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On e-maps onto manifolds
by

T. Ganea (Bucuregti)

1. Introduction. Let & be a positive number; a continuous map f
of a compact metric space X into another space Y is called an e-map
if the inverse-image of each point of f(X) has diameter less than e.

Let E™ denote the closed n-dimensional ball of radins 1 and let

_— 2
8n=2n+2n]/}‘22'n +2n>0.

Kuratowski [7] proved that no e,-map of E” onto an n-dimensional
sphere 8" exists. Later, Ulam [10] raised the question whether there
exists for every £ >0 an e-map of E? onto a 2-dimensional torus.

In this paper (1) we present an extension of the topological contents
of Kuratowski’s result by means of which we also obtain the (negative)
answer to Ulam’s question.

It will be shown that a compact metric =-dimensional absolute
neighborhood retract which may be mapped with arbitrarily small counter-
images onto closed n-dimensional manifolds has many of their general
properties. In particular, such a space is essential and has the homotopy
type of a closed n-dimensional manifold; moreover, its separation prop-
erties by closed subsets are the same as for »-dimensional closed mani-
folds and, if » = 2, such a space is necessarily homeomorphic to a closed
surface. .

2. Preliminaries. By HYX, 4; @) we generally denote the gth
(lech cohomology group of the compact pair (X, A) over the coefficient
group G. By Z and Z, we respectively denote the group of integers and
the group of integers mod 2.

We shall first establish two simple results.

(1) Part of this work was done during a visit in Warsaw; the author wighes to
express his gratitude to Professors Borsuk and Kuratowski for their interest and many
stimulating discussions.
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2.1. Lemma. If (X, 4) is a compact pair and dim X = n, then, for
every coefficient group,
HYX,4; ) ~HYX, 4;2)R Q.

Proof. The universal coefficient theorem for Cech cohomology
groups of compact pairs is expressed by the exact sequence

0-H"X,A; Z) @ G—~H™X, 4; G)—~Tor (H"" X, 4; 2), G} -0
(see for instance [9], p. 257). Since dim X =1, by [5], Theorem VIIT 4,
we have H"™Y(X, 4; Z) = 0 and the result follows.

2.2. LemMA. Let X be a locolly connected compact space and G an
Abelian group. If there exists a closed subset F of X such that H{X , I} ¢) # 0,

then there also exists a closed subset A of X such that X—A is connected
and HYX, 4; @) # 0. ;

Proof. Since X is locally conmnected, the components U, (1e¢IL)
of X —F are open and the maps

H{ZX,X-U; —=HYX,P; )
induced by inclusion yield an injective representation of HYX,F; @)
a8 a direct sum ([4], p. 294, B 3). Since the latter group is non-vanishing,

there exists at least a subscript uel such that HYX, X —U,; G)#£0
and the set 4 = XU, behaves as required.

By a closed manifold we mean a compact connected locally Rucli-
dean Hausdorff space; no triangulability assumption is made.

2.3. LeMmA. Let X be a compact metric absolute neighbourhood re-
tract. Suppose that for every s > 0 there exists an s-map of X ondo a closed
n-dimensional manifold (depending on &). Then, if A and C are proper
closed subsets of X such that A CInt(C, there emists a closed n- dimensional
manifold ¥, a proper closed subset B of Y and two maps of pairs

f g
(X, 4)=(7¥, B)_>(X5 0)
such that the composition gf is homotopic to the inclusion map
6: (X, 4)C(X,0).

Moreover, if X —A4 is connected, Y—B may also be assumed to be connected.

~ Proof. Tet U=X—4 and W= X —¢. Since A4 CIntC, we have
WCU.

If U is not connected, set V = W.
If U. is connected, a theorem by R. L. Wilder (see for instance [8],
P- 166) yields a sequence of open connected subsets Uy, of X gsuch that

U= U Uk and ﬁkC Uk+1
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for all k> 1. Since W is compact, there exists a subseript m =1 such
that W C Uy; then set ¥V = U,.
Since Vmé U, there exist open subsets P and @ of X such that

YCQC@CPCPCU.
According to the definition of V, we may obviously assumne that
(1) Q s connected if so is U.

