General continuum hypothesis and ramifications *

by

G. Kurepa (Zagreb)

1. Introduction and summary. Let 'H' be a well-ordered set; for any set S, let

 $S(\mathcal{W}) \quad \text{or} \quad S^{\gamma p^{\prime}}$

denote the system of all functions on \mathfrak{N}^{g} to S; in particular, if α, β are ordinal numbers, let $\alpha(\beta)$ be the set of all the β -sequences of ordinals $< \alpha$, i. e.

(2) $a(\beta) = Ia(I\beta).$

For example, $2(\omega_1)$ is the set of all the ω_1 -sequences of digits 0, 1. Let us put

(3) $TS(\mathcal{P}) = \bigcup_{X} S(X),$

X running over all initial segments of \mathcal{W} . Consequently, $T2(\omega_1)$ is the set of all the dyadic sequences whose length is $\leq \omega_1$. The set (3) is regarded as ordered by the relation

= meaning: to be an initial portion of.

In particular \dashv means \rightleftharpoons and \neq .

One easily proves that the set (3) is a *tree*, i. e. that for every point x of (3) the set of all the elements each of which is $\neg | x$ is well-ordered.

The investigation of sets $T2(\omega_0)$ and, in general, of sets of the form (3) is very important and involves enormous difficulties. In particular, we showed that the problem whether every non countable subset of $T2(\omega_1)$ contains an uncountable chain or an uncountable antichain is equivalent to the Suslin problem (cf. Kurepa, [1], p. 106, 124, 132, $P_4 \leftrightarrow P_5$).

In particular, the following two propositions are mutually equivalent:

(A) Every subset S of $T2(\omega_1)$ of cardinality κ_1 such that every antichain of S is $\leq \kappa_0$ contains a chain of cardinality κ_1 ;

^(*) The second part of the results was presented 23. 12. 1953 in Beograd at the Mathematics Institute of the Serbian Academy of Sciences. For the first part see Kurepa [2].

(S) Every linearly ordered dense set such that every system of its disjointed intervals is $\leqslant \kappa_0$ is similar to a set of real numbers ordered according to their magnitude.

Now, it is extremely interesting that the continuum hypothesis can be equivalently expressed in terms of sets $T2(\omega_{\sigma})$ and in connexion with the existence of some chains in subsets of $T2(\omega_{\sigma})$. In particular we shall prove the following theorem (cf. Theorem 3.2).

Theorem. The continuum hypothesis $2^{\aleph_0} = \aleph_1$ is equivalent to this statement

 (D_0) If an initial portion P of length ω_2 of $T2(\omega_2)$ contains no chain with κ_1 1-s, i. e. if for every chain $C\subseteq P$ the set $\sup C$ contains $<\kappa_1$ times the digit 1, then P contains a chain of cardinality κ_2 (obviously composed mainly of 0-s).

This theorem is a corollary to a general theorem dealing with analogous sets $T2(\omega_{\sigma})$ (cf. the main theorem 3.1).

The proof of the theorem is based on a theorem (Theorem 2.1 below) on regressing functions proved in another paper (Kurepa [2]).

2. Auxiliary theorems. In another paper we have proved the following theorem ([2], Theorem 3.2).

THEOREM 2.1. Let ω_{σ} be a regular initial uncountable ordinal number. Let $S_{\omega_{\sigma}^{-1}}(\omega_{\sigma}'<\omega_{\sigma})$ be a sequence of non-void pairwise disjoint sets such that

$$kS_{\omega'_{\sigma}} < k\omega_{\sigma}$$
.

Let M be a set of cardinality κ_{σ} of ordinals $<\omega_{\sigma}$ such that in the space $I\omega_{\sigma}$ of ordinals $<\omega_{\sigma}$ the complement of M contains no closed set of cardinality $k\omega_{\sigma}$. Let f be a mapping of

$$M_0 = \bigcup S_{\mu} \quad (\mu \in M)$$

into

$$S = \bigcup S_{\omega'_{\sigma}}$$

such that $x \in S_{\mu}$, $\mu > 0$, imply $fx \in S_{\beta(\mu x)}$ with $\beta(\mu, x) < \mu$ ($\mu \in M$). Then there exists a $y \in fM_0$ satisfying

$$k\{f^{-1}y\}=k\omega_{\sigma},$$

i. e. f is constant in a set of cardinality & ...

