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On the dimension of products
by
E. Dyer (Chicago) -

The object of this -paper is to describe conditions under which it is
true that
(A) AmX XY = dimX+din Y,

where X and Y are compact Hausdorff spaces, X x ¥ denotes the direct
product of X and ¥, and dim denotes covering dimension. Our condi-
tions involve the cohomological dimengions of X and Y with coefficients
in the additive group R,, » a prime, of those fractions which in lowest
form contain no positive power of p in the denominator. Letting D (X ; &)
denote the cohomological dimension of the space X with coefficients in
the group or field @, we shall show that if (A) holds, then there is some
prime p such that

(Bp) D(X;R,)=dimX and D(Y;R,) =dimY.

As a partial converse we also show that if X and ¥ are homologically
locally econnected in all dimensions and for some prime p the equations
(Byp) hold, then (A) is true.

Since for any finite dimensional compact Hausdorff space X there
is a prime p such that D(X; R,) = dim X, [3.a], and there is a compact
metric space B such that dimB xB = 3, [4], the strengthening of the
stated partial converse obtained by deleting the conditions that X and ¥
be homologically locally connected is false.

Our arguments rely on certain definitive theorems of M. Bockstein
announced in [1], [2] and proved in [3]. We shall present alternate proofs
of two of these theorems, namely the theorem on page 70 of [3.a] and
the theorem on page 127 of [3.b]. These alternate proois rely heavily
on techniques due to Bockstein. Their merit lies in their comparative
brevity and in possible independent interest of some of their algebraic
lemmas. )

We shall also use certain relations between the cohomology of the
nerves of the terms of certain sequences of closed coverings of a space
and the cohomology of the space. These relations may be found implieitly
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in papers of Solomon Tefschetz [12] and R. L. Wilder [14]; the first
explicit statement of them is to be found in a paper of E. E. Floyd [10].
The particular statement we shall use i3 Theorem 1 of [9].

1. Algebraic preliminaries. In addition to the definitions and
first consequences, the following properties of the functors & and Tor
will be used:

I 0-+4->B—C-0 is an exact sequence of groups (all groups in
this paper being abelian) and @ is a group, then the sequence

0—Tor(4, & -—Tor (B, @)->Tor (0, @) >ARG+BRGFCR®GE—0
is exact.

Tor commutes with direct limits; i. e., if {4,}, and {B;}, 1 ¢ 4, are
direct systems of groups, then

Lim Tor(4,, B;) o= Tox (Lim 4;, Lim B;) .

AeAd Jed Aed

Proofs of these statements can be found in [8].

Throughout we use the symbol A, where A is a group and p is
a prime number, to denote the p-primary part of 4;i. e, the subgroup
of those elements & of A such that pe-a = 0 for some integer a.

g 1
Temma 1.1, If 0-A4,—~B—C—0 is exact, then 0—>Ap—>B,,—g>0p——>O
is emact.

It is necessary only to show that g: Bp,—Cp is an epimorphism.
Suppose ¢ € 0. Then there is a b e B such that g(b) = ¢. For some o
po-¢ = 0; and 80, p°- b e imf; i e., there is an a € A such that f(a) = p°-b.
But for some y, pr-a =0 since aeAy; and 80, 0= f(p?- &) = po+r- b;
i.e., beB,.

Lmvma 1.2, If B is a torsion group, Op= C, B,= 0, and g: B—0C,
then img = 0.

Suppose 0 == ¢= ¢(b). Then for some a, 0= pe-c= g{p*-b). The
element b is of order ¢, where (p, g) = 1. There are integers n and m
such that 1= ng-+mpe. Then ¢= g(b) = g(ngb+mpe-b) = g(mp*-b) =0.

Levma 1.3. If p is a prime and G and H are groups, the sequence

0>G,QH,—>(GRH),—~([6/6p)Q Hp) 0(G,Q[H[H,)) =0
18 exact.

The sequences 0-—>G,—>G-5@/G,~0 and 0—+H,—~H->H/H,—0 are
exact. Hence, we have the commutative diagram
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Tor(prH/Hp) Tor((i, H/H,) Tor(a/é’,,,H/H,,)
o TOT ()G, Hy) ——> Gp ® Hy—— @ @% Hy— > GlGy @ Hy—> 0
o> TOr (GG, H)——~>Gp®H~—ﬁ~>GQi)H-——>G/Gp(>%H———> 0
s TO(G]Gy, HHy)—> G @f HH,—> G %j HH,—> G|,y @? H/H,—0

Y

0 0 0

in which all horizontal and vertical rows are exact. Since the p-primary
parts of G/G, and H/H, are zero, the p-primary parts of each of the
Tor’s appearing in the diagram is zero. Bach of the Tor’s is a torsion
group. Furthermore, each of the groups G,®H/H,, G,®H, G®H,, and
G/G,®H, is its own p-primary part. Hence, by Lemma 2 we obtain
the commutative diagram

0 0 0
} ¥ ¥

0-+Gp @ Hy—>G @ Hy——> GG @ Hp—> 0
¥ { {

00, @H —>GQH—> GG, @ H—0
} } {

0— 6 ® H/Hy—~ 6 @ H[H, > G|Gp @ H/Hy,—0
v ¢ {
0 0 0

Since (G/G,@H|Hp)p= 0, by Lemma 1.1 we obtain the commutative
diagram ) .