Now let p denote the distance-function in X. There exists 7> 0
such that

@) 8(V,nCQ,
(3) 8@,mCP,
(4) 8P, nCT,

where S(M,n) = {z| 2eX, o(x, M) <7}
Since XZ is an ANR, there exists o > 0 such that any two maps
isfyi 9 -homotopic.
. X—»X satisfying o{pw, pz) < o for all m‘eX are 7 )
(p,wFinally, according to a theorem by REilenberg [3]3 t?lere exists
e=&(X,n, w) > 0 such that to every map f: XY satisfying

(8) f(X)=Y and diam/(y)<e

for all y ¢« ¥, there corresponds a map ¢: ¥ X satisfying
(6) e{z, gf()) < min(n, @)

for all »e X.

By assumption, there exists a map f of X onto a closed » - dimensional
manifold ¥ satistying (5). Let then g: ¥ —X satisfy (6).
By (6) and (3) we have
H@)Cg=*(P).
If U is not connected, set B = g_-l(P).
If U is connected, then, by (1), /(&) is. a coxmeqted subset of Y and B
will denote the component of g~(P) which eonta}ns Q). .
Wince P is open, R is open and B= Y—R is compact. Moreover,
impli i f Y.
# @ implies R+# @ and B is a proper subset o ‘ .
¢ 7—I:E % e X and f(z) e R, then gf{z) « P, whence, by (6) and (4), ze U;
i = XU, we obtain
since A s {4)CB.
Furthermore, for arbitrary y ¢ B there exists » e:X with 3= ffg«;};
by (6) and (2), gf(z) ¢V implies €@, whence, according to t};e defini-
tion of R, f(a) ¢ R. As a Tesult, g(y) = gf(#) e X—V and therefore

g{B)CC.
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This provides the required sequence of maps of pairs.
By (6), o{z, gf(#)) < w for all x e X; therefore, there exists a homo-
topy h;: X—2X such that

(M () = @,
(8) by(w) = gf (@),
(9) Q(mi h’t(m)) <

for all ze X, 0 <t <1 By (9) and (2) we have
o) e X—VCO if wed=X-U
and the Lemma is proved.

3. General results. They are as follows:

3.1, TaroreM. Let X be a compact melric n-dimensional absolute
neighborhood retract. Suppose that for every e> 0 there exists an e-map
of X onto a closed n-dimensional manifold (depending on &). Then

(3.1.1) HYX; Z;) # 0;
(3.1.2) H™(A; Z) =0 for every proper closed subset A of X;
(3.1.8) X is essential;

(3.1.4) No proper closed subset A of X satisfying H" Y4; Z,) =0 sep-
arates X ;

 (8.1.B) There emists o= o(X) >0 such that every closed subset 4 of X
satisfying dam A < o and H" Y(A; Z,) # 0 separates X;

(3.1.6) X is a Cantor-manifold.

3.2. CorOLLARY. To every compact n-dimensional manifold X with
non-empty boundary there corresponds a positive e = e(X) such that no
e-map of X onto a closed n-dimensional manifold ewists.

We immediately pass to the proofs.

Proof of (3.1.1). We shall first distinguish two mutually exclusive
cases for X.

Case 1. There exists a closed subset 4 of X such that HY(X, 4;%,) #0.
By (2.2) we may assume X —4 to be connected and we select a non-
vanishing element a ¢« H*(X, 4; Z,).

Case 2. HYX,F; Z,)= 0 for all closed subsets F of X. Since
dim X = n, by [5], Theorem VIII 4, there exists a closed subset 4 of X
such that H™X, 4; Z)#0; by (2.2) we may assume X—4 to be con-
nected and we select a non-vanishing element a ¢ H™(X y A3 Z).

