2.2.1) we prove the theorem under the assumption that there
is only one irregular point; in (2.2.2) it is proved that irregular points
are contained in the closure of the set of local disconmecting points.
The general theorem follows easily in 2.3.

In 2.4 we give a topological characterization of 2-dimensional closed
pseudomanifolds.

(2.1.1) Let K be a cyclic Peano continuum. Suppose that K= A up
where A 18 a non-compact 2 - dimensional manifold with a compact boundary
not containing p. Then there exist arbitrarily small connected neighbour-
hoods U of p such that

(a) E—T 4s a compact manifold with boundary,

(b) T—p has only a finite number of componenis Visoer Vs

(¢) Vs~ (E—U) is a simple closed curve, i=1,2; ..., %

We fix a triangulation T in 4. By [15] there are arbitrarily small
connected neighbourhoods of p with a connected complement. Let ¥ be
such a neighbourhood. We choose V so small that it is disjoint with the
boundary of 4. Let P be the sum of K—V and of all simplexes which
are not disjoint with K—V; P is then a connected polyhedron and K —P
a neighbourhood of p contained in V. Let W be the connected component
of E—P containing p. Let B be the sum of K —W and of the stars of
all locally disconnecting points of K—W in a barycentric subdivision
of 7. Then R is a compact manifold with boundary, and putting U= K—R
we gee that U is a connected neighbourhood of p satisfying (a). It satisfies
also (b): since K is cyelic, every component of U—p intersects K—TU,
and therefore they are finite in number since K is loecally connected.

Condition (c) in general is not satisfied. Suppose that Vim (X —T)
has more than one component. Since ¥, satisfies the same conditions
as K, there exists a neighbourhood T7; of p in V; satistying (a) and (Db).
Then V,—V: is a manifold with boundary and there exists a simple
closed curve disconnecting V;—V; into two components such that one
of them, say V¥, contains (V;—V7) ~¥;and the second contains V;~{K ~T).
Repeating this operation for every 4 and putting Uj= ViuV{ and
U'= | U; we can easily see that U’ satisties (a)-(¢).
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(2.1.2) Let K be a cyclic Peano continuum, K= A4 up, A Cregk.
There exists o sequence {Ug}, n=0,1,2, ..., of connecled neighbourhoods
of the point p having the following properties:

(2) Unt1C Uy, 8(UL) <1/n;

(b) Un—Uns1 8 @ sum of a finite number of disjoint compact mani-
folds with boundary, W, Wa, .., Wi. Two different W}, belong to differ-
ent components of Up—p;

(6) Won(E—Uy) is a simple closed curve for n21, i=1,..,1%,;

(d) Wi~ Upya is non-empty and is @ sum of a finite number of disjoint
simple closed curves, i=1, ..., .

The construction of the sequence U, is as follows. We put U,= K
and let U; be the neighbourhood of p in K with the diameter <1 and
satisfying (2.1.1). Let Wi= U,—U,. Obviously Wi satisfies (b)-(d).
Moreover, by (2.1.1), ;

(i) if Vi, .., Vs, ave all components of U;—p, then V;~(K—U,) is
2 simple closed curve and every V; satisfies the same conditions as the
set K in (2.1.1).

Let V; be a compact neighbourhood of p in ¥y, (Vi) < 1, satisfying
(2.1.1) and closure-disjoint with Vi~ (K~ Uy). Put Wi= V=V, i=1, ..,
and U,=J¥;. Then U,C U, and 6(U,) < %, i e. U, satisfies (a). It
satisfies (b) obviously, (c¢) follows from (i) and from Win(K -Uy)
=Vin(E—T,). Since V; is connected, then Wi ~ Uy= W, A Vi= (Vi—V}) ~
~Vi#0, which proves (d).

Now, since U,—p satisfies again (i), the iteration of the above
construction yields the sequence {U,}.

‘We shall introduce some definitions. The set K satisfying the con-
ditions of (2.1.2) will be called an infinite manifold; the decomposition
of X by aid of the sequence U, satisfying (2.1.2) will be called a decom-
position of an infinite manifold, the sets Wt will be called the elements
of the decomposition.

An element Wﬁ will be called a predecessor of an element Wf.ﬂ if
they are not disjoint. If WE is a predecessor of Wf,+1, then we shall say
also that Wy, is a successor of wE.

Let W3, W1, ... be an infinite sequence of elements of 2 decoms-
position of an infinite manifold, such that every element of this sequence
is a predecessor of the element which comes next in the sequence. In

that case the sum UO W;'fﬂ will be called a branch emering from W,

tk}e elements of the sequence will be called the elements of the branch.
Since by (2.1.2) (d) every element has at least one successor we infer that

(2.1.3) From every W emerges a branch. If all Wﬁ, j = n, have only
one successor, such a branch is unique.
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No“j, fix the index #n. Let ; be the sum of all branches emerging
from W;. We shall prove that

in .
(2.1.4) The sets & ; are components of Up—p. Moreover ) G;= Un—p,
i=1
%. 6. every component is of the form ;.

¢ are connected subsets of U, and since W5C 4, by (2.1.2)(b) G are
contained in different components of U,—p. Therefore in order to prove

o in —
that G; are components of U, —p it is sufficiert to show that ) Gi=Usn—
=1

—p. This will also complete the proof of (2.1.4).

Let g e Un—p. By (2.1.2) (a) and (b), Un—p is the sum of elements
Wi for ¢ > n. Therefore e W} for some j and i>n. By (2.1.3) there
exists a branch emerging from Wi. By (2.1.2) (e) every element has one
predecessor, and therefore there exists a branch emerging from W3,
and containing ¢, If n <i—1, then we repeat this reasoning; after
2 finite number of steps we shall find a branch emerging from WE,
and therefore contained in &z and containing g. This completes the
proof.

(2.1.8) If the inclusion homomorphism H(Wi)—HK) is trivial, then
W, may be imbedded in the plane.

An elementary reasoning shows that the condition above implies
that the inclusion homomorphism Hy(FrW,)—H,(Wy) is onto. Sinee W
is 2 manifold with boundary F contained in regK, ¥ = Fr(Wn) and
(1.4.1) yields (2.1.5).

The criterion (2.1.5) is important because of the following lemma,
which describes the situation when all branches emerging from a given
element are composed of elements which may be imbedded in the plane.
Roughly speaking, the lemma says that in that case the sum of these
branches may be imbedded in a 2-element in such a manner that every
point of the complement corresponds to a branch. Precisely:

(2.1.6) Let & be the sum of all branches emerging from Wi. If all
elements of branches belonging to & may be imbedded in the plame, then
there ewists a homeomorphism h: § —Q, satisfying

(a) R(®) is a dense and open subset of Qy;

(b) Q,—h(®) is a zero-dimensional subset of I(Qs);

() the set resulting from Q, by the identification of @, — k(®) is homeo-
morphic with ® w p;

(d) if {Gs}, i=1,2,..., is a sequence of connected open subsets of ©
satisfying G;D Giyy, 8(Gi)—~>0 and p e Gi, then Limh(Gy) exists and is
just one point of Qy—h(®).
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Firgt, we shall prove that

(i) Every element W%, i1, has one and only one predecessor.
Its intersection is a component of the boundary of W% Any other com-
ponent of the boundary of WY is also a component of the boundary of
one and only one successor of W?.

Suppose that Wi, and WP, are predecessors of Wf. Then Wi, o
VWP L WY is connected and contained in U;_,—p. Therefore by
(2.1.2) (b) we bave j = m. Now if W¥ is a predecessor of Wiii, then by
(2.1.2), WEA~AWE, is a simple closed curve. Suppose that the simple
cloged curve ¢ is a component of the boundary of W¥ and of the bound-
ary of Wii; and Wi,,. Since C CregK, we have j = m, which completes
the proof of (i).

