

On the countable sum of zero-dimensional metric spaces *

bу

J. Nagata (Osaka, Japan)

1. Introduction. As is well known, not every infinite-dimensional metric space is the countable sum of zero-dimensional spaces; in fact the Hilbert-cube I_{∞} is not the countable sum of zero-dimensional spaces. It is known that by the generalized decomposition-theorem due to M. Katětov [3] and to K. Morita [4] a metric space is the countable sum of zero-dimensional spaces if and only if it is the countable sum of finite-dimensional spaces. We call such a space a countable-dimensional space. It seems, however, that our knowledge of countable dimensional spaces, owing to peculiar difficulties in the infinite-dimensional case, is very little if compared to that of finite-dimensional spaces.

The purpose of this paper is to extend the theory of finite-dimensional spaces to the countable-dimensional case. First we shall characterize countable-dimensional spaces by extending Eilenberg-Otto's theorem [1]. Then we shall characterize such spaces by closed coverings and show that every countable-dimensional space is an image of a generalized Baire zero-dimensional space $N(\Omega)$ (1) by a closed continuous mapping such that the inverse image of each point consists of finitely many points. Furthermore, it will be shown that a countable-dimensional space with a σ -star-finite basis can be imbedded in $N(\Omega) \times R_{\omega}$, where R_{ω} is the set of points in I_{ω} at most a finite number of whose coordinates are rational. Finally we shall discuss on a metric space which is the countable sum of finite-dimensional closed sets.

All spaces considered in the present paper will be assumed to be metric spaces unless the contrary is explicitly stated. Dim R denotes the strong inductive dimension of R, i.e. dim $\emptyset = -1$, dim $R \le n$ if and only if for any pair of a closed set F and an open set G

Fundamenta Mathematicae, T. XLVIII.

^{*} A part of this paper was published in Proc. Jap. Acad. 34 (1958), p. 146-149. (1) $N(\Omega) = \{(\alpha_1, \alpha_2, \ldots) | \alpha_i \in \Omega, \ i = 1, 2, \ldots \}$. We define the metric of $N(\Omega)$ as follows: if $\alpha = (\alpha_1, \alpha_2, \ldots)$, $\beta = (\beta_1, \beta_2, \ldots)$, $\alpha_i = \beta_i$ for i < n, $\alpha_n \neq \beta_n$, then $\varrho(\alpha, \beta) = 1/n$. As is well known, $N(\Omega)$ is a 0-dimensional metric space. This notion is due to [4].

with $F \subset G \subset R$ there exists an open set U such that $F \subset U \subset G$, dim $(\overline{U} - U) \leq n - 1$ (2).

2. An extension of Eilenberg-Otto's theorem. For a point p and for a covering $\mathfrak U$ of a space R we denote by $\operatorname{order}_p \mathfrak U$ the largest integer n such that there are n members of $\mathfrak U$ which contain p. We also use the notation $B(\mathfrak U)=\{B(U)\mid U\in \mathfrak U\}$, where B(U) means the boundary of U.

LEMMA 2.1. Let A_n , n=1,2,..., be a countable number of zero-dimensional sets of a space R. Let $\{U_\alpha \mid \alpha < \tau\}$ (3) be a collection of open sets and $\{F_\alpha \mid \alpha < \tau\}$ a collection of closed sets such that $F_\alpha \subset U_\alpha$, $\alpha < \tau$, and such that $\{U_\beta \mid \beta < \alpha\}$ is locally finite for every $\alpha < \tau$. Then there exists a collection of open sets V_α , $\alpha < \tau$, such that

- (1) $F_a \subset V_a \subset U_a$, $\alpha < \tau$,
- (2) order_p $B(\mathfrak{V}) \leqslant n-1$ for every $p \in A_n$, where $\mathfrak{V} = \{V_{\alpha} \mid \alpha < \tau\}$.

Proof. We shall define, by induction on a, V_a satisfying (1) and

(2)_a order_p $B(\mathfrak{V}_a) \leqslant n-1$ for every $p \in A_n$, where $\mathfrak{V}_a = \{V_\beta \mid \beta \leqslant a\}$. We take open sets G_1 , W_1 such that

$$G_1 \supset F_1$$
, $W_1 \supset U_1^{\sigma}$ (4), $\overline{G}_1 \cap \overline{W}_1 = \emptyset$.

Since A_1 is zero-dimensional, there exists an open closed set N_1 of A_2 satisfying

$$\overline{G}_1 \cap A_1 \subset N_1 \subset (\overline{W}_1)^o \cap A_1$$
.