0 0 0
i

¢ iz 4
G ® Hy———> GGy ® Hy >0
5

4
0-G, ® Hy

. j 7
1 is i3

0y @ H—— (6 (?'H)p—iﬁ (G6y %) H)p—>0
f2 is 74
0—G, ? H/H,—> (G ®| H|Hy)p
Y

0 0

— 0

- Consider the sequence

0->6G, ® pr;(G @ H)p 'ﬁ([G/Gp:' ® Hp) @ (6, @ [H/Hp)) >0,

where k= 43j; = jai; and k= (j5 4y 5 'fa). We shall show it is exact.
(1) Clearly, %, is a monomorphism.
10*
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(2) imk; Dkerk,. Suppose ky(g) = (j isg, i5j.g) = 0. Then iyg — j.g
= 0. There is an element ¢, ¢ Gp®H such that i,g, = g. Since 4, is an
isomorphism and j,9 = 0, j,¢, = 0. Thus, there is an element ¢’ ¢ G,RH,
such that §;9' =g, and 44,9’ =g eimk,.

(3) kerk, D imk,. Suppose jyi,9'=g. Then 0 =jjyi,g' = jag and
0 = Gyiy g’ = 95 '4s9. Thus, kg = 0.

(4) %, is an epimorphism. Suppose that (g,,¢.) is an element of
([(G{Gp] R H,)®(Gp,@[H[Hy]). There are elements gy « G®H,and g3 €« G,QH
such that iygi= g; and jg2= go. Then ky(jgi -+ isg8)= (J5 “4afags - 5 "o ta03,
'i‘-,_ljdag{-l-’i;l}';’iagé) = (fafi+0,0+7302) = (g1, ) -

Levwma 1.4. Tor(H, @) £ 0 if and only if for some prime p both H -

and @ contain elements of order p.

Proof. If Tor(H, )+ 0 and H; and & are the torsion subgroups
of H and &, then Tor(H,, Gy) + 0 (since Tor(H, &) o Tor(H;, Gy)).
Since Tor commutes with direct limits, for some finitely generated sub-
groups H' and @' of H, and G4, Tor(H’', G') % 0. It follows easily that
there are elements in H' and @' of the same prime order.

Let ,H and ,@ denote the subgroups of H and G of all elements
of order p. If both subgroups are non-trivial, ther since they are vector
spaces over Zy, Tor(,H, @) £ 0. The two exact sequences

0—Tor (,&, pH)—Tor (&, ,H)—>Tor(p &, pH) =G ® pH ...
0—Tor(¢, ,H)—Tor(@, H)—Tor(G, pH)~ G ® pH

then imply in turn that Tor(@, pH) # 0 and that Tor(@, H) 0.
The group H is said to have property P(p), p a prime, if there is
some element of H/H, which is not divisible by p, equivalently, if there

is an element heH such that - (ph'—h) % 0 for any integer y and
element h' ¢ H.

’

Levma 1.5. If G contains am element of order p and H has property
P(p), then GQH +# 0. If Q, denotes the additive group of p-adic rationals
reduoed modulo 1 and Q,QH + 0, then H has property P(p).

Proof. If H has property P(p), then K = (H/H,)/p(H/H,) is a non-
zero vector space over %,. Since H/H, contains no element of order P,

Tor(H/H,, @) contains no element of order p. It follows then from
Lemma 1.2 that the sequence

0—+Tor(G, K)>G ® H/Hy~G ® H/H,~G @ K -0

is exact. Since G contains an element of order p, by the previous lemma
Tor(@, K) +# 0. It follows that GRH[H, + 0. By tensoring the exact
sequence 0 —+Hp—H ~H/H,—+0 by @ it is seen that GRH # 0.
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If H®EQ, # 0, then since H,®0,= 0, ¢,®H/H, + 0. It H did not
have property P(p), then K = 0 and the homomorphism (1Qp): Q,QH/H,
—+Q,®H[H, is an isomorphism. Let o denote the least positive integer n
such that there is an element of the form 1/p*®b’ € Q,®H)H, which is
not zero. Then

1@p)/prek)=1pQph)=1jprQH) =0,
which is a contradiction. Thus, H has property P(p).

Lemva 1.6. In order for (R H), to be non-zero it is necessary and
sufficient that either

(1) one of the groups & and H contains an element in its p-primary
part which is not divisible by p and the other contains an element not divi-
sible by p, or

(2) the p-primary part of one of the groups, say G, is isomorphic to
the direct sum of copies of Q, and the other, H, has property P(p).

Proof. By Lemma 1.3, (®H), 7 0 if and only if either

(a) G,®H, 5 0, or

(b) ([G/Gp]®Hp)D(G,®[H/H,]) 5 0.

Suppose (F®H), # 0. Then if (a). is true, (1) is true. If (b) is true
and (1) is false, then, supposing &¢,®(H/H,)} # 0, H has property P(p)
and every element of G, is divisible by p, which implies that Gp =~ ®Qp;
and so, (2) is true.

Suppose that (1) is true; i. e., p@y = @, and pH # H. Then G,/pG,
and H/pH are non-frivial vector spaces over Z,; and so, (G,/pGp)®
®(H/pH) # 0. The exact sequences

.= Tor(Gy/pGy, HipH)—pG, @ H/pH— G, ® H{pH —» G,/pG,® H/pH -0
and

w.—Tor{G,, H/pH) G, @ pH— G, ® H->G, ® H/pH—0

show in turn that G,@H/pH +# 0 and G,&®H # 0. In the argument for
Lemma 1.3 it was shown that

06, QH— (6 ® H),— ((G/6) ® H}p——>0
is exact. Hence, (G®QH), #= 0.
If (2) is true, then (G®H), 0 by lemma 1.5.
Levma 1.7. A®B £ 0 if and only if either

(1) both A and B contain elements of infinite order, or
(2) for some prime p one of the conditions of Lemma 1.6 hobds.
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Proof. A®B contains an element of infinite order if and only if
both A and B contain elements of infinite order. Otherwise, A®B # 0
if and only if for some prime p, (A®B), = 0.