‘We shall return to these two cases in the last part of the proof; until
then we proceed in the same way in both of them. We do not write ex-
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plicitly the coefficient group, which is Z, in the first case and Z in the
second.

Since H™(X, A4)# 0, A is necessarily a proper subset of X. By the
continuity of the Cech theory ([4], p. 260-261, Theorems 2.6 and 3.1),
there exists a proper closed subset ¢ of X such that A CInt¢ and

(10) a= 0*c) for some ¢eH™(X, (),

where 68: (X, 4)C (X, C) is the inclusion map.
By (2.3) there exists a closed #-dimensional manifold ¥, a proper
closed subset B of ¥ and two maps of pairs

(X, 4) (¥, B) 2%, ©)

such that the composition gf is homotopic to 8. Since X —4 is connected,
we may assume that also ¥—B is connected.
Let g,: Y—X Dbe the map defined by y and consider the diagram

f‘ .
HY(X, A)< ™Y, B)< A X, C)

¢ i* ¢ §7*
ANY) «— B X)
¢ i* g;’
H"(B)

Since gf is homotopic to 8, (10) implies
(11) a = f¥g*(c) .

We now return to the two cases which were distingnished at the
beginning of the proof.

In the first the diagram is to be considered with Z, as coefficient
group. Since ¥ and ¥Y—B are connected, by [4], p. 314 and 319, Theo-
rem 6.8 and Remark, we have the isomorphisms

(12) H™Y)rs Zy~ H"Y, B).

Since B iz a proper closed subset of an #-dimensional m:e\miold,
we have H*(B) = 0 and, by exactmess, j* is onto; (12) then implies that
(13) §* is an isomorphism.

Since @320, (11) implies g*(c) # 0 and (13) further implies j*g*(c) #0.
By commutativity
gri'*(e) = j*g*(c)

whenece §*(¢) = 0 and finally H™(X; Z,;) # 0.
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In the second case we only consider the upper row of the diagram.
The coefficient group is now Z and cohomology groups with unspecified
coefficients are taken over Z. By (2.1) we have

HX, C; Z)~ HY(X, 0)® Z,.

By assumption, the group on the left vanishes; therefore, every
element of H™(X, C) is divisible by 2 ([4], p. 143). It follows that the
elements ¢ e H(X, 0) and, therefore, also ¢¥(¢) « HN ¥, B) are divisible
by amy power of 2. Since H™Y,B) is isomorphic either to Z or 4o Z,
(4], p. 315 and 319), this necessarily implies g*(¢) = 0 and (11) yields
@ = 0. This is a contradiction proving that, under the assumptions of (3.1),
the second case is impossible.

Proof of (3.1.2). Let A be a closed proper subset of X and select
an arbitrary element ¢ ¢ H*(4; Z). By the continuity of the (ech theory
there exists a closed proper subset ¢ of X such that 4 C Int( and

= 04(c) for some ¢ eHY(; Z),

where 6,: 4 C( ig the inclusion map.

Let (¥, B), f, g, 6 be as in (2.3) and let fo: A—>B and g,: B0
be the maps defined by f and g. Since gf is homotopic to 6, we have
a = ftgi(c); since B is a proper closed subset of an n-dimensional mani-
fold, we have H™(B;Z)=0. Therefore, gie)=10 and a=0, ie.
H™4; Z)=0.

Proof of (3.1.8). This is an immediate consequence of (3.1.1), (2.1),
and (3.1.2).

Proof of (3.1.4). Suppose that 4 separates X, i.e. that X—A4A
= Uyu U, where U, and U, are open, non-empty and without common

points. Set X, = U, v 4, X,= U, A. With Z, as coefficient group,
the Mayer-Vietoris sequence

H"Y(4) - BYX) - BYX,)+ H"(X,)

is exact. By assumption H'4) = 0; by (3.1.2) and (2.1), we have
H™X,) = H™X,) = 0. This implies H"(X) = 0, which contradicts (3.1.1).