Now let ¥y, j =1, ..., (£, N), be components of the boundary of W,
We shall assume that F, is a component of the boundary of the prede-
cessor of Wy. Let h, be such a homeomorphism of WY into @, that
ho(Fy) = F(Q),) and the diameter of every component of Q,— hy( W)
i8 <}. Then hy(Fy), j =2, ..,§(¢, N), is a simple closed curve in I1(Q,)
and a boundary of a component A; of Qz—hn(va). By (i) there is one
and only one successor of Wy having F; as a comporent of the bound-
ary. Let it be Wi,,.

By (1.4.2), hy|F; may be extended to a homeomorphism A: Wi, —4;
in such & manner that the diameter of every eomponent of A;—hi(Wi,,)
is smeller that i. We define ,: SJWM‘_}LHZ’ by hyz) = hi(z) for

e Wi+1. Since Wiyy, are disjoint and A; are disjoint, the mapping h,
is & homeomorphism. Moreover it is an extension of the homeomorphism 7
and the extended mapping is also a homeomorphism. ’
This construction may be repeated, yielding a sequence of homeo-
morphisms A, ky, by, ... Such that
() The mapping h: G—Q, defined by h(z)= hz) for me Wi,
is a homeomorphism. *

(iii) Let Q;= ;E;J,;le-”"‘ Then @,—k(K;) is a sum of a finite number
of sets homeomorphic with I(;) and of diameter smaller than 1/1.

7.(iv.) Let ®f be the sum of all branches emerging from W, ;. Then
1(®3) is contained in one component of Q:—h(Ry).

T_he.se properties will serve to prove that % satisfies (a)-(d).
Bince ,—h(G)= QQz—h(Rf), @—h(6) is closed; since Q,—h(Ry)

form a monotone decreasing sequence of sets with components of

ot 1E . 1t t -aummens et. Thls pProve &
dian er smaller han 1 1t 18 a zero-di ensional set
) ) 8 ( )
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Now let us observe that ® —&; C Uyy; ~ ®; therefore the sequence
(& —K;)wp is a sequence of neighbourhoods of p in & wp with dia-
meters converging to zero. Define i': @,—G v p by

) zeh(®),
P for xeQ,—h{(®).
To prove (¢) we have only to prove that &’ is continnous. Let x ¢ @,—h(®).
For every 4 the point x has a neighbourhood contained in Q.—h(&:),
and therefore ' maps this neighbourhood into (G —&;)w p. Since by
the foregoing remark the diameter of this set is arbitrarily small, it
follows that i’ is continuous, which proves (e).

Let G; be a sequence of sets satisfying the conditions of (d). Then
R(G;) is a sequence of connected sets satisfying h(Gyy) C 2{Gy). There-
fore Limh(G;) = Limh (@) = [ h({G;) exists and is connected. To prove

for

h'(x) = {

that it is one point of Qz—h(iﬁ) it ig sufficient to prove that it is con-
tained in Q,—h(®), this last set being compact and zerodimensional.

Since §(G;)—~0 and p e G;, for every % there is such an =(i) that
G;C Unpy and n(i)—>oo together with 4. Let k(¢) = n(i)—N. Therefore
k(i)—>oco and h(G;) C h(Uny) C @:—h(Rip). Therefore

Qh(Gi)CQQe—h(ﬁkw)CQz—h(Cﬁ),

which completes the proof of (d).

2.2. We proceed to the proof of theorem 2.3. The following lemma
ig its special case.

(2.2.1) Let K be a cyclic ANR and let K—p Cregl for a point p € K.
Then K may be obtained by the identification of a finile number of poinis
in a compact manifold. If p does noi locally disconnest K then K 1is
a manifold.

K is an infinite manifold; we shall consider a fixed decomposition
of K with the notation as in (2.1.2). First, we shall prove that

(i) there exists such an N that for n > N all elements Wi may be
imbedded in the plane.

Since X is locally contractible in p, there exists such an N that the
closure of the neighbourhood Uy is contractible in K to a point. Since
all elements W,‘; for n> N are contained in Uy, the inclusion homo-
morphism Hy(W5)—H,(K) is trivial for » > N. Thus (2.1.5) yields (2.2.1).

(i) There exists such an ¥ that for » > N every element W has
only one successor,

Consider the triads (Un; Untis Un—Unt1) and (K; Uns1, E—Unpa):
Let A= Tpp1~(Tn—TUnts) = Unss ~(E—TUpnsa). We have the following
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commutative diagram, where horizontal sequences are taken from the
regpective Mayer-Vietoris exact sequences and the vertical homomor-
phisms are induced by inclusions ([6], § 15):

Hy(Upyr) HHE —~Ups) <— Ho(A) < Hy(K)
0 4 e ti
Hy(Upp) +Ho(Un— Un+1)‘—Ho(A)<—H1 U,) .

Suppose that the element W2 has two successors: Wi, WE s
Since W;:,,r\(Wn+1uWn+1) is not connected and since components of
this set are also components of 4, we infer that there is an element
o e Hy(A) sueh that ¢ 0 and the image of a in Hy(U,.,) is zero since
U,m is connected, and the image of a in Hy(U,—Uy.y) is zero since
Wi is connected. Thus Aa=0 and there exists a B e H(T,) such
that @f = a. Now, 0z£ia=1ipf =yjf implies that j8+#0, i e. j:
Hy(U,)~Hy(K) is not trivial. Thus we have proved that if WZ hag more
than one successor, then U, is not contractible in K. Since K is locally
eontractible in p, this proves (ii).

By (i) and (ii) there is such an N that for » > N all elements W
are imbeddable in the plane and have only one successor. Let Wi,
i=1,...,4y, be all components of Uy—Uy4:. Let G; be a branch emerg-
ing form wi. By (2.1.3) there is one and only one such branch. There-
fore, by (2.1.4) we have

U@iup= [_]N-

Let @4, i=1,...,1x, be iy different disjoint 2-elements. By (2.1.6) (¢)
the set G;wp is homeomorphie with a set obtained from @; by the
identification of a eompact zerodimensional subset of I(Q,); it follows
easily from (2.1. 6) (d) and from the fact that there is only one branch
emerging from Wi that this subset consists of only one point. Therefore
;v p is homeomorphic with ¢;, the point p corresponding to a certain
point g;e I(Q;). Let P be the space obtained from | J@; by the identi-

i

fication of all g;. By (2.1.4), (G;wp) ~(G;up) = p for ¢4, and thus
U(fjiup is homeomorphic with P. By (iii), Uy is homeomorphic with P,

whlch proves the first part of (2.2.1). The second part easily follows
from the ﬁrs’g_ if p does not locally disconnect K, we have iy=1. It
follows that Uy is homeomorphic with a 2-element, i. e. peregk.

(2.2.2) Let K be a connected ANR. Let B be a closed zero-dimensional
subset of K such that K—B is connected and contained in regK. Let b  B.

If b¢ Ly then b eveg K. (Lx denotes as usual the set of local disconnecting
points of X.)

(iif)
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First we shall prove that

(i) If U is a connected neighbourhood of a point aeB and if
UnLg=0, then U—B is connected.

For if U satisfies the above conditien then, U being open, we have
Ly=UnLg. Thus Ly =0 and (i) follows from (1.2.2).

Let E* be a set obtained from K by the identification of B, let
f: K—~XK* be the identification mapping, and let p = f(B). Since p does
not diseonnect K*, K* is an infinite manifold. We shall consider a fixed
decomposition of K* with the notation as in (2.1.2).