TrEOREM 1.1. BYX; @) # 0 if and only if either

(1) both G and HYX; Z) contain eclements of infinite order, or for
some prime p either

(2) Gp = PQyp and HYX; Z) has property P(p),

(3p) ((HYX; 2))p22 ®Qp and G has property P(p),

(4p) both G, and HYX; Z) contain elements not divisible by p,

(Bp) both (Hq(X;Z))p and G contain elements not divisible by p, or
(65) both G and H*™(X; Z) contain eloments of order p.

It ..—~HYX; Z) iﬂf(x; z) -iH"(X; Z,)—~H""(X; Z) is the Bockstein
sequence induced by the sequence 0—+Z —p>Z —Z,—0, then the condition
in (6,) that H**(X; Z) contains an element of order p is equivalent to
the condition that j: HYX; Z)—~HYX; Z,) is not epimorphic.

Theorem 1.1 is an immediate consequence of Temmas 1.6 and 1.7
and the Universal Coefficient Sequence [13]

0>HYX; Z) ® ¢~ HYX; @)->Tor (H*™(X; Z), G)=>0.

We are using Alexander-spanier cohomology with compact supports; X is
assumed to be locally compact Hausdortf.

II. Two theorems of Bockstein, For a group @ either

(a) @ containg elements of infinite order, or for some prime p either

(by) G has property P(p),

(Cg) Gp o2 @ Qp, or

(dp) G contains an element of order p* which is not divigible by p.
For the group @ we define a colection of groups y(@) as follows:

(i) Qey(@)if and only if (a) is true,

(ii) Bpey(@) if and only if (by) is true,

(iif) @, ey (@) if and only if (e,) is true, and

(v) Zyey(G) if and only if (dp) is true.

The cohomology dimension, D (X ; @), of a compact Hausdorff space X
with coefficients in the group of field @ is defined by

D(X; 6)=Llwb.{i| H(X, A; @) 0 for some closed A4CXy,

THEOREM 2.1. D(X; @) =1luwb. {D(X; H)| Hey(@)}.
Proof. .We shall use the symbols (1), (2p); <y (By) to denote the
statements in Theorem 1.1, with HYX,A;Z) instead of HYX;Z), (a)
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(by); -y (dp) to denote the statements in the introducto.ry palra,gra.upp. of
this section, and (i), ..., (iv) to denote the statements in the definition
of y(Q).
A, D(X; @) =1lub.{D(X; H)| Hey(@)}.
If (i) holds and D(X; Q)= ¢, then (1) holds and HY(X, 4; &) 0.
If (ii) holds and D(X; R,) = g, then (b,) holds for & and either (1),
(3p), or {Bp) holds for R,. The corresponding one will also hol.d for @G.
If (ifi) holds and D(X; @,) = ¢, then (¢,) holds for G and either (2,)
or (6,) holds for Q,. Again the corresponding one holds for G:

Tf (iv) holds and D(X; Z,) = ¢, then (d,) bolds for & and either (4,)
or (6,) holds for Z,. The corresponding one holds for &.

B. There is a group H ¢ y(G) such that D(X; H) = D(X; &).

Tet n be one of the properties (1), (2,), ..., (6;) which holds because
HYX,A;G) #0, where ¢ =D(X; G).

Tf 5= (1), then Q ey(&) and D(X;Q) =D(X; G).

It n=(2,), then @, ey (&) and D(X; @) = D(X;G).

It n = (3,), then Rpey(@) and D(X; Rp) = D(X; G).

It n=(4,), then Z,ey(@yand D(X; Z,) = D(X; G). .

If n=(5,) and (4,) does not hold, then every elemfm.t‘of Gp is
divisible by p. Let g denote an element of ¢ which is not d1v1s1131e by p.
Suppose for some ¢’ ¢ ¢ and integer y, p* - (pg’—g) = 0. Then pg”wg € Gy
and so there is a g’ ¢ G, such that pg"’ = pg'—g, o;(gng)(g’-—g ). Thus,

s property P Ryey(G) and D(X; Ry) > ; @)
¢ ha]"_f 711’ =p(6p)§: eit}(lii"sz; y (@) or Zyey (@) and both D(X; Qp) = D(X ;5 G)
and D(X; Z;) = D(X; G). .

CoroLLARY 2.1.

(&) D(X; Z)=1Lu.b.{D(X; Ry)| for p a prime}.

(b) D(X; Z,)—1 < D(X; Q) <D(X; Zy).

(¢) D(X;Qp) <max(D(X;Q),D(X;Rp)—1)

(d) D(X;R,) <max(D(X;Q), D(X;0Qp)+1).

() D(X; Zy) <D(X; Ry).

{f) D(X;Q)<D(X; Ry)

These statements can be immediately verified by using Theorem 1.1.
Several of them can be more directly verified from the Bockstein se-
quences induced by the exact sequences

0 Zp—>Qp—~Qp—0 and 0-+Ry—>Q—>0Qp—0.
In order to prove the second theorem of Bockstein we need two
more lemmas. The first of these is a vestatement of a theorem of Ale-

ksandrov.
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Levma 2.1. If X is a compact Hausdorff space and DX; @) = n,
there exist a point x <« X and an open neighborhood T of @ such that itV
s an open neighborhood of x, V. C U, then the homomorphism

HYX,X-V; §)-»H™X, X-U; &)

induced by inclusion 1s non-trivial,

The dual statement for homology with coefficients in Z, was proved
in a recent paper of E. E. Floyd [11]. His proof does not use the fact
that the coefficient group iz Z, and properly restated establishes the
above lemma. '

Levma 2.2. D(X X Y; G) = Lub. ] A XX Y, A x YUuXXB; @) 0
for A and B closed subsets of X and ¥ s respectively}.