Proof of (3.1.5). Since X is a compact ANR, there exists ¢ = ¢(X)
> 0 such that every subset ¢ of X satisfying diam 0 < 2¢ is contractible
in X.

We work with Z, as coefficient group.

Let 4 be a elosed subset of ¥ satisfying diam 4 < o and H"(4)#£0.
Select a non-vanishing element g « H"Y(4); by the continnity of the
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Cech theory, there exists a proper closed subset ¢ of X such that
diam € < 2a, A CIntC and

a=0%(c) for some ¢eH" (),

where 8,: AC C is the inclusion map. '

Assume that X —A4 is connected and let (Y, B), f, g, 0 be as in (2‘3?;
by (2.3) we may then suppose that also ¥—B is connected, and this
will be shown to lead to a contradiction.

Let
fi: X>¥%, ¢:¥Y->X,

fo: A—=B, ¢:B-C,
be the maps defined by f and g respectively, and consider the diagram

7r gt
H" Y X)< B YY)« H X)
i+ ‘L ¢ i+
H™ Y 4) < HYYB) « H0)
iy o

Since gf is homotopic to 6, we have a = f§gi(c); sinee a =0, it fol-
lows that
(14) H"'(B)+#0.

On the other hand, g,f, is homotopic to the identity map 6, of X, ¥
is an n- dimensional closed manifold and, by (2.1) and (3.1,1), H*X; Z)#0:
by [1], these three facts imply that f, is a homotopy e‘quivalfance G).
As a consequence, ff is an isomorphism and, since ffg} is the 1deit1ty
map of A" Y(X), gt is also an isomorphism. Therefore, every beHX)
is of the form b= g¥d) with d e H* (X); by commutativity we have

*(b) = i*gi(d) = g2 i"(d) .
Since diam C < 20, C is confractible in X and #* = 0; therefore
(15) #B) =0 forall beH"YY).
We now introduce the duality diagram

H(Y) i-:>H1(Y, Y-B) —;—’>H0(Y—B) —Hy(Y) -H{Y, Y—B)

I I
YY) > E"Y(B)

(%) The theorem proved in [1] requires H™X;Z)#0 in theA singular sense; we
may identify the singular groups with the Jech groups beecause X is a compact metzic
ANR (see for instance [4], p. xiii).
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(see [2], 20-04; the upper row is the singular homology sequence of
the pair (¥, ¥—B), the lower row consists of Cech cohomology groups,
the vertical arrows are isomorphisms and the square commutes).

As a result of (15) we have j, =0 and (14) implies H,(¥, Y—B) 0.
It follows that '
(16) imaged £ 0.

Since Y—B is assumed to be connected, we have Hy(¥—B) ~s Z, and
(16) now implies that & is onto. Since Y i3 connected, we have
HyY, Y—B) = 0 and exactness finally implies H,(¥Y) = 0, which is absurd.
Thus, Y—B i3 not connected and the same holds for X —4.
Proof of (3.1.6). This ig an immediate consequence of (3.1.4) and
of the fact that dimAd <n—2 implies H" Y(4; Z,) = 0.
Proof of (3.2). This an immediate consequence of (3.1.1) and of

the fact that H™X; Z,)= 0 if X is an n-dimensional manifold with
boundary.

4. Homotopy types. We shall prove

4.1. TeEOREM. To every compact metric n-dimensional absolute neigh-
borhood retract X there corresponds a posilive &= £(X) such that every
e-map (if any!) of X onto a closed n-dimensional manifold is a homotopy
equivalence.

This obviously implies

4.2. CoroLLARY. Let X be a compact metric w-dimensional absolute
neighborhood retract, If for every ¢ > 0 there ewists an s-map of X onto
a closed n-dimensional manifold (depending on ¢), then X has the homo-
topy type of a closed n-dimensional manifold,

Proof of (4.1). We shall again distinguish two rﬂutually exclusive
cases for X.

Suppose first that H™(X; Z)= 0. Then, by (2.1) we also have
H™X; Z,) = 0 and, by (3.1.1), there exists &= &(X) > 0 such that no
e-map of X onto a closed n-dimensional manifold exists.