If we put $B_1 = N_1 \cup F_1$, $C_1 = (A_1 - N_1) \cup U_1^c$, then $(\overline{B}_1 \cap C_1) \cup (B_1 \cap \overline{C}_1) = \emptyset$. Hence there exists an open set V_1 such that $B_1 \subset V_1 \subset \overline{V}_1 \subset C_1^c$. Since $B(V_1) \cap A_1 = \emptyset$ is clear, V_1 satisfies (1) and (2)_a for a = 1.

Suppose that V_{β} has been constructed for every $\beta < \alpha$ (< \tau). Then we put

$$H_1 = A_1, \quad H_n = \bigcup \{B(V_{\beta_1}) \cap ... \cap B(V_{\beta_{n-1}}) \cap A_n \mid \beta_1, ..., \beta_{n-1} < a\}, \quad n = 2, 3, ...,$$

$$K_{\alpha} = \bigcup_{n=1}^{\infty} H_n$$
.

It follows from dim $A_n = 0$, n = 1, 2, ..., that dim $H_n \leq 0$, n = 1, 2, ...

We easily see that, for every n, $\bigcup_{i=1}^n H_i$ is open in K_a . For let $p \in \bigcup_{i=1}^n H_i$, then $p \in \bigcup_{i=1}^n A_i$; hence we have order $p \in \{B(V_\beta) \mid \beta < \alpha\} \le n-1$ by the assumption of induction. Therefore we can find, from every collection $\{B(V_{\beta_i}), \ldots, B(V_{\beta_j})\}$ with $\beta_1, \ldots, \beta_j < \alpha$, $B(V_{\beta_i})$ with $B(V_{\beta_i}) \not\ni p$ if $j \ge n$. On the other hand, $U(p) = \bigcap_{i=1}^n \{R - B(V_\beta) \mid \beta < \alpha, p \notin B(V_\beta)\}$ is an nbd (= neighborhood) of p by the local finiteness of $\{U_\beta \mid \beta < \alpha\}$. Hence we conclude $U(P) \cap (\bigcup_{i=n+1}^{\infty} H_i) = \emptyset$, which implies the openess of $\bigcup_{i=1}^n H_i$ in K_α . Thus, for every n, $H_n - \bigcup_{i=1}^{n-1} H_i$ is a 0-dimensional F_α -set. Hence we have, by the generalized sum-theorem [4], dim $K_\alpha \le 0$. Consequently we can define, in the same way as for the case of $\alpha = 1$, an open set V_α such that

$$F_a \subset V_a \subset U_a$$
, $B(V_a) \cap K_a = \emptyset$,

which implies $(2)_a$. This completes the proof.

THEOREM 2.2. A space R is countable-dimensional if and only if there exists a countable collection of locally finite open coverings \mathfrak{B}_i such that $\mathfrak{B} = \{V \mid V \in \mathfrak{B}_i, i=1,2,...\}$ is a basis of open sets of R and order $p(\mathfrak{B}) < +\infty$ for every point p of R.

Proof. Let R be countable-dimensional, i. e. $R = \bigcup_{n=1}^{\infty} A_n$ for 0-dimensional A_n ; then by a theorem of A. H. Stone [8] there exists a countable collection of locally finite open coverings \mathfrak{U}_i of R such that $\{S(p,\mathfrak{U}_i)\mid i=1,2,...\}$ (5) is an nbd basis of each point p. Let $\mathfrak{U}_i=\{U_a\mid \tau_{i-1}\leqslant a<\tau_i\}, \tau_0=1$. Then there exists, by the local finiteness of \mathfrak{U}_i , a closed covering $\{F_a\mid \tau_{i-1}\leqslant a<\tau_i\}$ such that $F_a\subset U_a$. Putting $\tau=\sup\{\tau_i\mid i=1,2,...\}$ we have the collection $\{U_a\mid a<\tau\}$ of open sets satisfying the condition of Lemma 2.1. Hence there exists a collection $\mathfrak{Y}=\{V_a\mid a<\tau\}$ of open sets satisfying (1), (2) of Lemma 2.1. $\mathfrak{V}_i=\{V_a\mid \tau_{i-1}\leqslant a<\tau_i\}, i=1,2,...,$ are clearly open coverings satisfying the condition of this proposition.

Conversely, if there exists such a collection $\{\mathfrak{B}_i \mid i=1,2,...\}$ of open coverings of R, then we let

$$\{p \mid \text{order}_n B(\mathfrak{D}) = n-1\} = A_n, \quad n = 1, 2, ...$$

Since $\mathfrak{B} = \{V \cap A_n \mid V \in \mathfrak{D}_i, i = 1, 2, ...\}$ is an open basis of A_n such that $\operatorname{order}_p B(\mathfrak{B}) = n - 1$, we have, by [4], $\dim A_n \leq n - 1$. Thus it follows from the generalized decomposition-theorem that $R = \bigcup_{n=1}^{\infty} A_n$ is countable-dimensional.