For every element Wi let G denote the sum of all branches emerg-
ing from W5.

(ii) For every &> 0 there is such an N that for n = N

S(FH(ER) <e-

For suppose that there exists such a sequence Wj that &(f(®.))

> &> 0. Since f~(GL) is a sequence of continua contained in X, it con-
tains a convergent subsequence ([12], § 38, X, 1) whose limit is compact
and connected and thus, being of positive diameter, a continunm. But
this is impossible sinee this limit is a subset of a zerodimensional set B.

(iii) There exists such an N that Wi is imbeddable in the plane
for n = N.

Let ¢ be such a positive number that every subset of K with
diameter less than ¢ is contractible in K. By (ii) there exists such
an N that for n > N, 8(f7(W;)) <& and it follows that for n> N,
Hl(f_l(Wf,)) —H,(K) is trivial. Since the mapping f maps homeomorphic-
ally f7{WZ) onto Wi, it follows that H,(WEi)—H(K*) is also trivial
Thus (2.1.5) yields (iii).

Now, let & be a positive number smaller than g(b, Lg). Let N be
sueh a number that for # > N, W, is imbeddable in the plane and
8(f (®L) < e Let Wi, i=1, ..., ix, be components of Uy—Uns: and
let V be a neighbourhood of b in K so0 small that V—B is connected
(see (i)) and F(¥)C Uy. By (2.1.4), f(V—B) is contained in one of the
sets Giy: we shall denote it by 6. Let W = f"%®). Then (W)= Gup,
WALg=0 and 7V CW. To prove (2.2.2) it is sufficient to prove that
there is a homeomorphism g: W->¢, which maps W onto @, and is such
that f(b) e 1(Q,).

By (2.1.6) there is a homeomorphism h: G —¢@,. Then hf: W—B->@,
is a homeomorphism and since Af(W—B)=h(G), by (2.1.8) (b)
Q.—kf(W—B) CI(Q,). Therefore we have only to extend kf onto W in
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guch a manner that the extended mapping will be a homeomorphism
mapping W onto Q,.

(iv) Let @< W~ B. There exists a sequence {V3}, ¢=1,2,.., of
connected -neighbourhoods of o such that V;D Vi, 4(V)—0, and
1(V;—B) is a connected subset of ®.

Since ¢(a, Lg) > 0, then there exists a sequence of connected neigh-
bourhoods ¥; of @ such that Vy~nLg=0, V;DVy, and f(Vy)C Uy.
Thus V;—B is connected by (i) and it follows from (2.1.4) that
f(V;—B) is contained in one of the sets ®%. Since a ¢ fY®), we have
(Vi—B) ~fH®) £0, i.e. {(V;—B)~® 0. Thus f(V;—B)C G, which
completes the proof of (iv).

. Let @ ¢« WA B and let V; be a sequence of neighbonrhoods of o satis-
fying (iv). Then f(V;—B) satisfy the conditions of (2.1.6)(d) and there
exists Lim kf (V;—B) and is one point of @, ~ k(G ). Let ¢'(a) = Lim af(V;—B).

We assert that ¢'(a) depends only on the point a. For if V4 is another
sequence of neighbourhoods of a satisfying (iv), then there exists
a sequence Vi also satisfying (iv) and such that Vi CV;~V{. But
Limhf (Vi—B) = Lim hf (V{—B) = Limhf(V;—B).

Therefore putting

for
for

hf(z)
g'(x)
?ve obtain & continuous mapping of W into @,. But by (2.1.6)(a), g(W)
is dense in @,, and therefore, being compact, g(W)= @,. To complete
jﬁhe proof it remains to show that g is a homeomorphism. Since g|W—B
is a pomeomorphism, g(W—B)~g(WAB)= 0, we have only to prove
that if a,, a,e WA B and g(a;) = g(a,) then a; = a,.

Let V; be a sequence of neighbourhoods for a, satisfying (iv), and
1e‘t V. be an analogous sequence for a,. Let q:g’(al)zg'(az), i. e.
pmhf(Vil—B) = Limhf(Ve—B) = ¢q. Let pueVu—B, PpeVyp—B. ’Then
limp;y = @, and limp, = . By (2.1.6) (b), g(W~ B) is zero-dimensional;
therefore there exists a sequence of continua {L;} converging to ¢ an(i
such that L;C hf(W-—B) and both hf(pa), hf(pw) belong to L;, ([12]
§53,‘ TI, 1). By {2.1.6)(e), "L, is a sequence of continua in G conj
verging to p, and thus f'A7YL;) is a sequence of continua in K. Taking
if necessary a subsequence, we may assume that this last sequence is
a,l.so convergent. Then Limf v I;) C B and since B is zero-dimensional‘
Limf'h~*L;) is one point of B. Thus lLmp; = limp;, i e a = a,
The proof of (2.2.2) is then completed. v

rzeW—RB,

g(w)={ J.

2.8. TeeorEM. Let K be an ANR of dimension 2 iSfyi
. 2 and salisfyin
dim(K —regK) < 0. Then K is a polyhedron. fung

icm
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Proof. By (1.3.1) we may assume that K is connected. We shall
consider a decomposition of K into strongly cyelic elements and we will
prove first that

(i) Every true strongly cyclic element is a polyhedron and is not
contractible in itself.

Tet E be a t.s.c.e. By (1.2.3), F is a vetract of K, and thus ¥ is
an ANR. Moreover dim(¥—regH)<0 and, by (1.2.4), Ly is a finite
set not disconnecting E. Thevefore by (2.2.2), E~LgCregE. Now let
E* be the set obtained from E by the identification of Lg to a point p.
Sinee Ly is finite, B* is an ANR; since Ly does not disconnect %, E¥—p is
connected and contains only 2-regular points. Thus E* satisfies all con-
ditions of (2.2.1), therefore is a polyhedron and may be obtained from
a manifold by the identification of a finite set of points. The same is
then true for E, which proves (i).

By (i) and (1.2.5) there is only a finite number of t.s.c.e. E, ..., En-
By (1.2.6), EinE; is finite for ¢+j and therefore we infer from (i) and
(1.3.1) that E=U E; is 2 polyhedron. )

Now, since K is connected and dim(K —regK) <0, it follows that
regK is dense in K. Since reg K C B, we have E = K. This completes
the proof.

2.4. The following corollary gives a topological characterization of
5. dimensional closed pseudomanifolds among continua:

o _dimensional continuum K be a closed
that

COROLLARY. In order that a
pseudomanifold it is necessary and sufficient that K be an ANR such
reg, K is connected and dim (K —reg, K) < 0.

- Proof. Suppose that K satisfies the above conditions. By 2.3 it is
then a polyhedron, and thus K —regK is a finite set. Since K is con-
nected, K —regK is contained in the closuve of regK. Therefore K is
a homogenously 2-dimensional polyhedron such that regk is connected.
By [1], p. 403, K is a closed pseudomanifold. The condition is thus suf-
ficient. It is known that it is necessary ([1l, L e).

§ 8. The following theorem gives a topological characterization of
2-dimensional polyhedra.

8.1. TEEOREM. In order that a compact space K be a polyhedron
of dimension 2 it is necessary and sufficient that K = Ao B where

1° K< ANR, ©2° ACreg,K, 3°Bisa graph,

4° almost all points p ¢ B have arbitrarily small neighbourhoods U
such that for every component S of U—B the set Su(UnB—p) i con-
nected.
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The "points which do not satisfy 4° will be called singular.