Proof. There exists a point p ¢ X x ¥ and an open neighbourhood
W of p such that if §is an open neighbourhood of », 8CW, then, letting
n=DZXxY; @),

HYX XY, X xY -8, G—-A I XY, X xY-W;®)

is non-trivial. There are open sets ¥ and V in X and Y, respectively,
such that pe UxV CW.

(- XToXx (Y-V)=XxY—-UxXV.
Let A=X—-U and B= Y —V. Then

HYX XY, AxYUX xB; @) ~HYX XY, XxY-W; @)

is non-frivial and HX x¥, 4 x YU X XB; @) #0.
THEOREM 2.2. If X and Y are compact Hausdorff spaces and F is
a field, then
(@) D(X xY;F)=D(X; F)+D(¥; F).
Also
J () DX xY;Q, = max {D(X; @) + D(Y;Q,), D(X x ¥; Zy) — 1},
an

(¢) D(XxY; Rp)=min{max[D(Xx ¥; Q), D(Xx T; Zp)y D(X; Qp)+
+D(Y; Qp)+1], max[D(X xY;Q), D(X xY; Zy), D(X;Q,)+D(Y; R,),
D(X; Ry)+D(X5Q,)7}. :

Proof. (a) Since for a field F (see Appendix),
2 HiXx, 4;Fy® HI(Y, BiF) = HMX XY, A xYuXxB; ),

it+i=n
(a) follows immediately from Lemma 2.2.

(b) 1. D(X xY¥;9,) SMAx{D(X; 0p) +D(Y;6y), D(X XY; Zp)—1}.
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By Theorem 1.1. and Lemma 2.2, D(X x¥;Q,) > d if and only if
there are closed subsets 4 and B of X and ¥, respectively, such tha
either :

(0) HYX x¥, 4 x ¥uX xB; Z) has property P(p), or

() [H™YX XY, A xYuX xB; Z)), 0.

If () holds, consider the relative Kiinneth sequence (see Appendix)

0~ D BY(X,4)® H(Y,B)~HYX x Y, A x YUX xB)
i+j=d
~ D} Tor (HYX, 4), H(Y, B))—0
4 F=d+1

(when the coefficient group is not written, it will be understood to be
the integers). HYX x ¥, A x YUX xB) has property P(p) if and only if
its temsor product with @, is non-trivial. Tor(@, H)®Q,= 0 for any
two groups @ and H. Thus, H{X x Y, A xYUX xB) has property P(p)
only if for some ¢ and j, i+j=d, H(X, A)®H(Y, B)®Q, + 0. But
this is true if and only if both HX,A4) and H'Y, B) have prop-
erty P(p). Thus, if («) holds, D(X; Q) +D(¥;Q,) > d.

If () holds, then by the similar Kiinneth sequence with the dimen-
gion raised one, either

D (HYX, 4) @ H(T, B)), # 0
it+i=d+1
or

D) (mor (H(X, 4), H{X, B)) | 0.
t+i=d42

Either of these is true if and only if for some integers i and j such
that 4+ j = d, either

i) ("X, 4)), =®Q, and H'(Y, B) has property P(p),

(ii) H™(X, A) has property P(p) and (H(Y, B)), = ® Q>

(ill) ~(H™(X, 4)), and H'(Y, B) have elements not divisible by p,

(iv) H"™(X, A) and (H(Y, B)),, have elements not divisible by p, or

(v) (H*(X, 4)),#0 # (Y, B)),.

Each of the statements (i), (ii) and (v) impHes that D(X; Q)+
+D(Y;Qp) > d. Each of (iii) and (iv) implies that D(X;Z,)+D(Y; Z,)—
—1>d.

Thus, if D(XxYXY;Qp)>d, either D(X;Q,)+D(Y;Q,)=>d or
D(X; Z,)+D(Y; B,)~1 > d; i. e.,

DX % ¥; Qp) <max[D(X; Qp) +D(Y; Qp), D(X xXY; Zy)—1].

&


Artur


150 E. Dyer

(b) 2. We next show that the oppositely directed inequality holds.

If D(X;Q,) =4 and D(¥;Q,) =4 and i+j=4d, then for some
closed subsets 4 and B of X and ¥, respectively, either

() HYX,A) and H(Y, B) have property P(p),

(ii) Hi(_X,A) has property P(p) and (H'*'(Y, B)), # 0,

(i) (H™(X, 4)),+ 0 and H'(Y, B) has property P(p), or

(iv) ("X, A)), # 0 + (H'*(¥, B))

If (if) or (iii) is true, then (H**™ X x ¥, 4 x YuX x B)), # 0; and so,
DX xY;Qy) =d. It () is true but (H™MX, 4)), = 0= (B'*¥, B)),
for k > 1; 1. e., (ii) and (iii) are both false, then since H'(X, A)® H(Y,B)
has property P(p) and

n’

(3 mor(mix,4), H(Y,B) —0,

i+i=a+1

we find upon tensoring the relative Kiinneth sequence of (X, 4) x (¥ , B)
by @, that

D HY(X, 4) @ (Y, B) ® QuacHYX x ¥, AXTUXXB)®0,.

i+j=d

Since the term of the left is non-zero, HYX x¥, A x¥ uX x B) has
property £(p) and D(X xY;Q,) =>d.

If (iv) is true, then (Tor (H* (X, 4), BT, B))) # 0. Consider the
relative Kiinneth sequence

0> N H(X,A)@H(Y, B)S H* (XX Y, 4 x V0w XxB)

it+i=d+1

%D Tor(BYX, A), HI(Y, B)~0.

i+f=d+2

Either (™Y Xx ¥, 4 x YUXxB)),#0, in which case D(X xY;Q,)
>4, oo (A XxY, Ax YUXxB)),=0 and there is an eclement
y e H*N X x ¥, Ax YUX x B) of infinite order which is not in imn* and
such that for some a, -y eimn*. If for each ¢ and 4, {-+j=d--1, either
every element of H'(X, 4) or every element of H'(Y, B) were divisible
by p, then imn* would be divisible by p. Thus, since pe-y ¢ ima*, there
would be an element feimn* such that p- B = p y. Since y ¢ imn¥,
B—y#0 and (H*™™Xx¥, 4 x Yo X xB)),+ 0, but this is a contra-
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diction. Thus, for some ¢ and j, ¢+§= d+1, there are elements of
HYX,A) and of H(Y, B) not divisible by p. This implies that

D(X; Z)+D(T; Zp)—1 > 4.