⁽²⁾ The equivalence of this dimension with the Lebesgue dimension in every metric space was proved by [3] and [4].

⁽³⁾ We denote by $\alpha, \beta, \gamma, \tau$ ordinal numbers.

⁽⁴⁾ We denote by U_1^c the complement set of U_1 .

⁽⁵⁾ We denote by $S(p, \mathcal{U}_i)$ the union of all the sets of \mathcal{U}_i containing p.

THEOREM 2.3. A space R is countable-dimensional if and only if for every collections $\{U_{\alpha} \mid \alpha < \tau\}$ of open sets and $\{F_{\alpha} \mid \alpha < \tau\}$ of closed sets such that $F_{\alpha} \subset U_{\alpha}$, $\alpha < \tau$, and such that $\{U_{\beta} \mid \beta < \alpha\}$ is locally finite for every $\alpha < \tau$, there exists a collection of open sets V_{α} , $\alpha < \tau$, satisfying

- (1) $F_a \subset V_a \subset U_a$, $\alpha < \tau$,
- (2) order_p $B(\mathfrak{B}) < +\infty$ for every $p \in \mathbb{R}$,

where $\mathfrak{V} = \{V_{\alpha} \mid \alpha < \tau\}.$

Proof. The "only if" part is a direct consequence of Lemma 2.1. The "if" part is a direct consequence of Theorem 2.2.

3. Characterizations by closed coverings and by $N(\Omega)$.

LEMMA 3.1. Let $A_n, n=1,2,...$, be a countable number of 0-dimensional sets of a space R. Let $\mathfrak{U}=\{U_a\mid a<\tau\}$ be a locally finite open covering. Then there exists a closed covering $\mathfrak{F}=\{F_a\mid a<\tau\}$ such that $\mathfrak{F}<\mathfrak{U}$ and $\operatorname{order}_p\mathfrak{F}\leqslant n$ for every $p\in A_n$.

Proof. We obtain by Lemma 2.1 an open covering $\mathfrak{B} = \{V_a \mid a < \tau\}$ such that $\overline{V}_a \subset U_a$, order $p(\mathfrak{B}) \leq n-1$ for $p \in A_n$, where we notice that we can easily choose $V_a^{\mathfrak{t}}$ satisfying $\overline{V}_a \subset U_a^{\mathfrak{t}}$ instead of (1) of Lemma 2.1. Let

$$F_1\!=\!\overline{V}_1\,,\quad F_a\!=\!\overline{V_a\!-\!igcup_{eta$$

Then $\mathfrak{F}=\{F_{\alpha}\mid \alpha<\tau\}$ is a closed covering satisfying the condition of this lemma. In fact, let $p\in A_n$, $p\in V_a$, $p\notin V_{\beta}$ for every $\beta<\alpha$. Then it is clear that $p\notin F_{\gamma}$ for every $\gamma>\alpha$, and $p\in F_{\beta}$ for some $\beta<\alpha$ implies $p\in \overline{V}_{\beta}-V_{\beta}=B(V_{\beta})$. Thus it follows from $\operatorname{order}_p B(\mathfrak{B})< n-1$ that $\operatorname{order}_p \mathfrak{F}\leqslant n$.

THEOREM 3.2. A space R is countable-dimensional if and only if there exists a countable collection $\{\mathfrak{F}_i \mid i=1,2,...\}$ of locally finite closed coverings of R satisfying

- (1) for every nbd U(p) of every point p of R there exists some i with $S(p, \mathfrak{F}_i) \subset U(p)$,
- (2) $\mathfrak{F}_i = \{F(\alpha_1, ..., \alpha_i) \mid \alpha_k \in \Omega, k = 1, 2, ..., i\}, \text{ where } F(\alpha_1, ..., \alpha_i) \text{ may be empty,}$
 - (3) $F(a_1, ..., a_{i-1}) = \bigcup \{F(a_1, ..., a_{i-1}, \beta) \mid \beta \in \Omega\},$
 - (4) $\sup \{\operatorname{order}_{p} \mathfrak{F}_{i} | i = 1, 2, ...\} < +\infty \text{ for each point } p \text{ of } R.$