The conditions 1°-4° are obviously necessary in order that K be
a polyhedron (as regards 4° it is easy to see that a singnlar point ig
& vertex in every triangulation). Thus we shall prove only that a space K
satisfying 1°-4° is & polyhedron. By (1.3.1) we may assume that K is
& Peano continuum; we may also assume that 4 7#0 and that 4 = K— B,

In 3.2 the proof of the theorem will be reduced to a proof of its
special case. This will be done in 3.3-3.5. 3.6 containg some remarks
concerning singular points and an example showing that condition 4° ig
essential. In 3.7 we prove that theorem 3.1 easily implies the well-known
theorem about the equivalence for dimension 2 between locally triangul-
able spaces and triangulable spaces (polyhedra).

8.2. We shall prove now that theorem 3.1 follows from the

LevMA. Let K be a connected ANR, K = A w B where

(a) A 14s homeomorphic with I (@,)

(b) BC A4,

{(e) B s a connected graph containing no more than ome point of
order 2 and only this point may be singular.

Then K is a polyhedron and R a subcomplex of some of its trian-
gulations.

H

Suppose that the above lemma is true and let K satisfy the con-
ditions of theorem 3.1. We have to prove that K is a polyhedron.

Let i(X) be the space obtained from K by the identification of B,
let 4: K—4(K) be the identification mapping. By (1.1.1), ¢(K) satisfies
the conditions of theorem 2.3, and thus it is g polyhedron. Let St(p)
be the closed star of the point p=1(B) in a fixed triangulation of
i(K). Let Ny, .., N; be closures of components of St(p)—p and let
K;=141%Ny), j=1,..,k Since E;nEj=B for i#j, we find by
(1.3.1) that to prove that X is a polyhedron it is sufficient to prove that
K; are polyhedra and B is a subcomplex of every K;. Let A;=K;—B.
Then

(i) 4; is homeomorphic with Q. with an interior point removed.

Now we shall prove that

(i) every K; is an ANR.

To prove (ii) it is sufficient to
at all points belonging to B.

Let p e B, let & be a positive number and lot W be a connected neigh-
bourhood of p in B such that 6(W) < te. Since B is a graph, W is an AR

provided e is sufficiently small, which is what we suppose. We shall prove
first that

prove that K, is locally contractible

Two dimensional polyhedra 15

(3.2.1) There is a connected neighbourhood Vo of p in K such that

(@) §(Vo)<ie, (MO VenB=W, VinB=W.

Let

&(W) = Elo(z, W) <olz, B-W)], H(W)=F [o(x, W) <{el,

e K £
Vi=G(W)~H(W)

and let ¥V, be a connected component of V, eonta@g p. Since G(W)
and H(W) are open and K is locally connected, it fc_ﬂlows that ¥V, is
a connected neighbourhood of p in XK. From V, C H(W) it follows that V,

satisfies (a). It satisfies also (b). It is kmown ([121, § 15, XIIT) that
G(W)~B= W. It is easy to see that G(W)~ B = W. Therefore

VornBCV,AB=GW)AnHW)AnB=H{(W)nW=W
and

VﬂnBC71AB=G(W)nH(W)nBCG(W)mH(W)mB=H(W)nW=W.
On the other hand W C G(W), WCH(W), WCV¥, and WCB, thus
WCVyn~nB

wnd WCV,nB.
All four relations together give (b). o )

Let ¥, be a neighbourhood of p in K satisfying (3.2.1) Wlt]? £ 80 s¥na11
that V, is contained in | JK;. Then every component of ¥, —B is contained
in a set K;. We fix the index j; let §; be the sum of those componentﬁ
of V,—B which are in K;. Let ' be a retraction of ,;L;),-Siuw to W; sue
a retraction exists sinee by (3.2.1) (b), W is closed i:rfl Vov:md thus also
in {J8;wW. Since K is locally connected, the funetion

w ') for zelJS; W,
r(z) = i#f
for zeS;uW
is continuous and is a retraction of L_JS.; uW to §;uW.

Now let & be a neighbourhood of p in K contained in ¥, a,pd contrac-
tible in V,. Then @ = G ~K; is a mneighbourhood of p in K; ;}1)11«1
& C8;wWCVynK;. Since 8; W 1fs a,frf"(jl)‘a,et of ¥,, G; is contractible
i v which completes the proof of (ii). ' B
" S%’Vefl’lall now consipder the set 4;. Since Bisa grap_h, dim (Frg(4;)) <0
and it follows that 4; is a locally connected subcontinunum of K;. Thereé
fore by (ii) and (1.2.1) there is only a finite number ?f compm;ehnt;f3 (;S
K;—A; whose boundaries contain more than ome ‘pomt. B_ut er
also a finite number of components whose boundaries contain only one


Artur


16 A. Kosifiski

point. For only a finite number among them contains points of order
#2 and tne closures of those which contain only points of order 2 are
simple closed curves intersecting A, at one point only. By (ii) they are
finite in number.

It follows that K;—A; is & sum of a finite number of closed and
connected subsets of B, whence it is a polyhedron; moreover this poly-
hedron intersects A; at & finite set of points. Thus also B; = B ~d;is
a graph and to prove that K; is a polyhedron with B as a subcomplex
it is sufficient to show that Z,- is a polyhedron with B; as a subcomplex.

Since K; = K;—4;u A; and the interscction of these sets is a finite
get of points, we infer from (ii) and [12], § 48, 111, 1 that

(iii) 4; is an ANR.

We have shown before that

(iv) By is & graph contained in A;.

Now, by 3.1, 4°, B; contains only a finite number of singnlar points.
We identify them, this will not change (i), (iii) and (iv). We identify also
to a point the simple closed curve which is the boundary of Aj; the space
obtained after these identifications satisfies all conditions of lemma 3.2;
therefore is a polyhedron and the set obtained by this identifieation
from Bj; is a subcomplex. Now, theve exists by (i) a simple closed curve J
in 4; which separates 4; into just two components F; and F, such that F,
contams the simple elosed curve which is ‘the boundary of 4; and F,
contains B;. Then F, is a polyhedron with B; as a subeomplex, F,
is a 2- dlmenswnal annulus, thus a polyhedron, and since F, ~F,=J,
it follows from (1.3.1) that 4;=F, o F, is a polyhedron and B; a sub-
complex of A;. This comple.tes the proof that theorem 3.1 follows from
lemma 3.2.

We proceed now to the proof of lemma 3.2. K will be a space satisfying
all conditions from 3.2 and we shall assume that 4 = K —B. The sole
singular point of B will be denoted by b. By 7 we shall denote the identi-
fication mapping which maps B into one point and is a homeomorphism
in 4.

3.3. Construction of normed neighbourhoods. Wo shall prove
first that

(8.3.1) For every p eB there are arbitrarily small weighbourhoods V

such that V.~ B is connected, V. ~ B is an AR and V ~ A is a manifold with
boundary (non-compact ).

Let ¢ be a positive number and let W be a connected neighbourhood

of p in B with §(W) < }e. We shall agsume that 7 is an AR and let ¥,
be a neighbourhood of p satisfying (3.2.1).

icm
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Now let T be a triangunlation of K —B with all simplexes of diameter
less than e and such that the diameter of simplexes converges to zero
together w1th the distance from B. Let T’ be a barycentric subdivision
of T. We add to ¥, all simplexes of 7 which intersect ¥, and if in this
sum a vertex of a simplex is a local diseconnecting point we add the star
of that vertex in 7. Let the interior of this sum be V. Then V is a con-
nected neighbourhood of p. (V)< e VAB=V,nB=W, VAB=W,
and P~ 4 is a manifold with boundary, since ¥~ .4 is an infinite poly-
hedron lying in 4 and without local disconnecting points. This proves
(3.3.1).

