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Dense families of continuous selections *

by
E. Michael (Seattle, Washington)

1. Introduction. Let X be a metric space, ¥ a Banach space,
©(Y) the family of non-empty, closed, convex subsets of ¥, and let
@: X—+C(Y) be lower semi-continuous (i.e. {zeX | p(@)nU +# ¢} Is
open in X for every open U C ¥). Under these circumstances, it was
proved in [4], Theorem 3.2 (see also Theorem 1 of the expository pa-
per [8]) that there exists a selection f for ¢, that is, a continuous f: XY
such that f(x) ep(w) for every z e X. In the present paper, this result
is applied to prove Theorem 1.1 below and some of its consequences.
A special ease of Theorem 1.1 will be used by V. L. Klee [2].

TuroREM 1.1. For every infinite cardinal a, there ewists a fomily @
of selections for g, with card @ < a, such that, whenever z ¢ X and ¢(z)
has a dense subset of cardinality <a, then {f(2)}es 95 dense in @(z) (*).

Our first corollary generalizes the well-known result that the Banach
space of continuous, real-valued functions om & compact metric space
is separable.

COROLLARY 1.2. If X is compact and if, for some infinite cardinal a,
(@) has a dense subset of ordinality <a for all @ eX, then the space of
selection for @ has a uniformly dense subset of cardinality <o.

If 0 C @(Y), then a face of C is o closed, convex subset ' of 0 such
that any line segment in ¢, which hag an interior point in F, must be
entirely in F; the inside of C, denoted by I(0), is the set of points in C
which lie in no face of ¢. It is known that every separable ¢ C C(Y)
has a non-empty inside ([4], Lemma B5.1). As another application of
Theorem 1.1, we have the following result, which was obtained in [4],
Theorem 3.1'", for separable Y.

CoROLLARY 1.3. There exisis a selection f for p such that f(z) eI(cp (m))
whenever @(x) is separable.

(*) Research sponsored by the National Sciemce Foundation and the Office of -
Naval Research.
(4 For separable ¥, with a = 8, this result was already obtained in [4], Lemma 5.2.
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Section 2 containg the proof of Theorem 1.1, and sections 3 and 4
contain the proofs of Corollaries 1.2 and 1.3, respectively. In section 5,
finally, we observe that Theorem 1.1 remains true, with unchanged
proof, in the more general situation deseribed in Theorem 5.1.

2. Proof of Theorem 1.1. We begin with the following lemma;
which follows easily from a result of A. H. Stone [7].

Lemma 2.1. Every metric space X has a o-discrete (2) collection of
of closed subsets such that, if xe UC X with U open, then x e ACTU for
some A e o,

Proof. A. H. Stone [7] proved (and R. H. Bing [1], p. 179, expli-
citly observed) that X has a o-discrete base <3 for the open sets.
But then the collection of = {B|B ¢} satisfies all our requirements,
and the proof of the lemma is complete.

We now turn to the proof of Theorem 1.1. Let <V be a o-locally
finite base for the open sets in ¥. For each V e Y, let

Up={weX | () nV #£¢};

then each Uy is open because ¢ is lower semi-continuous. Let X'C X
congist of all those # e X such that ¢ (2) has a dense subset of cardinality <a.
Note that each z ¢ X’ is in Uy for at most « elements of ¥, for if D, is
a dense subset of p(2) of eardinality < «, then each y ¢ D, is in at most
countably many elements of <, and therefore D,, and thus also ¢(x),
intersects at most 8oa = a elements of .

Now let ¢f be as in Lemma 2.1, and for each A4 e «f, let

Vo= VeV | UpdA}.
Let
sl={Aesl| AvX +#¢}.

Then card YV, < a for all 4 e o', and hence, letting A4 be a set of car-
dinality o, we can write

V= {V
for every A esf’. “ Adbies

Let 4 e’ and de A, and note that g(x) ~ V1% @ for all ze 4.
We can therefore define ¢: 4,,~ C(Y) by

#44(5) = (conv p(a) ~ V.5))” )

(*) A collection o of subsets of a topological space is discrete if it is locally finite

and its elements have disjoint closures; § iz o-disorete if o = Sc&-, with each d;
discrete, -
{*) conv(8) denotes the convex hull of a set Sc V.
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and this @4, is lower semi-continuous by [4], Propositions 2.6 and 2.3.
The selection theorem quoted in the first paragraph on the introduction
therefore provides us with a selection g, for ¢ .
By assumption, <l= | ¢l;, with each of; discrete. For each 4,
i=1

let oli= gl; ~ s’y and let C;=1J ;. Bince of; is discrete, we have
¢; closed, and the function g;,: C;—~Y, defined by

gl ?) = gaa(®)y, Tedecis,
is continuous. Now define ¢;;: X—C(X) by

| Loy i @eC,

PN gla) it we

Then g¢;; is lower semi-continuous ([4], Example 1.3*), and henee has
a selection f;,. Let

O = {fia] e d, i=1,2,..},

and let us show that & satisfies our requirements.