Tf this last inequality holds, then D(Xx Y; Z,)—1>d. By (b) of
Corollary 2.1, D(X xY; @) = D(X x¥; Z,) 1.

Thus, if either D(X;@p)+D(Y¥;Q,) =d or D(XxY;Z,)-12>4d,
then D(X x¥;Qy) = d, and (b) is proved.

(¢) 1. D(X xY; Ry) <min[max{ }, max{ }].

By (d) of Corollary 2.1

D(X xY; Rp) <max[D(X xY; @), DX x¥;@p)+1].
Thus by (b) of this theorem

DX xY; Ry) <max[D(X xY; @), D(X xXY;Zy),;
D(X;Q,)+D(Y;Qp)+1].

D(X xY; Rp) = & if there exist closed subsets 4 and B of X and Y,
respectively, such that either

(a) H{X x ¥, A x YU X xB) contains an element of infinite order, or

(B) HYX x ¥, AXTuX xB),#0.

The statement («) holds if and only if D(X x ¥; Q) > d. If (B) holds,
then either

D (E(X, 4) ® BI(Y, B)),#0,
ifj=a

or

(Tor (H'(X, 4), H'(Y, B)),)#0.
i+i=d+1

Hence, if (f) holds, thén for some integers ¢ and §, i+4§ = d, either

@ (BY(X, A)), = @ Qp and H'(¥, B) has property P(p),

(i) HYX,4) has property P(p) and (H(Y, B)), = ®Qp,

(iii) (H’(X, A))p and HY(Y,B) both contain elements not divi-
sible by p,

(iv) H{(X, 4) and (H(Y, B)), both contain elements not divisible
by », or

(v) (H"Y(X,4)),#0+# (H#'(X, B)),,-

If (i) is true, then D(X; R,)+D(Y; Q) > ¢ and if (ii) is true, then
D(X; Q) +D(Y; Rp) = d. It either (ili) or (iv) is true, then D(X x ¥; Z,)
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> d. If (v) holds, then D(X; @) +D(X; Ey) > d and D(X; By)+D(¥;q,)
> d. We have shown that if D(X x¥Y; RB,) > d, then either

D(X;Q,)+D(Y; By) = 4,
DIXxY;Q)=d, or

D(X; Bp)+D(Y;Qp) 24,
DX XY; Z)=d.
Thus,

D(X x¥; Ry) <max[D(X x¥;Q), D(X xY; Z,),
D(X;@p) +D(Y; By)y D(X; Rp)+D(Y;0,)].

Hence, the inequality (¢)1 is proved.

(¢)2. Suppose that strict inequality holds in (¢)1. We shall show
that this leads to a contradiction. By (e) and (f) of Corollary 2.1 it is
seen that

D(X xY; Rp) > max[D(X x¥;Q), D(X xY; Z,)].

Under our supposition
(a) D(XXY; Ry) < D(X; Q) +D(Y; Qp) +1,
(B) D(XxY;Ry) <max[D(X;Q,)+D(Y;Ry), D(X; Rp)+D(Y;Q,)].
Let 4= D(X;Qy), i =D(X; Ry), j = D(Y;Qp), j'= D(Y; Ry), and
d=D(X X Y; Rp).

(«) then states that d < i+4j--1. According to («), there are closed

subsets 4 and B of X and ¥, respectively, such that either
i) ("X, 4), 0+ (H"(Y,B),,

(i) ("X, 4)),+#0 and H'(Y, B) has property P(p),

(i) (X, A) has property P(p) and (H™*(¥, B)), #0, ov

(iv) both H(X, 4) and H'(Y, B) have property P(p).

It (i) were true, then (Tor (E™*(X, 4), H*(¥, B))),# 0 and the
relative Kiinneth gequence implies that HVXx ¥, Ax YU XxB
either contains an element of infinite order or an element of order p.
Either would imply that d = D(XX ¥; R,) = i-+j+1 > d. If (i) or (i)
were true, (H™*(Xx ¥, 4x Y X x B)), # 0, which implies, as above,
tha‘t‘ @ >d. Since (ii) and (iil) arve false, statement (iv) implies that
H‘f’(X x¥, 4 x Yo X xB) has property P(p); and so, d = D(X x¥; Ry)
2 t+j>d—1. Thus, («) implies that d =i-+j and that (iv) is true.

The statement (B) implies that either

(1) i+ >i+] or

(2) 247 >4+1.
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If (1) holds, then j' >j and for some closed subset B’ of Y either
(A"(¥,B"), 0 or H'(Y,B’) contains an element of infinite order.
This, together with the fact that HY(X, A) has property P(p), implies
that B (X x¥, A xYUX x B’) either contains an element of infinite
order or an element of order p. In either case, i+j=d= D(X xY; R,)
>i+9 >1i+j. The statement (2) similarly leads to a contradiction.
Thus, equality holds in (¢).

1. Relative cohomology in locally connected spaces.
A compact Hausdorff space X is cohomologically locally connected in all
dimensions through =, el¢®, with respect to a coefficient group &, if for
each point z € X and closed neighborhood U of w, there is a closed neigh-
borhood V of z, ¥V C U, such that the inclusion homomorphism

(T, 0)-B(V; &)

is trivial for all i < n, where H* denotes reduced cohomology.