Let again p ¢ B. We shall prove. that

(3.3.2) There are arbitrarily small connected neighbourhoods V of p
such that V ~ B is connected and 1 (V) is homeomorphic to the sum of 2-dimen-
sional elements every two of which have only one common point lying on the
boundary of both, this point being common to all elements.

A neighbourhood U of a point p ¢ B is said to be normed if it satisfies
(3.3.2) and if U~ B~—p does not contain the singular point b. :

We proceed to the proof of (3.3.2). Let p « B and let U be a neigh-
bouthood of p in K with diameter less than e Let U, be a neighbourhood
of p in K contractible in U and let ¥ be a neighbourhood of p in K satisfy-
ing (3.3.1) and such that V C U,. Then 7 is contractible in U and the
inclusion homomorphism H,(V)—H,(T) is trivial. We shall prove that
also the inclusion homomorphism Hl(@(V )) =~ H,(i(T)) is trivial. To this
end observe first that in the mapping ¥ —4(¥) the inverse-image of a point
is either a point or the set ¥~ B. It follows that all inverse-images are
acyclic and therefore by the Vietoris Mapping Theorem {2] the induced
homomorphism H,(V)—>H,(i(V)) is an isomorphism onto. Thus the eom-
mutativity of the diagram

Hy(V) - H(O)
v v
H{i(V)) — H,(i(T))

implies that the homomorphism H,(i(V))~>Hy(i(P)) is trivial

Now, 4(K) is a 2-sphere; it follows from elementary duality theorems
that all components of i(K)—4(V) except one are contained in (D).
Let W be the sum of ¢(V) and of all those components of i(E)—i(V)
which are contained in #(T). Thus W does not disconnect ¢(K) and is
locally connected at all points with the exception — perhaps — of the
point i(B) = ¢q. Therefore it is locally connected. Let § be the closure
of a component of W—gq. Since FryS=gq, S is locally connected. More-
over § does not disconnect the sphere,i(X) and no point disconnects §

Bﬁt 2
W

Fundamenta Mathematicae, T. XLVIL
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(since only g can disconnect W). But this implies ([12], § 54, IV, 11)
that § is homeomorphic with @,. Therefore W is homeomorphic with
the sum of 2-dimensional elements every two of which have only one
common point lying on the boundary of both, this point being common
to all elements.

Now let V,=Vui ' (Int(W)). Then ¥, is a neighbourhood of p,
V.CU, and thus 6(V,)<e obviously V; is connected and 4(V,)
=i(7)ui(i'l(1nt(W))) (7)o Int(W) = W. This completes the proof
of (3.3.2).

3.4. Properties of normed neighbourhoods. We adopt in 3.4
the following notation: p will be a fixed point of B, U will be a normed
neighbourhood of p, § will be a component of U —B and L= 8 ~ B. ¢ will
denote a fixed point of Fry(8), F will denote Fr,(S). By (3.3.2), Fr(§)
is an arc without extremities; such is therefore also every component of
Fr4(8)—g. The closures in K of those two components will be denoted
R, F,.

(3.4.1) F, F,, F, are continua, F; ~ B is connected and non-void,

The first part is obvious. Were F; ~ B void, we should have F; C 4
and therefore ¢(F;) ~i(B)=0. This is 1mp0s51b1e, since 4(B) Ci(Fy).
Now, since i(F; ~B) is one of the exfremities of the arc i(F;), it follows
from (1.1.2) that F; ~ B is connected.

(3.4.2) L is connected.

i(L) does not locally disconnect 4(S), the last set being a 2-element.
Thus (3.4.2) follows from (1.1.2).

(3.4.3) Let T be an arbitrary subset of A. Then Frg(T ~B)Chou
w (Fry(T) ~ B). In partioular, if p is not the singular point b, then Fry(L)
CFAB.

First, we shall prove that if p ¢ Frp(L) then p is singular. For sup-
pose that p ¢ Frp(L) and let ¥ be an arbitrary neighbourhood of P con-
tained in U. Let 8’ be a component of ¥ —B contained in §. Such a com-
ponent does exist since p € §. Now, since no point of B is of order 1, we
may write Vo B—p = I, L, where (Iy ~L,) U (L, ~ L) = 0. Since I is
& connected subset of B and p ¢ Frp(L), oné of I, say L,, is digjoint
with L. Therefore

EZA(S'VLI) = (Eg/‘\S,)U(Ez ~L)=0

But S§'C 8 implies § r\L2CSr\LgCSr\B L and because of
LALl,=0 we have

LG(S'uLl) = (Lzmg')u(Lz mfl) =0,

icm
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Therefore 8'w L, wl,=8 o (VAB~-p) is not connected for some
component S’ of every sufficiently small neighbourhood of p, which
means that p is singular.

Now let 7 be an arbitrary subset of A. Let ¢ « Frg(T C B) and sup-
pose that £ ¢ Fr 7). We shall prove that ¢ is singular, i. e. ¢ = b.

Let ¥V be a normed neighbourhood of ¢ so small that VA Fr(7T) = 0.
Let S8’ be such a component of ¥V —B that 8’ ~ T = 0. Such a component
does exist since te7. Since 8’ is connected, &' C4, §~T==0 and
8'~Fr (T) = 0 thus & CT. It follows that S'’ABCT A B, and there-
fore teFrg(8'~B). But we have proved that this implies that f is
singular; therefore the proof is completed.

(3.4.4) L contains at least one component of U~B—Db. In particular

(a) L is a continuum containing p;

(b) if p is not singular then L is an arc containing U~ B.

Since L=8S~ABOFAB=(F,wF)~B#0 and F;~nU=0, we
infer that there is a point t'¢ L —U. Since U is connected, there is & point
t” eL AU. By (3.4.2), L contains the arc ¢4 and thus also a point dif-
ferent from p and belonging to U. That point is then certainly different
from b; let T be the component of that point in U~ B—5b. Then T ~L 5£0.
Were T not contained in I, there would exist a point ¢ satisfying
t e T AnFrp(L). In particular ¢ would belong to U, and thus U would
be a normed neighbourhood for t. Since ¢ is not singular, the inclusion
t ¢ Frg(L) contradicts (3.4.3). This completes the proof.

(3.4.5) p s accessible from 8.

Let V be a normed neighbourhood of p contained in U. Let T be
the sum of those components of ¥ —B which are contained in 8. Then
Top is a neighbourhood of p in S p and moreover it is a connected
set, since by (3.4.4), p belongs to the closure of every component form-
ing T. Therefore § wp is locally connected, which proves (3.4.5) by [12],
§ 45, 1T, 7.

By (3.4.5) there is an are J = pq contained with the exception of
the extremities in 8. Sinee § is homeomorphic with I(Q,), §—J has just
two components §;, 8,, each of them homeomorphic with 8. Now, Fy is
contained either in §; or in §,. We suppose that ¥, C S,. Then F,C S,.

(8.4.6) 8§;~B is a continuum, t=1,2. If p is not singular then
8;~B is an are and S; A8, nB=p.

First, S; ~ B contains F; ~ B and the last set is not empty by (3.4.1).
On the other hand S; ~ B contains p, and p ¢ F;. Therefore S;~B contains
two different points and, being connected, is a continuum.

Now, suppose that p is not singular. By (3.4.4), L is an arc. There-
S;~ B, being subcontinua of L, are ares, and their sum is L. To

2%
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complete the proof we have to show that if peS;~B for i=1, 2, then P
is an extremity of §,~B, i=1, 2.