On the basis of this theorem we have proved the following theorem. THEOREM 2.2. Let T be a system of sequences of ordinals $< \omega_{\alpha}^{-}$ such the energy initial segment of energy class set of T below at T.

that every initial segment of every element of T belongs to T; let ω_{σ} be such that ω_{σ}^- is regular and that

$$1 \leqslant kR_{\alpha}T < \aleph_{\sigma} \quad (\alpha < \omega_{\sigma}).$$

If no ordered chain of T contains \mathbf{s}_{σ}^{-} digits $\neq 0$, then T contains a ω_{σ} -chain (terminating necessarily with 0's). (Cf. Kurepa [2], Theorem 4.1.)

Remark. It is interesting to observe that the elements of sequences forming T might be composed of digits 0,1 only. Some elements of T might be sequences of digits $\neq 0$ only; but what matters is the existence of a chain of cardinality \mathbf{s}_{σ} of elements of T all terminating with 0's.

THEOREM 2.3. Let T be a tree every node of which is $<\mathbf{s}_{\sigma}^-$ and $1 \le kR_{\sigma_{\sigma}}T < \mathbf{s}_{\sigma}^-$. Let us suppose that \mathbf{s}_{σ}^- is regular and that there exists a mapping f of T into $I\omega_{\sigma}^-$ such that:

1° f is one-to-one in every knot of T;

 2° the set $\{f^{-1}0\}$ of points of T each of which is transformed into 0 intersects every chain of T whose cardinality is \mathbf{x}_{σ}^{-} .

Then the tree T contains a chain of cardinality s_{σ} .

As a matter of fact the existence of the preceding function f enables us to give a representation of T in the form of a system of sequences occuring in theorem 2.2. Let $x \in T$ and $T(\cdot, x] = \{y \mid y \in T, y \leq x\}$. Then fx as well as fx' is an ordinal for every $x' \leq x$; then $fT(\cdot, x]$ is a sequence of ordinals $< \omega_{\sigma}^-$ and one easily proves that the system

$$S = \{ fT(\cdot, x] \mid x \in T \}$$

is the required set of sequences: the mapping

$$x \rightarrow fT(\cdot, x]$$

is a similarity between T and S.

The system S is a tree of the kind we examined in Theorem 2.2, except that the length of every element of S is an isolated ordinal; joining to S also the initial portions of the second kind of every element of S, one gets a system T_0 like that in theorem 2.2. And one sees that T_0 contains a chain of cardinality \mathbf{x}_{σ} ; therefore the tree S as well as the given tree T contains a chain of cardinality \mathbf{x}_{σ} , which is what was required.

And now we are going to prove the main result of this paper.

3. Main theorem.

Theorem 3.1. For any ordinal α the following statements (C_α) and (D_α) are mutually equivalent:

 (C_{α}) $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$.

 (D_{α}) Let D be an initial portion of the tree $T\omega_{\alpha}(\omega_{\alpha+2})$ composed of all functions on $I\omega_{\alpha+2}$ into $I\omega_{\alpha}$. If the length of D is $\omega_{\alpha+2}$ and if D contains no chain with more than κ_{α} digits $\neq 0$, then D contains a $\omega_{\alpha+2}$ -sequence (obviously terminating with 0's each).

Proof of Theorem 3.1. (C_{α}) implies (D_{α}) . At first, let us prove the following lemma.

LEMMA 3.1. Relation (C_a) implies

$$kR_{\nu}D \leqslant \aleph_{\alpha+1} \quad (\nu < \omega_{\alpha+2}).$$

As a matter of fact we infer by induction that first of all

$$kR_{\mathbf{v}}D\leqslant \sum_{\mathbf{v}'\leqslant \mathbf{v}}\mathbf{s}_{a}^{k\mathbf{v}'};$$

therefore, in particular

$$kR_{\omega_{\alpha+1}'}D\leqslant\sum \kappa_{\alpha}^{k\omega_{\alpha+1}'}\leqslant\kappa_{\alpha}^{\aleph_{\alpha}}=\left(\text{by hypothesis }(C_{\alpha})\right)=\kappa_{\alpha+1}$$
 .

Hence, relation (4) holds for $\varphi < \omega_{a+1}$. Suppose now that

$$\omega_{a+1} \leqslant \zeta < \omega_{a+2}$$

and that (4) holds for every $v < \zeta$; let us prove (4) also for $v = \zeta$. If ζ is isolated, all is obvious. If $\mathrm{cf} \zeta = \omega_{\alpha+1}$, then in virtue of the supposition in (D_{α}) , every element x of $R_{\zeta}D$, being a ζ -sequence of ordinals of $I\omega_{\alpha}$, terminates with a $\omega_{\alpha+1}$ -sequence of 0's; therefore

$$kR_{\zeta}D\leqslant\sum kR_{\zeta'}D\leqslant (\text{by induction hypothesis})\leqslant \aleph_{\alpha+1}k\zeta=\aleph_{\alpha+1}.$$

It remains to prove the case

$$1 < \tau < \omega_{a+1}$$
 where $\tau = cf\zeta$.