Proof. Let R be a countable-dimensional space with $R = \bigcup_{n=1}^{\infty} A_n$ for 0-dimensional A_n and $\mathfrak{S}_1 > \mathfrak{S}_2 > \dots$ a uniformity of R. Then we shall define \mathfrak{F}_i satisfying (2), (3), $\mathfrak{F}_i < \mathfrak{S}_i$ and order $\mathfrak{F}_i \leqslant n$ for each point $p \in A_n$. We can define \mathfrak{F}_1 by Lemma 3.1. Assume that we have defined \mathfrak{F}_k

for every k < i; then we put $\mathfrak{F}_{i-1} = \{F_a \mid \alpha < \tau\}$ for brevity. To obtain \mathfrak{F}_i we shall define closed sets $F_{a\beta}$, $\alpha < \tau$, $\beta \in \Omega$, such that

- (i) $F_{\alpha} = \bigcup \{F_{\alpha\beta} \mid \beta \in \Omega\}, \{F_{\alpha\beta} \mid \beta \in \Omega\} < \mathfrak{S}_i$
- (ii) $\mathfrak{G}_{a}^{\perp} = \{F_{\alpha'\beta} \mid \alpha' \leqslant \alpha, \beta \in \Omega\} \cup \{F_{\alpha'} \mid \alpha' > \alpha\}$ is locally finite for every $\alpha < \tau$,
 - (iii) order $\emptyset_a \leq n$ for every $\alpha < \tau$ and for each point $p \in A_n$. First we define $F_{1\beta}$, $\beta \in \Omega$, as follows. We let

$$H_{10} = F_1 \cap A_1$$
,
 $H_{21} = \{p \mid \text{ order}_p \{F_\alpha \mid 1 < \alpha < \tau\} = 1, \ p \in F_1 \cap A_2\}$,
 $H_{32} = \{p \mid \text{ order}_p \{F_\alpha \mid 1 < \alpha < \tau\} = 2, \ p \in F_1 \cap A_3\}$,
...
 $K_1 = H_{10} \cup H_{21} \cup H_{22} \cup ...$

and $n_1 - n$

and generally

$$\begin{split} & H_{r+s\,s} = \left\{ p \mid \text{ order}_p \left\{ F_a \mid 1 < \alpha < \tau \right\} = s \,, \ p \in F_1 \cap A_{r+s} \right\}, \\ & K_r = \bigcup_{s=0}^{\infty} H_{r+s\,s} \,. \end{split}$$

If $p \in H_{r+s\,s}$, then $p \in F_{a_1} \cap \ldots \cap F_{a_s}$ for some a_1, \ldots, a_s and $p \notin F_{a_1} \cap \ldots \cap F_{a_{s+1}}$ for every a_1, \ldots, a_{s+1} . Hence the nbd $U(p) = \bigcap \{F_a^c \mid p \notin F_a, 1 < \alpha < \tau\}$ of p satisfies $U(p) \cap H_{r+t\,t} = \emptyset$ for every t > s, which implies the openness of $\bigcup_{s'=1}^s H_{r+s'\,s'}$ in K_r . Since evidently dim $H_{r+s\,s} \leqslant 0$ for every $s \geqslant 0$, we have dim $K_r \leqslant 0$, $r = 1, 2, \ldots$ Therefore we can define by Lemma 3.1 a locally finite closed covering $\mathfrak{G}_1' = \{F_{1\beta} \mid \beta \in \Omega\}$ of F_1 such that $\mathfrak{G}_1' < \mathfrak{S}_i$, order $\mathfrak{g}_1' \leqslant n$ for every $p \in K_n$.

To show order $\mathfrak{G}_1 \leqslant n$ for $p \in A_n$ and for $\mathfrak{G}_1 = \mathfrak{G}_1' \cup \{F_{a'} \mid \alpha' > 1\}$, we assume order $\mathfrak{F}_{i-1} = s+1$ and $p \in F_1 \cap F_{a_1} \cap \ldots \cap F_{a_s}$, where $a_1, \ldots, a_s > 1$ and $0 \leqslant s \leqslant n-1$ because of order $\mathfrak{F}_{i-1} \leqslant n$. Then $p \in H_{ns} \subset K_{n-s}$, and hence order $\mathfrak{F}_1' \leqslant n-s$, proving order $\mathfrak{G}_1' \leqslant n$. Assume that we have defined $F_{a'\beta}$, $\beta \in \Omega$, for every $\alpha' < \alpha$; then we can define $F_{a\beta}$, $\beta \in \Omega$, satisfying (i)-(iii). The method of defining $F_{a\beta}$ is parallel to that of $F_{1\beta}$ except that we use F_a and $\{F_{a'\beta} \mid \alpha' < \alpha, \beta \in \Omega\} \cup \{F_{a'} \mid \alpha' > \alpha\}$ instead of F_1 and $\{F_a \mid \alpha > 1\}$ respectively; hence its proof is left to the reader. Thus we can define the required covering $\mathfrak{F}_i = \{F_{a\beta} \mid \alpha < \tau, \beta \in \Omega\}$.