Suppose that p is an interior point of 3, ~ B. Then Fry(8, ~ B) inter-
sects both components of L —p. On the other hand Fr,(S;) = J w F; and
we infer from (3.4.3) that Frg(S;~ B) C by p w (F;~B). Since neither p
nor b belong to Fry(S; ~B), we have Frp(S, ~B)CF, ~B. It follows
that F; ~ B intersects both components of L—p and since #F; ~ B does
not contain p we infer that it is not connected, which contradicts (3.4.1)
and completes the proof.

(3.4.7) U—B has a finite number of components.

Suppose first that p is not singular and suppose that (3.4.7) is false.
Let 8y, 8,,.. be an infinite sequence of components of U —B, let
F;=TFr.4(8;). The sequence {F;} contains a convergent subsequence: we may
suppose simply that F; converge to a set Fy. Since F; are continua, F,
is also a continuum, which is eontained in B, since K is locally connected.
Let pa, qn be extremities of the segment L,= S, ~ B. By (3.4.3), Pn, ¢n eFy,
by (3.4.4), Ly,D U~ B. Tt follows that F, D U~ B, and thus p e Fy, which
is impossible, since F, are disjoint with U.

Now let U be a normed neighbourhood of the singular point b.
Since U~ B is a connected neighbourhood in the graph B, there is only
a finite number of components of U~B-—b, denote it by L, ..., L.
Let T;,i=1,2,..,n, be the set of all such components S of U—RB
that 8§D L;. Let V be a normed neighbourhood of a point from IL;, so
small that V' C U. Then every component forming T'; contains one com-
ponent of ¥V —B, and no two contain the same component of ¥ —B. There-
fore T; has no more components than V—B, i. e. a finite number. But
by (3.4.4) every component of U—B belongs to one of 7T,. Thus there
is only a finite humber of components of U —B.

(3.4.8) If U and V are normed neighbourhoods of two points of the
same component of B—b, then U—B and V-—B have the same number of
COMPonents.

Since a normed neighbourhood for a non singular point is & normed
neighbourhood for all points which are near, it will be sufficient to prove
(3.4.8) in the case where U and V are neighbourhoods of the same point.
Since two normed neighbourhoods of the same point contain in their
common part another normed neighbourhood, we may assume that
UDV. Since by (3.4.4) the closure of every component of U —B containg
the point p, it contains also a component of V—B. To complete the proof
we have to show that it contains only one such component.

Suppose that § is a compenent of U—B and that 8, 8, are two
different components of ¥V —RB contained in 8. Let ;e 8, let L; be an
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arc a;p contained in §;u p and let L, be an arc a, 4, in §. We may assume
that Ly~(Iqywl)=a,va,. Then L=L wvl,uvl; is a simple closed
curve in 8w p. Sinee 8 is homeomorphic with I(Q,), L ~ S disconnects S
and one of the components of the complement of L ~ 8 in § is closure-
-disjoint with Fr4S. Denote it by D and let B= D~ B. Since Fr (D)=L,
we have by (3.4.3), Frg(B)CL~B=p. But this is impossible: Since
p ¢ Fr(8,) and E~Fry(S,)+#0, it follows that E contains more than
one point. Thus so does its boundary and this eontradiction completes
the proof of (3.4.8).

Using again the notation from (3.4.6) we shall prove the following.

(3.4.9) Let Pn, gn be two sequences of points such that pn, gneS and
lim p, = p = limg,. There is a sequence of arcs pngnC S such that 6 (pagn)-+0.

If all points Du, ¢n belong o the same one of the sets 8;, then the are Payy
may be found also in the same set S;.

Let & be a positive number and let ¥V C U be a normed neighbour-
hood of p with diameter less than & By (3.4.8) there is one and only on(i
component 8’ of ¥V —B contained in 8. Therefore there exists such an N
that for # > N both p, and g, belong to §’. But 8’ is arcwise connected,
hence there is an arc png, C 8. It follows that 8 (pags) < & which completes
the proof of the first part of (3.4.9). )

Suppose now that pn, gn€S;. We have proved that there is a se-
quence of arcs png, in § such that

(1) O (Putn)—+0.

Let p;, be the first and g;, the last —starting from p, — point of the
566 PnnndJ. By (1), Pn, gn—>p. Let pngn be the arc in J with extremities
Dhy g We then have

(ii)

3(prgn)—0.

Let pnPh, ¢ngn be subarcs of the arc pags determined by t1.1e corTes-

ponding extremities. Liet Ln= paPr v Pnln ' (ngn. We have by (i) and (ii)
§(Lyp)—0.

Now, L, is an arc in §; with extremities pn, ¢» in Sl_ . An elementary
reasoning (e. g. by using a triangulation of § in whieh J is k] subecomplex)
shows that there is an are Lj in 8, with the same extremities as Ly and
arbitrarily close to L,. By (iii) we shall have again 8(Ly) -0. The proof
is then completed. :

8.5. The triangulation of K. We shall use the fo]lovﬁng notation:
b will be as ususal the singular point, components of B—b will 1.36 de.l'loted
by B, a=1, ..., n. Every set B, is an open arc, B,=B,ub is a simple
closed curve.

(i)
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I peB and U is a normed neighbourhood of p, then the number
of components of U—B will be denoted by k(p). By (3.4.7) and (3.4.8),
k(p) is a matural number independent of U and if p, ¢ ¢ B, then k(p)
= k(g)-

Chose in each component B, a point b,, a =1, ..., n, and let b,= .
Let U, be a normed neighbourhood of b, 1 =1, ..., n. We ghall assume
that U, are so small that U,~Uz=0 for a f. Choose a point 4 in
A—U,. Let 8, ..., 8% pe all components of U,— B. Let af be a fixed
point Fr(85).

" The sum of # arcs with extremities x,y and with disjoint interiors

will be called the curve 6,(x, ¥). :

Let LF be an arc with extremities b, and af contained in 8% alu b,.
Such an arc exists by (3.4.8). Let L8 be the arc with extremities afa
contained in (4—(JU.) wal; we suppose moreover that L ~L’=a

if ey or f£4. Put If = LPU L. and K, = BuJIL.
aB
K, is a graph and B a subcomplex of K. Let us observe that | ) If
B

is the curve 0,(a,b,) with n = k(b,), and that two such different curves
have only the point 4 in common. Since the identification mapping i
identifies all points b,, ¢(K;) is homeomorphic with a 6,-curve with » > 1.
Since ¢(K) is homeomorphie with a 2-sphere, i(X,) disconnects ¢(K) and
every component of the complement is homeomorphic with I(Q,). The
inverse images in K of those components we shall denote by T4, .., Th
and the closure in K of T} will be denoted by 7. Since the mapping ¢ is
& homeomorphism in 4, it follows that Tj are components of A—K,
and are homeomorphic with I(Q,). Since (7T;) is homeomorphic with §,,
it follows from (1.1.2) that T;~ B is connected for. all j,

Let 1" be one of the sets 7" and let T = 7". Let § be the component &
of U,—B.

(8.5.1) K1~ 8 disconnects S into just two components 8y, 8, which
satisfy
(a) S;~B is a continuum; if a0 then §, A8, ~B = b

(b) if T'~8 %0 then T'~ 8 is one of the sets 8,, 8, and T D IF.

Since § ~K; = L*—(afb,), the situation is as in (8.4.6), and this
proves (a). We shall prove (b). It follows from 8 ~ 7”0 that one of the
sets Sy, 8,, for instance 8, satisfies 8, ~7"=£0. But 8; is a connected
subset of K —K,, T’ is a component of K —K,, and thus 8§, C 7’. Now,
since K, disconneets S, it follows that the 6,-curve 1(X;) disconnects ¢(S).
But #(8) is an open subset of a 2-sphere i(K), thus 4(8,) and ¢(8,) are
contained in different components of H(K)—i(K,) = i(4d)—i(K,), i. e.
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8, and 8, are contained in different components of A —K;. Hence 8; CT”

implies S, ~ T =0. , , '

e Finaﬁy, since 8, D ILY, also TDLP, and therefore T D IE, which
roves (b).