Then let $\beta_0 < \beta_1 < ... < \beta_{\tau'} < ...$ be an increasing τ -sequence of ordinals converging to ζ . Then every x of $R_{\zeta}D$ is the supremum of a well-determinated τ -sequence $x^{\beta_{\tau'}} \in R_{\beta_{\tau'}}D$.

Now the number of all such τ -chains is $\leqslant \prod_{\tau'} k R_{\beta_{\tau'}} D \leqslant (\text{by hypothesis}) \leqslant \prod_{\tau' < \tau} \kappa_{\alpha+1} \leqslant \kappa_{\alpha+1}^{\kappa_{\alpha}} = (\text{by hypothesis } (C_{\alpha})) = (2^{\kappa_{\alpha}})^{\kappa_{\alpha}} = \kappa_{\alpha+1}$.

Consequently, relation (4) holds.

Now, the length of D is, by hypothesis, ω_{a+2} ; consequently, in virtue of (4) we get

$$1 \leqslant kR_{\nu}D < \aleph_{\alpha+2} \quad (\nu < \omega_{\alpha+2}).$$

Moreover the cardinal $\kappa_{\alpha+1} = \kappa_{\alpha+2}^-$ is regular. And since by supposition on (D_{α}) , D contains no chain with more than the κ_{α} digits $\neq 0$, the hypotheses of Theorem 2.2 are satisfied; accordingly, the tree D contains a chain of cardinality $kD = \kappa_{\alpha+2}$. The implication $(C_{\alpha}) \rightarrow (D_{\alpha})$ is proved.

3.2. (D_{α}) implies (C_{α}) Let us suppose on the contrary that $2^{\aleph_{\alpha}} > \aleph_{\alpha+1}$ although (D_{α}) holds. Then in particular the set $2(\omega_{\alpha})$ of cardinality $2^{\aleph_{\alpha}}$ of all dyadic ω_{α} -sequences would contain a subset X of cardinality $\aleph_{\alpha+2}$.

Let s(x) $(x \in X)$ be a one-to-one function of X onto $I\omega_{\alpha+2}$; every such x being a dyadic ω_{α} -sequence, let us consider the sequence

$$hx = x + \{0\}_{sx}$$

obtained by a juxtaposition of x and the constant s(x)-sequence composed of 0's; of course the length γhx of hx equals $\gamma x + s(x) = \omega_a + s(x)$. To distinct elements x of X correspond in this way distinct sequences h(x)'s. Then let D be the system of all initial segments of those h(x)'s, x running over X. The set D would be an initial portion of $2(<\omega_{a+2})$ (1) and no supremum of a chain of D would have more than κ_a digits 1 in its representation. According to the statement (D_a) the set D would contain a ω_{a+2} -chain, which contradicts the fact that obviously every chain in D is $<\kappa_{a+2}$. The theorem 3.1 is completely proved.

As a particular case of theorem 3.1 we have the following one.

THEOREM 3.2. The continuum hypothesis

$$C_0 \dots 2^{\aleph_0} = \aleph_1$$

is equivalent to the following proposition:

Let T be any tree of height ω_2 ; if there is a mapping f of T into $I2=\{0,1\}$ such that f is one-to-one in every node of T and if $\{f_1^{-1}\}$ contains no chain of cardinality $> \mathbf{x}_0$, then T (and in particular $\{f^{-1}0\}$) contains a chain of cardinality \mathbf{x}_2 .

Notation. For any number a, Ia denotes the set of numbers < a. For any number a, a' runs over Ia. kX denotes the cardinality of X. cfa is the minimal ordinal β such that a is the supremum of a β -sequence of numbers < a; if $a^- < a$ exists, then cfa = 1. a^- is the supremum of numbers < a.

For an ordered set S and an ordinal α , $R_{\alpha}S$ denotes the set of all the points x of S such that the set $S(\cdot, x)$ is similar with $I\alpha$.

A node of S is every maximal subset X of S such that the sets $S(\cdot, x)$ $(x \in X)$ are equal mutually.

References

[1] G. Kurepa, Ensembles ordonnés et ramifiés, Thèse Paris, 1935, et Publ. Math. Beograd 4 (1935), p. 1-138.

[2] — On regressing functions, Zeitschrift für math. Logik und Grundlagen der Math. 4 (1958), p. 148-157.

(1) Obviously, $\alpha(<\beta)$ denotes the union of all the sets $\alpha(\beta')$, β' runing over $I\beta$.

Reçu par la Rédaction le 30.6.1958