Suppose now that HX; Z) 5 0. By the previously quoted theorem
of Eilenberg [3], there exists &= ¢(X)> 0 such that to every map f:
XY satistying
(17) HX)=Y and diamfY¥)<e
for all y ¢ ¥ there corresponds a map g: ¥—X such that

gf s homotopic to the identity map of X.

' If ¥ is a closed #-dimensional manifold and f satisfies (17), the
existence of the left homotopy inverse g of f implies by [1] that f is
a homotopy equivalence (2).
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5. The 2-dimensional case. It will be completely solved by the
following

5.1. THEOREM. Let X be a compact metric absolute neighborhood re-
tract. If dim X = 2 and if for every & > 0 there exists an e-map of X onto
a closed 2-dimensional manifold (depending on &), then X 1is necessarily
a closed surface.

Proof. Since the manifolds considered are assumed to be conuneeted,
it i3 easy to see that X must also be connected. Thus, X is a Peano con-
tinuum. Since dim X = 2, X is not a local dendrite (in the sense of [8],
p. 227) and, by [8], p. 228, Lemme 3, we infer that

(18) X contains arbitrarily small 1-spheres.

With 6 = 6(X) > 0 defined as in (3.1.5), it further follows that
(19) Every 1-sphere of diameter <o in X separates X.

Finally, by (3.1.4),
(20) No arc in X separates X.

By a theorem of van Kampen [6], (18), (19) and (20) actually imply
that X is a closed surface.

6. An example. Throughout the paper, X has been assumed &o
be an absolute neighborhood retract. A simple example may be invoked
to prove that this condition on X cannot be dispensed with.

Let X be a 2-sphere with countably many handles, which have
decreasing diameters and converge to a point. Clearly, X is a locally
connected continuum which may be mapped with arbitrarily small counter-
images onto spheres with finitely many handles. However, X is not an
ANR and is neither topologically nor homotopically equivalent to a closed
surface.
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1. Introduction and results. Let X, Y be arbitrary topological
spaces and f : X Y a continuous map. A map ¢g: ¥—X is called a left
(right} homotopy inverse of f it gf~1x (fg~ 1y), where ~~1p means homo-
topic to the identity map of E. The map f is called a homotopy equiv-
alence if there exists a map g: ¥—>X which is both a left and a right
homotopy inverse of f; if / only has a left homotopy inverse, then Y is
said to dominate X ([9], p. 214).

By a manifold we mean a connected locally Euclidean Hausdorff
space; no triangulability assumptions are made. As usual, H"(X; Z)
stands for the mth singular eohomology group of X with integer coef-
ficients. Our result is expressed by

TarorEM 1. Let f: X—Y be a continuous map of an arbitrary topo-
logical space X into a compact n-dimensional manifold Y. If HMX;Z)+0
and if § has a left homotopy inverse, then | is a homotopy equivalence.

Remark 1. If f iz a homotopy equivalence, every left homotopy
inverse of 7 also is a right homotopy inverse of f.

Remark 2. Denote by {X} the homotopy type of the space X and
write {X}-2{¥} if ¥ dominates X. This is a quasi-order ([4], D. 212)
in the class of “all” homotopy types. Let C™ denote the subclass of all
homotopy types of integral cohomological dimension zn. Our result
then implies the

COROLLARY. The homotopy types of compact n-dimensional manifolds
are minimal elements in C™.

2. Preliminaries. Since the manifold ¥ in Theorem 1 is arcwise
connected and dominates X, the latter also is arcwise connected.

Let now P(X) denote the singular polytope of X; this is a con-
nected simplicial CW-complex and there is a map @: P(X)—»X which
induees isomorphisms of homotopy groups in all dimensions ([8], Theo-
rem VI). Since the compaet manifold ¥ is dominated by a CW-com-
plex, the same also holds for X and, by [9], Theorem 1, ¢ is & homotopy
equivalence. As a consequence
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