Conversely, if there exists a countable collection $\{\mathfrak{F}_i \mid i=1,2,...\}$ satisfying (1)-(4), then we set $\{p \mid \sup \{\operatorname{order}_p \mathfrak{F}_i \mid i=1,2,...\} = n\} = A_n$.

Since order $\mathfrak{F}_i \leqslant n$, i = 1, 2, ..., for every $p \in A_n$, we have, by [5], dim $A_n \leqslant n-1$. Hence $R = \bigcup_{n=1}^{\infty} A_n$ is countable-dimensional.

THEOREM 3.3. A space R is countable-dimensional if and only if there exist a subset S of $N(\Omega)$ for suitable Ω and a closed continuous mapping f of S onto R such that for each point p of R the inverse image $f^{-1}(p)$ consists of finitely many points.

Proof. The "only if" part is a direct consequence of Theorem 3.2. In fact, let R be countable-dimensional and \mathfrak{F}_i closed coverings satisfying (1)-(4) of Theorem 3.2. Then we define a subset S of $N(\Omega)$ by $S = \{(\alpha_1, \alpha_2, \ldots) \mid \bigcap_{i=1}^{\infty} F(\alpha_1, \ldots, \alpha_i) \neq \emptyset\}$ and a mapping f of S onto R by $f(a) = p = \bigcap_{i=1}^{\infty} F(\alpha_1, \ldots, \alpha_i)$ for $a = (\alpha_1, \alpha_2, \ldots)$. To show the closedness of f we put $N(\alpha_1, \ldots, \alpha_i) = \{(\alpha'_1, \alpha'_2, \ldots) \mid \alpha'_k = \alpha_k, k = 1, \ldots, i\}, \mathfrak{N}_i = \{N(\alpha_1, \ldots, \alpha_i) \mid \alpha_k \in \Omega, k = 1, \ldots, i\}$. Let K be a closed subset of S and let $f(K) \not\ni p$. Then it follows from the finiteness of $f^{-1}(p)$ that $S(K, \mathfrak{N}_i) \cap f^{-1}(p) = \emptyset$ (6) for some i. Hence $S[f(K), \mathfrak{F}_i] \not\models p$, i. e. we obtain an nbd $U(p) = [S[f(K), \mathfrak{F}_i]]^0$ of p satisfying $U(p) \cap f(K) = \emptyset$, which shows that f(K) is closed. The other conditions of f are clearly satisfied.

Conversely, if there exist such $N(\Omega)$, S and f, then putting $A_n = \{p \mid f^{-1}(p) \text{ consists of } n \text{ points}\}$ we obtain, by [5], an at most n-dimensional subset A_n of R. Thus $R = \bigcup_{n=1}^{\infty} A_n$ is countable-dimensional.

4. Imbedding.

LEMMA 4.1. Let R be a countable-dimensional space with $R = \bigcup_{n=1}^{\infty} A_n$, dim $A_n = 0$. Let $\{U_m \mid m = 1, 2, ...\}$ be a collection of open sets and $\{F_m \mid m = 1, 2, ...\}$ a collection of closed sets such that $F_m \subset U_m$, m = 1, 2, Then there exists a collection of open sets U_m , $m = 1, 2, ..., |r| < \sqrt{2}/2m$, r rational, such that

- $(1) \quad F_m \subset U_{mr} \subset \overline{U}_{mr} \subset U_{mr'} \subset \overline{U}_{mr'} \subset U_m \text{ for } r < r',$
- (2) $\overline{U}_{mr} = \bigcap \{ U_{mr'} \mid r' > r \}, \ U_{mr} = \bigcup \{ \overline{U}_{mr'} \mid r' < r \},$
- (3) order_p $\{B(U_{mr}) \mid m = 1, 2, ..., |r| < \sqrt{2}/2m, r \text{ rational}\} \leqslant n-1$ for each point $p \in A_n$.

