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A note on theories with selectors
by
R. Montague (Los Angeles) and R. L. Vaught (Berkeley)

It is well known that for certain elementary theories, such as Peano’s
arithmetic, no gain is made by adjoining to the theory the Hilbert
e-symbol (and the associated new rules of proof). Such theories might
be called *theories with built-in Hilbert e-symbols” or, simply, “theories
with selectors”. Our purpose in this note is to point out that the (purely
syntactical) property of being such a theory is equivalent to a certain
semantical property.

Familiarity will be assumed with the introductory sections of our
paper, Natural models of set theories (this volume, p. 219-242) (2). Specific-
ally, what will be needed is the second part of § 1 (beginning “In meta-
mathematical considerations...”), and § 2 of that paper.

The semantical properties we shall discuss involve the notion of
the set D(U) of all definable elements of a realization % of a theory.
In addition, the following further notions are required:

DEFINITION 1. Let A= (A, X,, ..., Xpn—1> be a realization of an arbi-
trary standard theory. ' a

(1) If D(A) is not emply, then the corresponding submodel of defin-
able elements, or D(N), is the subsystem of U with universe D ().

(-2) If B is any subset of A, then by D(A, B) — the set of all elements
of A definable in U in terms of elements of B — we mean the union of
all sets D(W*), where W= <A, Xy, .0y Tppesy boy ooy bpsd, new, and
boy oy bpyeB.

(.8) Assuming that D (%, B) is not eimpty if B is empty, then, by D (A, B)
we mean the subsystem of U with universe D (N, B).

(It is obvious that D(A) and D(A, B) are closed under any oper-
ations as required in (.1) or (.3).) :

We shall actually establish three different equivalences, correspond-
ing to various precise senses that might be given to the notion “theories
with selectors”. The first is:

(1) Hereinafter referred to as NM. Numbers in brackets will refér to the biblio-
graphy of NM. .
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TaeoREM 2. If T is any standard theory, then the following two con-
dittons aré equivalent: -

(i) for each formula ¢ of T, whose only free variable ¢s v, there is
a formula ¢’ of T, whose only free variable is v,, such thai

1 VY@ (To} = VI Vol (Vo) A 9(¥0)] 5

(i) for any model A of T, D(A) is non-empty and W is an elementary
extension of D) (2).

Proof. First let us assume that (i) holds and % = {4, ...} is a model
of T. Clearly, D(¥) # 0. To prove that % is an elementary extension
of D(A), we will establish that the condition 2.3.1 of NM holds. Indeed,

let  be a formula of T whose free variables are among v,, ..., Vs, and
let dy, ..., dn_y be elements of D (W) such that for some a e A,
(1) Eapldoy ooy Gn—a, a] .

¥or each 4 < n, let x; be a formula of T whose only free variable is v,
such that" '

2 B VIV g
and -
(3) = gildi] -

Let ¢ be the formula /vy .. VVa[xo(V1) A vor A Zne1(Va) A W( V15 eers Yoy 7o)
By (1) and (3),

(4) Fa Vvp(v) -

By (i), there is a formula ¢’ whose only free variable is v, such that
=2 VVop(vo) = VIVdg'(vo) A ¢(vo)]; henee, by (4),
Fu VIV’ (Vo) A g(vo)] .

Thus there is an element d of D(A) such that

| Fupld].
Therefore, by (2), (3), and the definition of @y

awldys oy dpey, d].

This completes the proof that 9 is an elementary extension of D().

(*) The fact that (i) implies (ii) was already observed by Tarski a number of years

ago. At least in special cases, it is probably known by a number of people. The fact
that, actually, equivalence holds seems, however, not to have been noticed previously.
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Now let us assume (i) and, contrary to (i), that ¢ is a formula of T
whose only free variable is v, such that

(6) for each formula y of T whose only free variable is Vo it i8 no0t
the case that -z \Vvep— V!vyzag).

Let V be the set of valid sentences of 7T, and let y,, vy Pny ... be all the
formulas of T whose only free variable is v,. We shall show first that

8) Vo i{Vvep, ~VIvyys A ),

For assume otherwise. Then for some # ¢ o,

woy ~V1V{ym A @),...} is consistent.