Clearly each f « @ is a selection for g, and card®@ < Moo= a. It remains
to check that {f(x)| f e @} is dense in g(x) for every = ¢ X'. Since Y is
a base for ¥, it suffices to show that, if w ¢ X', V eV, and ¢(z) nV #¢,
then there exists a positive integer ¢ and a i e A such that
(%) fialm) € (conv (p(2) mV))' .

Now since g(z) ~n V # ¢, we have x « Uy . Because of the property of &
guaranteed in Lemma 2.1, there exists an 1, and an A4 e ¢f;, such that

xedC UV.

Hence Ve¢9l,. But since ze¢(X' ~A4), we have 4 eol’, and hence
V = V4, tor some Ae A. To show that the 4 and A thus obtained work,
note that ze C;, and hence

fid) = gial@) = gunl®) € pau@) = (conv (p(a) A V)|,

which completes the proof.

3. Proof of Corollary 1.2. Let "V be a countable base for X. I(_‘or
each finite, ordered subcovering {V}i-, of %V, pick a partition of unity
12%
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{pi¥i~s which is subordinated to it (#). Let @ be as in Theorem 1.1, and
let @ be the family of all functions g: XY of the form

La

glo) = D pi@)fil) s

2=1

where {p;}i is one of the above ordered partitions of unity, and {f;}i;
is a finite sequence of elements of @. Clearly every fe® is a selection
for g, and card @' < 8o = a. It therefore remains to prove that @' is
uniformly dense in the space of selections for ¢.

Let | be a selection for g, and let ¢ > 0. ‘We must find a g e @’ such
that o(f(2), g(®)) <e for all & ¢ X, where p is the metric in ¥. For each
z X, pick an f,¢® such that g(fm(:c), f(m)) < g, and pick a neighborhood
V, of #, with VeV sueh that g(fu(a), f(a')) < e for all &’ ¢ V,. Then
{Vi}zeex 18 an open covering of X, and hence has a finite subcovering
{Vg}ar. Let {pa}ies be the partiﬁfdﬂ of unity subordinated to {Vi}iw
which was picked in the first paragraph of this proof. Now define g:
XY by

gla) = O v (@) falr), weX.

i=1

Then g € @', and og(2), f(w)) < ¢ for all @ ¢ X because spheres in Y are
convex sets. This completes the proof.

4. Proof of Corollary 1.3. This corollary is an immediate con-
sequence of Theorem 1.1 and [4], Lemma 5.1. In fact, let X' = {# ¢ X | @ ()
is separable}. Then by Theorem 1.1, with a == ,, there exists a sequence
{9352, of seleetions for ¢ such that {g(z)}2, is dense in ¢(x) for every
ze X', Now, for every x¢ X, let

9i@) — g.(®) (i

filw) = gs(w) + Tl =@ = 1,2,..),

8

fay= ), (3 i) .

kX

]
-

Tl}enf is continuous, and f(x) < I(p(x)) for every 2 ¢ X’ by 4], Lemma 5.1.

(*) This means that each p; is a continuous function from X to the closed in-

ki
, and that 3 p(x) =1 for every » e X.

=1

terval [0, 1], that p; vanishes outside ¥V,

i
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5. A generalization of Theorem 1.1. An inspection of the proof
of Theorem: 1.1 reveals that it is applicable in any situation where there
are “enough’ selections. To be precise, let X and ¥ be metric spaces,
& a family of non-empty subsets of ¥, and ¢: X—d. It V, UCY, let
us say that V<U if, whenever 4 C X is closed and ¢(x) AV # ¢ for
every m ¢ A, then there exists a selection for ¢ | A with f(x) e U for every
z e A. Suppose now that

(a) For every y ¢ ¥ and neighborhood U of y, there exists a neigh-
borhood V¥V of y with V< U.