It U= {toees and V = {vg)pp are finite indexed collections of
compact sets and j: B—A is an inclusion mapping (i. e., w5 C uyy for
all B ¢ B) such that for every f B the inclusion homomorphism

B usg; 6 H(vg; @)

is trivial for all 7 < n, then V is said to be an n-refinement of U with
respect to G. If for every subset B’ C B, the inclusion homomorphism

H (N ug; O~ (N 5:6)
BeB’ peB’

is trivial for all ¢ < », then V is said to be a strong n-refinement of U
with respect to . This concept has been used explicitly by several authors.
The following is a restatement of a theorem of Floyd {10] (see Theo-
rem 2.3 of [9]).

Taeorem F. If X 4s a compact Hausdorff space, Ugy Uyy ooy Unga
s @ sequence of fimite collections of closed subsets of X such that for each 4,
0< i< n, Uy strongly n-refines U with respect to G, v: Upp— U, 48
the composition of the inclusion mappings of Uiy, into Ui, and UT denotes
the union of the elements of U, then there is a natural commutative diugram

HiQy; @) (U5 &)
1A

L Tty
H{(Q&H-l; &) —H{U15 &)

¢n which imaj,, Dime* for i < n and kert*Dkerag for i <n+1.
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In the conclusion of the above theorem the symbol 9/; denotes the
geometric nerve of the collection U;.

In a cl¢m space strong n-refinements can be found in the following
way: Let U be a finite collection of closed subsets of X, U’ be a star
refinement of U, and V be an n-refinement of U’. Then V is a strong
n-refinement of U.

We now make an observation which will enable us to obtain a re-
lative form of Theorem F.

Levma 3.1, If
21 92
A—-OC—F

i,h liz ¢'53

ki k2

is @ commutative diagram of groups and homomorphisms such that
imi, Dimk, and kerj, D keri,, them there is a natural homomorphism j:
B-—E such that
i
A —r
127'1| 7’/
¢ ¥
H—

Kok

«—— &

=

i
18 commutative.
The homomorphism § is defined as follows: for b ¢ B, there is an

element ¢e O such that 4,(c) = k,(b). Let §(b) = j,(¢). The proof that j is
a well-defined homomorphism and is natural is a routine verification.

LeMMA 3.2. If X s a compeact Hausdorff space, Uy, Uyy ooy Usnas
18 a sequence of finite collections of closed subsets of X such that for each i,
0 <1< 20+ 1, Ugyy strongly n-refines Uy, then for § < m there is a natural
commutative diagram

H(Uy; &) —— H (U35 &)
c'/

o re

; ‘|¢ /";nﬂ .
B (Usnya; G)—> H (Ufnse; @) -

TaeorEM 3.1. If X is a compact Hausdorff space, Ug, Uy .oy Usnis
18 a sequence of finite collections of closed subsets of X such that for each i,
0<<i<Bn+T, Uy strongly n-refines Uy, and V; is a subcollection of Us
such that Vi strongly n-vefines V;, thenm, letting U= U,, V="V,
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U = Ugnssy, 004 V'= Vg5, for § <n the following natural diagram
is commutative:

Hj-i(cp’-G)____-.——————»Hj(%cp; G) HIU;6)
! *
H s e — HI(U TV*G) ;G
JIER Y W p— Y L) 4 ST e} AL
\ ! \b

HIWU'™,6)

HF(V'%0) HIUG ™= v™,6)

Proof. We shall show that in the commutative diagram

H (U, Vo3 @) — > BITE, V35 @)
\Ln‘ ik‘

. [ad .
-H’(QZMH—M qjln+4; G) _”Hy( U‘i*n-{—u V:n+4; G) ]

im *Dimk* and kern*Dkerm* for j < n. This combined with Lemma 3.1
implies the theorem. By Lemmas 3.1 and 3.2 we have the commutative
diagram (omitting the coefficient group)

HUYUD)
)

I, HI (u*,v*)—L—f{JrU *)—-—————»l HYV™)
4
1y I3 1y

H = e UV —'i‘-'—>/{1(q['> - —11 (D)

\”'2‘\"3~

H""(U'*)-fi— HIG | iy v R i)
Lrey

4 I2

HH("L[”)-—-J.—»HJ"_'(‘V")——-—M—>H1(‘1[',"U") s
1

Ty
HIU "Xy "™

in which U0= U, U2n+2: U’, U4»y,_+4= U”; Vo= V, V2n+2= V,’ and
Vings=V"".
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immy Dimngn, .

Suppose fi = nymqa, where o e HI(T*, V*).
Let y = kya. Then jyllyy) = lyjskyon = 0, and there i
Ris , €re I8 a element
8 BT, V) suoh that kyd = ly. Since kymyd—n,a) = 0, there is ap
element A ¢ H'™'(V'*) such that 6,2 = —m,6 -+ n,a. Then

My boly A = —Mymy b +ngn,a = MgPog @ — MMy d 5
and so,

NN = My(Syla A+ n30) . kerm, C kernyn, .

Suppose a e H(U,V) and mya= 0. Then & nya = Lkgmy a =0, and

there is an element # ¢ H'™(V"') such that 8,6 = n,a. Then a1y B = my 6, B
b W

= Myya = nymya = 0. Thus, there is an element ye H'™(U’*) sueh
that Jay = maf. Then jiliy = lymyf =n,f and mnymya=— Ngdy f = d,m, B
=8 f1hy = 0. o

IV. Conditions under which dimX x ¥ — dim X + dim Y.

TaroREM 4.1. If X and Y are finite dimensional
v ' 4 . compact Hausdorff
spaces and AimX XY = dim X + dim ¥, then there is o prime p such that

D(X;Rp)=dimX and D(¥; Rp) = dim Y .