(7) Fr Vv VIVi(yo A @) Voo VV Ivg{pn A @)
Let 4 be the formula
IVIVopa A @) Aol V [~V IVelig A @)
AVIVopr A @) AV VI~V Iv(po A ®)
Ao A ~ VIV A ®)Y AV 19(pn A @) A Ynl-
Then the following assertions can be shown to hold on logical grounds
alone:
2 VIVlyo A @)= VIVi(x A g),
o~ VIVl A @) A VIViy A @)=V vz A @)

Fr~VIVpo A @) A A ~ N 1Vo(n—1 A @)
AV IVo(yn A @)=V 1Iv(x A @)
From these assertions, together with (7), it follows that
o Vv V1vg(x A ¢)
But this contradicts (5), and (6) is established.
From (6) and Godel’s completeness theorem, it follows thatb
(B) - Vo {Vvepy ~VIVe{g A @),y ~VIVo(¥n A @), ...} has a model 9.

Since =g \/vop(v,), there is, by (ii) and the fact that % is a model of T,
an element d of D(A) such that

(9) = p[d].
Since d € D(A), there is an n ew such that
(10) FuV Vopn
and

(11) Fuypald].
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By (9), (10) and (11), we have:

=u VIvo(yn A @)
But, by (8 ‘
b [~V 1¥olpn A )
Thus we have arrived at contradiction, and the theorem is proved.
Examples of theories satistying condition (i) of 8.2 are well-known.
We may mention, for instance, Peano’s arithmetic (the theory P of Tarski,
Mostowski, Robinson [1]); and the theory which is the result of adding
to ZFS a version of Godel’s Axiom of Constructibility (ef. Godel [17).
Indeed, both of these theories satisfy a stronger condition, namely
{i"") For each formula ¢ of T, having the free variable v, (and, possibly,
others), there is a formula ¢’ of T, having the same free variables as @, and
such that
bz VY=V Ivle A g).
Condition (i") amounts fo the requirement that 7' satisfy both (i) and
the following condition:
(i") For each formula ¢ of T, having the free variable v; and at least
one other, there is a formula @' of T, having the same free variables as g,
and such that
Fr VY-V Ivie' A ).

Theorem 2 showed that condition (i) is equivalent to a simple model-
theoretical property. Theorems 3 and 4, below, show that the same ap-
plies to each of (i) and (i"').

TerorEM 3. For any standard theory T, condition (i') above is equi-
valent to the following condition:

(L") For any model W= <A, ... of T and any non-empty set BC A,
W is an elementary emtension of D(U, B).

Proof. From the elementary syntactical properties of inessential

extensions of theories (cf. e. g. Tarski, Mostowski, Robinson [1], p. 16-17)
it follows easily that

(12) T satisfies condition (i) if and only if every inessential emtension
) of T satisfies condition (i).

Applying Theorem 2 to each inessential extension of 7 we see that (i)
holds for T if and only if

(13) If A=<4,..> s any model of T and B is any non-empty finite
subset of A, then 4 is an elementary extension of D (A, B).

To complete the proof of Theorern 3, it is sufficient to show that (18) is
equivalent to condition (ii’), Clearly, (ii") implies (13). Assume (13), then,
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and let A= <4,...> be a model of 7 and B a non-empty subset of A.
To show that ¥ is an elementary extension of D(A, B), we shall demon-
strate that 2.3.1 of NM holds. Let b,, ey bpy € DU, B), and assume
that ¢ is a formula of 7 such that l=u @[y ..ry bpy, al. Clearly there
is a non-empty finite set B’ C B such that by, ..., by_; ¢ D(¥, B'). By (13)
and 2.3 of NM, there is a 4« D(, B') such that [=a @[Bo, oy By, Y.
But clearly D(U, B')C D(A, B), and 2.3.1 of NM is established

From Theorems 2 and 3 follows immediately

TaBOREM 4. Condition (i) is equivalent to

(i) For any model A of T and any subset B of the universe of 9,
DU, B) is not empty and A is an elementary extension of D (Y, B).

We have already mentioned two examples of theories satisfying (i%).
A familiar theory which satisfies (i') but not (i) is the theory of the
system formed by the set of all integers (positive, negative, or zero),
together with their usual ordering. A theory satisfying (i) but not (i)
can also be constructed.
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