(b) If A C X is closed, then every selection for ¢ | A can be extended
to a selection for g.

We now have the following generalization of Theorem 1.1.

THEOREM 5.1. Theorem 1.1 remains true of X, ¥, & and ¢ are as
above. )

Proof. Let us first of all show that (a) above implies

(a’) There exists a o-locally finite base <Y for ¥, and for each
Ve a UV)CY with V<U(V), such that whenever ye¢¥Y and W
is a neighborhood of y then there exists a Ve such that xeV
COV)CW.

To prove (a'), let # be a positive integer, and let U, be the family
of open (1/n)-spheres about points in ¥. Using (a) and the paracom-
pactness of ¥, there exists a locally finite open covering 9, of Y, and

for each V eV, a U(V, n) e WU,, such that VU (V, n). Let V= G Vns
=1

and for each VeV let np = sup{n | V «V,} and let U(V) = U(?’, np).
It is easily checked that the above choices of O and U(V) satisfy the
conditions of (a’). .

The proof of Theorem 5.1 now proceeds just like that of Theorem 1.1,
with the following minor changes. First, we must take care to pick the
base %V for ¥ to satisfy (a’'). Next, we no longer need ¢, to define ga;;
instead, we use (a’) to pick a selection g for ¢ |4 with g.ua) € U(V.as)
for all ¢ A. The functions g;, are now defined as in the proof of Theo-
rem 1.1. However, we no longer need ¢;, to define f;;; instead, we use
assumption (b) to pick a selection f;; for ¢ which extends g;; Finally,
(a’) implies that requirement (+) can be replaced by
(%) firlz) e U (V).

The verification of (x+) runs just like that of (), taking into account
the new definition of g,,;. This completes the proof.

Some situations to which Theorem 5.1 is applicable are covered

in the following examples, where Example 5.3 is more general than
Example 5.2,
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ExAmpLE 5.2. Y is a Banach space, ¢ = C(Y), and ¢: X is
lower semi-continuous. (This is the situation covered in Theorem 1.1.)

ExamrLE 5.3, ¥ is a complete metric space with a convex structure
(see [6] for the relevant definitions and theorems), < consists of closed,
convex sets, and g: X—J is lower semi-continuovs.

Exavprs 5.4, dimX <n+1, ¥ is complete, < is an equi-LC"
family of closed sets (see [3] for the relevant definitions and theorems),
and ¢: X—J is lower semi-continuous.
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Solution of a problem of Tarski

by

A. Robinson (Jerusalem)

1. Introduction. In his classical paper “A decision method for
elementary algebra and geometry” Note 21 ([6], p. 57) A. Tarski raises
the question of providing a decision procedure for elementary sentences
concerning the field of real numbers which, in addition to equality, order,
addition, and multiplication, contain also the relation (atomic predicate)
A(z), to be satistied exclusively by the algebraic real numbers. In the
present paper, we solve this problem by specifying a complete set of
axioms for the above-mentioned relations, including A (x), such that the
veal numbers constitute @ model of that set (sections 3, 4). The cor-
responding problem for the ficld of complex numbers is of a somewhat
simpler nature (section 5).

We shall be concerned with algebraic fields in which certain addi-
tional relations have been defined, more particularly the relation of order,
Q(z,y) (i. e. x <y), the relation A4 (x), and a set of relations Dyl @y vy n)s
w,k=1,2,.., which will be detailed presently. Accordingly, when we
say that a field M’ is an extension of a field M including @ (x,y), and
(or) A(z) and (o) Duy(®y, ..., &n)y %, k= 1,2, .. we shall mean by this
that, for the elements of M, the relations @(z,y), 4(»), or D@y s very n)
hold in M’ if and only if they hold in M. Similarly, when we say that
two fields, M and M’, are isomorphic, including Q(x, ¥), 4{(z), and (or)
Dol ..., ), we shall mean that there exists an isomorphic correspond-
ence between the two fields such that the relations in question hold,
or do not hold, simultaneously for corresponding elements. In particular,
an isomorphism which includes @Q(,y) is simply am order-preserving
isomorphism.

We shall also require the notion of relativisation with respect to
the relation A(z) (compare, e.g., [7], p. 24). This is defined inductively
as follows (1.1-1.3)

1.1. The relativised form of an atomie formula X (e.g. E(w,¥),
S(z, a,b)) is the formuls itself. R(X)= X.
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