Proof. First we number all rational numbers with $|r| < \sqrt{2}/2m$ so that

 r_{m1} , $r_{m2} < r_{m1} < r_{m3}$, $r_{m4} < r_{m2} < r_{m5} < r_{m1} < r_{m6} < r_{m3} < r_{m7}$, ... Then we put

$$N_{m1} = \{r_{m1}\}, \quad N_{m2} = \{r_{m2}, r_{m8}\}, \quad N_{m3} = \{r_{m4}, r_{m5}, r_{m6}, r_{m7}\}, \quad \dots$$

We shall define U_{mr} satisfying (1), (3) and

(2') if r_{mi} and r_{mk} are adjoining numbers contained in $\bigcup_{h=1}^{s-1} N_{mh}$, $r_{mj} \in N_{ms}$ and $r_{mi} < r_{mi} < r_{mk}$, then

$$U_{r_{mj}} \subseteq S_{1/s}(\overline{U}_{r_{mi}})$$
 (7) if s is odd,
 $(\overline{U}_{r_{mj}})^c \subseteq S_{1/s}((\overline{U}_{r_{mk}}^c))$ if s is even,

where we denote, for brevity, $U_{mr_{mi}}$ by $U_{r_{mi}}$. Then it will easily be seen that $\{U_{mr}\}$ also satisfies (2). In fact, let $U_{r_{mi}}$ satisfy (2'). Let $p \notin \overline{U}_{r_{mi}}$, $r_{mi} \in N_{ms-1}$; then we take an odd t with $t \geqslant \max[s, \varrho(p, \overline{U}_{r_{mi}})]$ and $r_{mj} \in N_{mt}$ which is next to r_{mi} in $\bigcup_{k=1}^{t} N_{mk}$. It follows from (2') that $U_{r_{mj}} \subset S_{1/t}(\overline{U}_{r_{mi}}) \not\ni p$. Let $p \in U_{r_{mk}}$, $r_{mk} \in N_{ms-1}$; then we take an even t with $t \geqslant \max[s, \varrho(p, (\overline{U}_{r_{mk}}^c))]$ and $r_{mj} \in N_{mt}$ to which r_{mk} is next in $\bigcup_{k=1}^{t} N_{mk}$. It follows from (2') that $p \in [S_{1/t}((\overline{U}_{r_{mk}}^c))]^c \subset \overline{U}_{r_{mj}}$, proving (2).

We define, by induction, all U_{mr} in such order that $U_{r_{11}}, U_{r_{12}}, U_{r_{2n}}, U_{r_{2n}},$

of Lemma 2.1, an open set U_{r_1} such that

$$F_1 \subset U_{r_{11}} \subset \overline{U}_{r_{11}} \subset U_1, \quad B(U_{r_{11}}) \cap A_1 = \emptyset.$$

Assume that we have defined all $U_{r_{nh}}$ before $U_{r_{mj}}$ and that $r_{mj} \in N_{ms}$. Then we define $U_{r_{mj}}$ as follows: we take $r_{mi}, r_{mk} \in \bigcup_{k=1}^{s-1} N_{mk}$ such that $r_{mi} < r_{mj} < r_{mk}$ and such that r_{mi} and r_{mk} are adjoining in $\bigcup_{k=1}^{s-1} N_{mk}$. We can define $U_{r_{mj}}$ such that

$$\overline{U}_{r_{mi}} \subset U_{r_{mj}} \subset \overline{U}_{r_{mi}} \subset U_{r_{mk}} \cap S_{1/s}(\overline{U}_{r_{mi}}) \quad \text{if s is odd,}$$

$$\left[S_{1/s}((\overline{U}_{r_{mk}}^c))\right]^c \cup \overline{U}_{r_{mi}} \subset U_{r_{mi}} \subset \overline{U}_{r_{mi}} \subset U_{r_{mi}} \subset U_{r_{mk}} \quad \text{if s is even}$$

and such that

$$\operatorname{order}_{p} B(\mathfrak{U}_{mj}) \leqslant n-1$$
 for each point $p \in A_{n}$,

where $\mathfrak{U}_{mj} = \{U_{r_{11}}, U_{r_{12}}, U_{r_{21}}, \dots, U_{r_{mj}}\}$. The method of defining $U_{r_{mj}}$ is parallel to that of V_a in the proof of Lemma 2.1, and hence it is left to the reader. Thus the proof of this lemma is complete.

⁽⁶⁾ $S(K, \mathfrak{N}_i)$ denotes the union of all the sets of \mathfrak{N}_i intersecting K.

^{(&#}x27;) $S_{\epsilon}(U) = \{y | \inf \{\varrho(x, y) | x \in U\} < \epsilon\}$, where $\varrho(x, y)$ denotes the distance between x and y.

Zero-dimensional metric spaces

DEFINITION 4.2. Let $\{\mathfrak{N}_i \mid i=1,2,...\}$ be a collection of star-finite open coverings (8) of a space R. If $\mathfrak{N} = \bigcup_{i=1}^{\infty} \mathfrak{N}_i$ is a basis of open sets, then we call $\{\mathfrak{N}_i \mid i=1,2,...\}$ a σ -star-finite basis.