P.ro of. Suppose that there is no such prime p. Let m = dim X and
7= dim ¥, andv let A and B be closed subsets of X and Y, respectively.
such that HY™E XY, AXY X xB;Z) 0. If H™X,A; Z) is noé
a torsion group, then H™(X, 4; Ry) £ 0 for every prime p and since
D7(n Y; Bp) = n for some prime ?; we have a contradiction. Thus, both
H (X,:%;Z) and H"(Y, B; Z) are torsion groups. If (H™X,4; Z))p #0,
then H™(X ,.A;Rp) # 0 and D(X; Rp) = m. Hence, by our supposition
for every prime p either -

(H™X, 4; Z),=0 or (™Y, B; Z),=0.

Since torsion groups are direet sums of their p-primary parts,

H™(X, 4; 2) ® H'Y, B; 2) = @, ((H™X, 4; 2), ® (B, B; D))
» and ¢ running through all primes. Then .
HNE, 437) © B'(Y, B; 2) s @, ((B™(X, 4; 2)), ® (BT, B; 2)))=0.
Since Tor (BY(X, 4; Z), H'(¥, B; Z)) =0 for i+§j>m+n, by the re-

lative Kiinneth sequence H™™ ich i
& contradiction. X AxT X X =0 it i

icm
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TurorEM 4.2. Let F(p) denote the class of all compact, cle™ (over Z)
Hausdorff spaces X such that D(X; Rp) = dimX. If X,Y «F(p), then
X xY eF(p).

Proof. We shall show that if X ¢F(p), then D(X; Zp)= dim X.
This, together with Theorem 2.2 (a), will imply our theorem.

Suppose X e F(p). Since D(X; Bp) = dim X = », and the sam theo-
rem of classical dimension theory holds for cohomological dimension,
there is a point # ¢ X sueh that for every closed neighborhood N of z,
D(N; Rp) = n. Since X is clen, there is a closed neighborhood N of «
such that H™X; Z)—~H™(N; Z) is trivial. If this homomorphism were
not an epimorphism, D(X; Z) > n-+1. Thus, H(N; Z) == 0. There is
a closed subset 4 of N such that H™(N, A; R,) = 0. This is possible
only if HYN,A;Z) contains an element y which is either of infinite
order or in (H"(N, 4; Z)),. By the sequence

HUN ; 2)>H"(4; 5)5 HYN, A; 2)-0,

there is an element n ¢« H* (A4; Z) such that y = 8*(x). There is a closed
neighborhood B of A such that A" Y(B; Z) contains an element »' mapp-
ing onto 5 under the inclusion homomorphism. Then H™(X, B; Z) con-
tains an element y’ mapping onto y under the inclusion homomorphism.

Let U, denote a finite set of closed subsets of X whose interiors
cover X and such that no element of U, intersects both 4 and X~ B,
and let U, U,, ..., Usnss be a sequence of closed coverings of X such
that for each 4, 0 < ¢ < 8n+7, Uy strongly n-refines U;. Let U= U,
and U’ = Ugyps, and let V={ue U] unAdA 0} and V' ={uel’ |
%~ A s 0). Then by Theorem 3.1 we have the commutative diagram

HYU,V; Z)—=HNU,V'; Z)
Ve

/
4
H™X, B; 2)>H"X,V* Z)~HYX,V'* Z)>H"N, 4; Z) .

Tt is clear from this diagram that im (H™X,B;Z)—~H"(N, 4;Z)) is
finitely generated. If y is of infinite order, there is an element ¥ in that
image of infinite order which is not divisible within the image. If y is
of order a power of p, there is an element y'’ in that image of order a
power of p which is not divisible by p within that image. Let x4 be an
element of H™X,B; Z) which maps onto % if y is of infinite order or
maps onto ¢’ if y is of order a power of p. Then in either case g is not
divisible by p. It follows from Theorem 1.1 (4p) that HYX, B; Zp) # 03
and 8o, D(X; Z,) = n.
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By Corollary 2.1 (e) if D(X; Z,) = dimX, then D(X; R,) = dimX.
Thus, for compact Hausdortf spaces X which are cle (over Z)

X eF(p) D(X;Z,) = dimX .

By Theorem 8 of [9] if X and ¥ are compact Hausdorff spaces
both of which are cl¢> (over Z), then X x Y i cle> (over Z). If X and
Y are in F(p), then D(X;Z,) = dimX and D(¥; Z,) = dim T by
Theorem 2.2 (a), D(X xY;Z,)= dimX+dim Y. Since DX xY;2,)
LA IX Y <dimX 4+ dim Y, dimX x Y=D(X x ¥; Z), and’ s:s
noted above dimX x¥ = D(X x¥; R,). Since X x¥ is clee (over Z)
X XY eF(p). ’

V. Remarks. V. G. Boltyanskii has construeted [4] a sequence
{B,} of two dimensional compact metric spaces, one for each prime p,
such that 1 = D(B,; Q)= D(B,; Zy) = D(Byp; Q) for every prime ¢ and
D(By5 Ry) = 148, (HAB,, A} Z) = @@ i it i3 non-zero.) In Theo-
rem 11 of [9] the author showed that if X is compact Hausdortf, cle=
(over Z), and D(X; Q)= dimX, then for every compact Hausdorff
space ¥, AimX XY = dimX +dim¥ (X is dimensionally full-valued).
If D(X;Q)< dimX, then D(X;Qp) < dimX for every prime P, and it
fol}ows from Theorem 2.2 (¢) that dimX XBy= dimX+1 for every
pmm(? p. Thus, if X is compact Hausdorff and cle> (over Z), it is di-
mensionally full-valued if and only if D(X ;@) = dim X. This is a slight
strengthening of Corollary 2 of [9].