P Now, Fr(T) i8 & sum of two ares from the system LS. Suppose that

there are arcs If and L5. We shall prove that

(8.8.2) One of these arcs contains by, the second does not.

First, we prove that

(i) If bye T ~B then b, e Tu L; (i e. either »= a or z=1y).

For if b,e T nB—(LﬁuL‘;), then there is a component S qf ‘U,‘—B
sach that 8 ~(Lfu I8 =0 and § ~ 1”5 0. Thus S C I". But this is impos-
sible, since T'~K,=0 and S ~E,#0 by (3.5.1).

Next, we shall prove thab

(ii) T~ B is a continuum.

Since LSC T, we have b,e T, and thus T ~AU.5#0. H(Enee there
exists a component § of U,—B satisfying 7'~ S #0. By (3.5.1) (b) we
have T'D S, where §; is one of components of §—K; I?y (:i.ﬁ.l) (a_),
5, ~B is a continnum. Since T ~B is connected and contains §; ~ B, ib
is a continuum. ,

Now, since Fr(7) = IfvL;, we have by (3.4.3)

(iil) Fra(T ~AB) Cbgu bav by.

Now we can prove (3.5.2). First suppose that ¢ =0 and y = 0 Then
by (i), Frg(T ~B) C by, thus by (ii) we infer that TnB con‘.c»ams ons
of the sets B,. Therefore it eontains also one of the points b, with #£0.
This contradicts (i). s

Suppose now that a0 and y7£0. Then b, apd b, are in qﬁerent
components of B—b,, and gince T~B is & co?ltmu}lm cgntammg b,
and b,, it confains also by, which again contradicts (i). This completes
the proot of (3.5.2).

(3.5.3) If T'~U,#0 then T intersects only one covlnponent 8 of
U.—B. If 8, and 8, are components of 8—K,, then T ~Ug=8; or
T’ AU, = 8,.

¥ T"AU,+0, then 7'~ 8550 for an 5,1 gﬁgk(ba).ﬁ Suppose
that also T'~8Ls£0, 1<y <k(b,) Then by (3.5.1) (b), L.CT and
I2CT. Thus by (3.5.2) it follows that B=y, 1. e. T'~8 # 0 for cme1 am;d
only one component § of U—B. Applying to this component 1(3.5. ),(3' )
we have T'~ 8= 8;, and since T'~nU = T'n S, we have %’r\qz tlh

By (3.5.2) we shall assume henceforth that Fr (T) = Ly Uy, Wi
y#0. Then

(3.8.4) T~ B is an arc with extremities bg, by.
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We shall prove firgt that T~ BC E,,. For if TAB,#0 with « Fy
then Frp(T~B) Cb, wb, gives B,C T~ B, and thus b,e T~ B, a0, .
This contradicts (3.5.2) (i).

Now we shall prove that T ~B is an arc. Since B, is a simple closed
curve and T~ B is & continuum contained in B,, it is sufficient to show
that B,—T ~B # 0.

Consider the neighbourhood U,. Since b, ¢ T, we have I'~ U, #0.
‘We infer from (3.5.3) that 7'~ U, = §;.

Now, U,~B—b has two components &,, G, and by (3.5.1) (a) one
of them, say &,, is disjoint with 8,. Let g ¢ G, and let ¥V C U, be a neigh-
bourhood of g such that VA 8, =0, Then VAl' =V~ U, n T =V~ 8 =10
and this implies that g ¢ T.

Thus T'~ B is an arc. Since Frp(T'~B)Cb,ub,, hence T~ B is an
arc with extremities by, b,.

(3.5.5) Fr(T')=T—T" is a simple closed curve. T is a Peano continuum.

Since 7" ig open, Fr(T') = T—T". Now, Fr(T") =I5 L LI L (T~ B).
Since L§ w LS is an arc with extremities by, b, and interescting T ~ B only
at these points, we infer from (3.5.4) that Fr(7") is a simple closed curve.
Hence T is a Peano continuum by [12], § 44, III, 4.

(3.5.8) Let p be an interior point of the are L= T~ B and let U be
a normed neighbourhood of p. There is one and only one component S of
U—B contained in T' (i. e. T'~U = 8).

Let 7"= T4, T5,.., Ty, be all such components of K—K, that p
belongs to the closure of T'j. By (3.5.4) we have T/ ~nB =1L, j=1, .., m.
Each of k(p) components of U—R is contained in one of the sets Ts.
Each of T contains at least one of the components of U—B. If there
were more than one component of U—B contained in 77, we should
bave m < %({p). We will show that this is impossible.

Let 8;, ..., 8 be components of U,~B. By (3.5.1) (a) there are
two components &,, 8%, of §)—K, and one of them, say Sf,, satisties
Sﬁ’,, ~B CL. By (3.5.8) it follows that for every T} there is such an index 8
that T;~ U, is one of 8, 85,. Since S, ~B—L 0, by (3.5.1) (a), and
TjnB=L, whence T;~U,= §,. Hence the number of the sets 7T} is
not smaller than the number of components &%, with a fixed 4, i. o.
m 2= k(b,). Bubt pe By, and thus k(p) = k(b,), i. e. m = k(p). The proof
is thus completed.

(3.5.7) I" is uniformly arcwise connected.

Let pn, gn be two sequences of points in 7' such that Py Gu) 0
and suppose that

(i) every arc in 7' with extremities p, sy gn 15 of diameter greater
than a fixed positive number .
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Obviously we may assume that the sequences py,q, are con-
vergent; let

(i) limp,=limg,=p.

Now, since 7—T ~ B is homeomorphic with the half-plane, we have
p ¢ T~ B. First, suppose that p is an interior point of T~ B and let U
be the normed neighbourhood of p. It fellows from (ii) that, starting
from @ certain index, all pairs p,, ¢, belong to U~ T'. Thus by (3.5.6)
we infer that there iz a component S of U—B such that, starting
from a certain index, all pairs p,, g, belong to S. Then (i) contradicts
3.4.9).
( Igow suppose that p is one of the extremities of the are T'n B, i e.
let p = b,. By (i) it follows that almost all pairs pn, ¢» belong to U,~T";
therefore the same pairs belong, by (3.5.3), to §;. Hence (i) again confra-
dicts (3.4.9) and this completes the proof of (3.5.7).

We shall say that an are J with extremities a,, a, spans Fr(T) if
JCT and J~AFr(T") = a,w a,. We will show that

(3.5.8) Bvery arc J spanning Fr(I") disconnects T. No true closed
subset of am are spanning Fr(T') disconnects T.

Since 7" is homeomorphic with I(Q,), T'—J has two compone].lts
C,, C,. Were T—J connected, it would mean that there exists aipomt
p €0, nC,—J. Suppose that such a point does exist. 1Let oDy D € Cs,
i=1,2. We then have limg(py, p5) = 0 and limg(pn,J) = > 0. S}nge
every arc pipl joining ph and py in 77 intersects J, we have &(pnpa)
> o(ph,J). Therefore limd(pypy)>> s> 0 for every sequence of arcs
joining p% and pi in 7T'. But this contradicts (3.5.7) and thus proves
that J disconnects 7.