THEOREM 4.3. Let R be a space with a σ -star-finite basis. Denote by R_{ω} the set of points in I_{ω} at most finitely many of whose coordinates are rational. Then R is countable-dimensional if and only if R is homeomorphic to a subset of $N(\Omega) \times R_{\omega}$ for suitable Ω .

Proof. Let R be a space with a σ -star-finite basis. Then, since R is homeomorphic to a subset of $N(\Omega) \times I_{\omega}$ by a theorem of K. Morita (*), we obtain a sequence $\Re_1 > \Re_2 > ...$ of star-finite open coverings such that $\{S(p,\Re_i) \mid i=1,2,...\}$ is an nbd basis of each point p of R. We let

$$\mathfrak{S}_i = \{S^\infty(N,\,\mathfrak{N}_i) \mid N \in \mathfrak{N}_i\}, \quad \text{ where } \quad S^\infty(N,\,\mathfrak{N}_i) = \bigcup_{n=1}^\infty S^n(N,\,\mathfrak{N}_i) \,\, (^{10}).$$

Then we can put $\mathfrak{S}_i = \{S_{\alpha} \mid \alpha \in \Omega_i\}$, $S_{\alpha} \cap S_{\beta} = \emptyset$ for $\alpha \neq \beta$. Since \mathfrak{R}_i is star-finite, for $\alpha \in \Omega_i$ we can put $S_{\alpha} = \bigcup \{N_{\alpha j} \mid j = 1, 2, ...\}$, $N_{\alpha j} \in \mathfrak{R}_i$. We take an open covering \mathfrak{P}_i of R such that

$$\mathfrak{P}_{i} = \{ P_{aj} \mid a \in \Omega_{i}, j = 1, 2, \ldots \}, \quad \overline{P}_{aj} \subset N_{aj}, \quad a \in \Omega_{i}, \quad j = 1, 2, \ldots$$

Letting

$$U_{ij} = \bigcup \{N_{\alpha j} \mid \alpha \in \Omega_i\}, \quad F_{ij} = \bigcup \{\overline{P}_{\alpha j} \mid \alpha \in \Omega_i\},$$

we obtain an open set U_{ij} and a closed set F_{ij} with $F_{ij} \subset U_{ij}$, i, j = 1, 2, ...Then we put

$$\{F_{ij} \mid i, j = 1, 2, ...\} = \{F_m \mid m = 1, 2, ...\},\ \{U_{ij} \mid i, j = 1, 2, ...\} = \{U_m \mid m = 1, 2, ...\}.$$

Now, if R is countable-dimensional, then for these F_m and U_m we define U_{mr} by Lemma 4.1. Next we define a real-valued continuous function f_m of R by

$$f_m(p) = \inf\{r \mid p \in U_{mr}\}.$$

Then it is obvious that

$$f_m(F_m) = -\frac{1}{\sqrt{2}/2m}, \quad f_m(U_m^o) = \sqrt{2}/2m, \quad |f_m| \leq \sqrt{2}/2m.$$

To show that $f_m(p)$ has an irrational value at every point $p \notin \bigcup \{B(U_{mr}) \mid |r| < \sqrt{2}/2m, r \text{ rational}\}$ we take any point $p \notin \bigcup B(U_{mr})$

and any rational number r with $|r| < \sqrt{2}/2m$. If $p \in U_{mr}$, then there exists, by (2) of Lemma 4.1, r' with r' < r, $p \in U_{mr'}$; hence $f_m(p) \le r' < r$. If $p \notin \overline{U}_{mr}$, then there exists, by (2), r' with r' > r, $p \notin U_{mr'}$; hence $f_m(p) \ge r' > r$. Therefore $f_m(p) \ne r$ in either case. Hence at most finitely many of $\{f_1(p), f_2(p), \ldots\}$ are rational by (3) of Lemma 4.1.

Putting $\varOmega=\bigcup_{i=1}^\infty \varOmega_i,$ we define a continuous mapping c of R into $N(\varOmega)$ by

$$c(p) = a = (a_1, a_2, ...)$$
 for $p \in S_{a_i}, a_i \in \Omega_i, i = 1, 2, ...$

Finally we define a continuous mapping φ of R into $N(Q) \times R_{\varphi}$ by

$$\varphi(p) = (c(p), f_1(p), f_2(p), ...) \in N(\Omega) \times R_{\omega} \quad \text{for} \quad p \in R.$$