It would be interesting to know if every compact Hausdorff, cle*
(ov.er Z) space X is dimensionally full-valued. If there is such & space X
yhlf:h i8 not dimensionally full-valued, then D(X; Q) < dim X. (Tt is not
difficult to see that 2 < dmX.) It n=AdimX and % is g positive integer,
then by Theorem 2.2 (a) and Theorem 4.2 :

dim X* = kn DX Q) <hn—T.

b

if and only if

and

If Y is any _closed subspace of X* whose dimension exceeds kn —k, then
D(Y;Q)<dim¥ = m. By the sequence

™Y, B; By)~H™Y, B; Q)—>H™ ¥, B; Qp)—0

indnced by thg sequence 0—>Fy—0->Q,—0, we see that for every prime p,
D(I.’; Qp) <dim¥Y. By Theorem 2.2 (¢) it is seen that dim (¥ xB,)
= <_11.mY+1 for every p. Thus, in a sense Y is maximally dimensionally
deficient.

. It ‘Imght be supposed that no space could have such pathological
dimension properties as this. That is not so, however. Pontrjagin has
constructed a sequence {Pp} of two-dimensional compact metric spaces
one for each prime p, such that D(Py3Z,) =2 and D(P,; Q)= 1. B}l
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Theorem 2.2 (a), D(Pk; Z,) = 2k = dimPE and D(PE;Q) = k. The same
argument as above then applies to show this space has the properties
described above. The space P, is cle® but it is not clé (over Z).

Appendix. As the only published proof of the Kiinneth theorem
in its exact sequence formulation known to the author is for the alge-
braic ease, in this appendix an argument is sketched for Cech eohomology
of locally compact Hausdorff spaces (equivalently, of compact pairs of
Hausdorff spaces).

Tae KUNNETH SEQUENCE. If (X, A) and (Y, B) are compact pairs
of Hausdorff spaces and F is a field, then the sequence

0 > HY(X,A4)® H(Y,B)>HX XY, AxY UXxB)
i+j=n
~ ) Tor (HYX, 4), H(¥, B))~0
i+j=n+1
18 exact and

D HY(X,A;F)Q H(Y,B; F) = HX x¥, AXY X xB; F).

t+k=n
Furthermore, both the seguence and isomorphism are natural.

Proof. Let T and I’ denote locally compact Hausdorff spaces and
let [O] and [C'] denote fine couvertures (Z or F couvertures) [7] oo T
and 7". Let = and &’ denote the projection maps of T xT" onto T and T’,
respectively. Then z—2([(])n'~%([C']) is a fine couverture on T x I’; and
50, HH(T X T") sx H¥(a~X([C]) e’ X[ C"])). But a=H[0]) oz’ ~H[C']) = 0T,
where ¢ and ¢’ denote the underlying algebras of the couvertures [(]
and [0). Since ¢ and O are free group complexes, the algebraic Kiinneth
theorems hold [8]; i. e.,

0> > H(C)® H(C)~HENC®C')—~ D Tor(HY0), H'(()~0,
iti=n i+i=n+1
where ® and Tor are over the group Z or field F as the case may be.
It should be noted that Tor pver a field is zero. Since HYT) = HY((),
H{T") e« H'(("), and H{(T xT') = H(C® ('),

0> D> HYT)® BYT)—»HYT xT)—> > Tor(HYT), H{I"))~0,
i+j=n i+j=n+1
where H;( ) denotes cohomology with compact supports.

For thke pairs (X, A) and (Y, B), let T=X—A4 and T"=Y—B.
Then HY{X, A) = HYT) and H'(¥, B) o HY(T"). Since T x T = (X —4) %
X{(Y—-B)=XXY—-(AxY)u(XIxB), B XIx Y, AxY v XxDB
= Hy(T'x T'). Making the appropriate substitutions in the above exact

11*
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sequence, we obtain the Kiinneth sequence. All of the above isomorphism
a3 well as the algebraic Kiinneth sequence are natural. Thus, naturality
holds in the topological case.
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On cyclically ordered groups
by

S. Swierczkowski (Wroctaw)

A relation [z, y,2] which is defined on all ordered triplets of dif-
ferent elements a, 9,z of a group @ is called a eyclic order if it has the
following properties:

1. Either [z, 4,2] or [2,v, z],
1. (%, y, 2] implies [y, 2, ],

IIL. [z, ¥y, 2] and [y, u, 2] implies [2,u, 2],

IV. [z, 9, 2] implies [uav, uyv, uev] for u,ved.

A group on which a cyclic orderis defined will be called a cyclically
ordered group (for references see [1]).

The natural order of points on a directed circle defines a cyclic order
on the group of multiplication of complex numbers of absolute value one.
‘We shall denote this group by X and the eyclic order on K by (», ¥, 2) (*).

It I' is a (linearly) ordered group, then a eyclic order [z,y,2] is
defined on I" by

[z,y,z]l =2 <y <=z or

Yy<e<w or LY.

We shall say that this cyclic order is generated by the order on I

Cyclically ordered groups can be obtained by the following construe-
tion. Let I be an ordered group and let [z,,#] be the cyclic order
generated by the order on I We consider the direct product I'x K
(its elements are pairs ¢z, a), z I, a ¢ K) and we define a eyclic order
on this group by

(a,b,¢) in K if az#bzc+#a,
x <y in I' i a=bo¢,
({5, ), Y, b 2y e3]= Yy <=z in I if b=¢+#a,
< in I if e=aw+#b,
l[m,y,z] in I i e=b=e¢.

This eyclic order on I"x K will be called the natural eyelic order. Bvidently
every subgroup of I" x K is also a cyclically ordered group. The aim of this
paper is to prove that there exist no other cyclically ordered groups, 1. e.

() A more precise definition is given in the remark to Lemma 1.
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