Let J span Fr(7”) and let N be a closed true subset of J. Then T"—N
is connected. But T'—NCT'—N=T-NCT—N, and since T—N
=7T'-N, T—N is connected.

By theorem II from [7] we infer from (3.5.5) and (3.5.8) that

(3.5.9) T is homeomorphic with the 2-simplex.

Now let ¢ be the complex of the triangulation of Fr(1") deﬁI.Led
by the points @, by, b, as unique vertices. Then the 1—djmens101}’a.1 sim-
plexes of this triangulation are arcs TmnB = boby, = ab,,z L,= a-b,,.
If T} is another components of K —K, and C; an analogous triangulation

. of Fr(T}), then T~ T, is a subcomplex of both ¢ and ¢,. By (1.3.1) the

sum of all sets T is a polyhedron and the sum of all sets T ~ B is its Sl.lb-
complex. But the first sum is the set K and the second is the set B, which
proves lemma 3.2. Since theorem 3.1 follows from lemma 3.2, the proof
of theorem 3.1 is then completed.
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3.6. Remarks. Conditions 1°3° from 3.1 need no explanation. Con-
dition 4° may be replaced by any of the following three:

(3.6.1) Almost all points p € K have the following property: for every
e 0 there 48 6> 0 such that for every pair of points e A, yeB satisfying
o(p, 2)+o(p,y) <0 ewists in Aoy o continuum L containing x and y
and of diameter less than e.

(3.6.2) Almost all points p e K have arbiirarily small neighbourhoods U
such that for efery g e UnB, Fr(U) is a deformation retract of T—q.

(3.6.3) There is a finite subset B, C B such that for every subset T
of A we have Frg(T B) C Byw Fr (T).

We omit the proofs, which are rather easy. (3.6.3) ig identical with
(3.4.3) and it is easy to verify that in the proof of theorem 3.1 we use
only (3.4.3).

Tt is worthwhile to observe that Condition 4° is essential, i. e. that

there exist spaces which satisfy conditioms 1°-3° from 3.1 but which are

not polyhedra. A simple example is as follows.

Let  be the square 0 <z <1, 0 <y < 1. We shall consider a semi-
continuous decomposition of ¢ with the following elements:

(a) pairs of points (1/n, ), (¥ +1/n,0) where 0 <y <1/2", n=2,3, .;;

(b) all other individual points of Q.

Let @* be the hyperspace of this decomposition. By (1.1.1), @* is
an ANR. Tt is easy to see that @* may be decomposed into the sum of
two subsets, one of them being a simple closed curve and the second
being homeomorphic with an open 2-element. Thus Conditions 1°-3° are
satisfied. '

Now, were * a polyhedron, the images in @* of points (1/n, 1/2")
would be vertices of the triangulation. But this is imposisble since @* is
compact and there are infinitely many images of points (1/n,1/2%).

8.7. We shall say that the space K iy locally polyhedral if every point
p ¢ K has in K neighbourhoods homeomorphic with an open subset of
a polyhedron.

THEOREM. A compact locally polyhedral 2-dimensional space is
a polyhedron. :

Proof. Suppose that K is locally polyhedral and that dim K = 2.
Obvionsly K is an ANR. Let 4 =regK, B= K—A. B is then locally
a graph, and thus a graph. Conditions 1°-3° from 3.1 are then fulfilled.
S0 is also Condition 4°: since X is compact, it may be covered by a finite
number of polyhedral neighbourhoods, Sinee every such neighbourhood
containg only a finite number of singular points, there is only a finite
number of singular points in K. Thus theorem 3.1 yields 3.7.
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§ 4. As we have already remarked, the notions of graph and of the
set reg K, which we use in theorem 3.1, only indirectly belong to the
set-theoretical topology. The aim of this section is to obtain a characteri-
sation of 2-dimensional polyhedra in which only purely set-theorstical
notions appear. Such a characterization will be given in theorem 4.2,
In 4.1 we shall introduce some auxiliary notions.

The whole content of this section iy strongly linked with [10].

4.1. Relative r~points. Let K Dbe a space and A a subset of K.
A point p e A will be called an r-point of K rel. 4 if p has arbitrarily
gmall neighbourhoods U in K such that, for every gqe U~d, Frg(U)
is a deformation retract of U-—g. An r-point of K rel. K will be called
an absolute r-point of K or, simply, an v-point of K.

Now, for every n-dimensional compact space K we introduce a se-
quence of subspaces as follows:

E, will be the set of those r-points of K at which dim, K = n;

K;, 1> 2, will be the set of r-points of K rel.K*ju K;.

<t

Finally, we shall introduce the following inductive definition: A zero-
dimensional space will be called an r-polyhedron if it is finite. An #-dimen-
sional compact space K, n>-0, will be called an n-dimensional 7 - polyhedron
if it is an ANR and if the sets K; defined above satisfy the condibions:

(a) K, is an open set;

(b) K= Ky

1

{¢) E—\JK; is an r-polyhedron of dimension < n—1i.

i<i

The definition of r-polyhedra thus uses only the simplest notions
from set-theoretical topology.

4.2, THEOREM. R-polyhedra of dimension <2 are polyhedra.

Proof. Suppose that K is an r-polyhedron of dimension 1. By
Theorem 3§ in [10] we have K, ereg,K. By definition K —K; is finite.
Therefore K is a polyhedron.

Now suppose that K is 2-dimensional r-polyhedron. Let 4 =K,
B = K—K,. Again by theorem 3 in [10] we have A Creg,K. By defini-
tion. B is an r-polyhedron of dimension <1, and thus a graph as we
have just proved. Thus K satisfies Conditions 1°-3° from theorem 3.1.
Now, by definition, X —K, —K,= B—K, is finite. But this is equivalent
to (3.6.2) and (3.6.2) implies Condition 4° from theorem 3.1. Therefore
this last theorem yields 4.2. This completes the proof.

It is easy to see that polyhedra are r-polyhedra. It is not known
whether r-polyhedra are always polyhedra. Probably the answer is
negative. )
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by
G. Kurepa (Zagreb)

1. Introduction and summary. Let 9 be a well-ordered set;
for any set 8, let ,
(1) 8@y) or 8
denote the system of all functions on 9 te §; in particular, if a, § are
ordinal numbers, let «(f) be the set of all the A-sequences of
ordinals <a, i.e.

(2) a(f) = Ia(1p).
For example, 2(w,) is the set of all the w,-sequences of digits 0, 1.
Let us put

(3) TS(QV):LXJS(X),

X running over all initial segments of . Consequently, 72 (w;) 1§ the
set of all the dyadic sequences whose length is <. The set (3) is re-
garded as ordered by the relation

= meaning: to be an initial portion of.

In partieular means = and . .
I)One easilyjaroves tha.’r! the set (3) is a tree, .i. e that fqr every pomtdm
of (3) the set of all the elements each of wl%lch is o is well—ordereh.
The investigation of sets T2(w,) and, in gen?.rajl, o.f gets of t‘ e
form (3) is very important and involves enormous difficnlties. In I;a\lf'tl(’.-
ular, we showed that the problem whether every non cou@tablf; su set -07‘
T2(w,) contains an uncountable chain or an uncountable antichain s quw—
alent to the Suslin problem (cf. Kurepa, [1], - 106, 124, 132, P.,ye—) 5):
In particular, the following two propositions are mutually equwalent..
(A) Every subset S of T2(w,) of cardi@ality{ 8, such that every anti-
chain of § is <k, contains @ chain of cardinality i3

53 i t the
*) The second part of the results was presentc?d 23. 12,1953 in ]:eog::d; e: ahe
Mathematies Instibute of the Serbian Academy of Sciences. For the first pa
repa [2].
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