To see that φ is homeomorphic, let U(p) be an nbd of a point p of R. Let $S(p, \mathfrak{R}_i) \subset U(p), \ p \in F_{ij} = F_m, \ p \in \bigcap_{k=1}^i S_{a_k}$. Then we define an nbd V(f(p)) of $\varphi(p)$ by

$$V(\varphi(p)) = N(a_1, ..., a) \times N(\varphi(p)),$$

where

$$N(\alpha_1, ..., \alpha_i) = \{(\alpha_1', \alpha_2', ...) \mid \alpha_k' = \alpha_k, k = 1, ..., i\} \subset N(\Omega),$$

 $N(\varphi(p)) = \{(a_1, a_2, ...) \mid a_m > 0\} \subset R_{\omega}.$

It is clear that $\varphi^{-1}[V(\varphi(p))] \subset U(p)$, proving this assertion. Thus the "only if" part of this theorem is valid.

Conversely, since

$$N(\Omega) \times R_{\omega} = \bigcup_{n=1}^{\infty} [N(\Omega) \times R_n]$$

for $R_n = \{(a_1, a_2, ...) \mid a_j \text{ are irrational for } j > n, |a_i| \leq 1/i \text{ for } i = 1, 2, ...\}$ and since $\dim R_n = n$, $N(\Omega) \times R_\omega$ is a countable-dimensional space. This proves the "if" part of the theorem.

The following corollary is a direct consequence of Theorem 4.3:

COROLLARY 4.4. Let R be a separable space. Then R is countable-dimensional if and only if R is homeomorphic to a subset of R_{ω} .

5. The countable sum of zero-dimensional closed sets.

DEFINITION 5.1. If a space R is the countable sum of finite-dimensional closed sets, then we call R a strong countable-dimensional space.

A strong countable-dimensional space is countable-dimensional, but the converse is not true.

Example 5.2. The countable-dimensional space R_{ω} of Theorem 4.3 is not a strong countable-dimensional space.

^(*) A covering ${\mathfrak U}$ is called ${\it star-finite}$ if each member of ${\mathfrak U}$ intersects finitely many members of ${\mathfrak U}$.

^(*) The proof of the theorem is unpublished.

⁽¹⁰⁾ $S^1(N, \mathfrak{N}) = S(N, \mathfrak{N}), S^n(N, \mathfrak{N}) = S(S^{n-1}(N, \mathfrak{N}), \mathfrak{N}).$

Proof. Assume the contrary, i. e. $R_{\omega} = \bigcup_{n=1}^{\infty} F_n$ for finite-dimensional closed sets F_n , n=1,2,... First we notice that for F_j and for every number a_k with $a_k \in L_k = \{x \mid |x| \leq 1/k\}$ and every open interval I_{j+p} with $I_{j+p} \subset L_{j+p}$, p=1,2,..., there exist open intervals $J_{j+p} \subset I_{j+p}$, p=1,2,..., such that

$$\{a_1\} \times ... \times \{a_j\} \times J_{j+1} \times J_{j+2} \times ... \subset F_j^c$$
,

For, if the assertion is false, then there exist a_1, \ldots, a_j and I_{j+1}, I_{j+2}, \ldots such that for every $J_{j+p} \subset I_{j+p}$, p = 1, 2, ...,

$$[\{a_i\} \times ... \times \{a_j\} \times J_{j+1} \times J_{j+2} \times ...] \cap F_j \neq \emptyset$$
.

Hence $x \in [\{a_1\} \times ... \times \{a_i\} \times I_{i+1} \times I_{i+2} \times ...] \cap R_{\infty}$ implies $x \in \overline{F}_i = F_i$, which means

$$[\{a_i\} \times ... \times \{a_j\} \times I_{j+1} \times ...] \cap R_{\omega} \subset F_j$$
.

Since $\dim[\{a_i\} \times ... \times \{a_j\} \times I_{j+1} \times ...] \cap R_{j+p} = p$, $\dim[\{a_i\} \times ... \times \{a_j\} \times I_{j+1} \times ...$ $\times I_{i+1} \times ... \cap R_m = \infty$, which contradicts dim $F_i < \infty$.

Now we take an irrational a_1 with $a_1 \in L_1$. Then there exist, by the above notice, open intervals $J_{1k} \subset L_k$, k=2,3,..., such that

$$\{a_1\}\times J_{12}\times J_{13}\times\ldots\subset F_1^{\mathfrak{o}}$$
.

Let a_2 be an arbitrary irrational with $a_2 \in J_{12}$; there exist open intervals $J_{2k} \subset J_{1k}, \ k = 3, 4, ..., \text{ such that}$

$$\{a_1\} imes\{a_2\} imes {J}_{23} imes {J}_{24} imes ...\subset F_2^c$$
 .

Let a_3 be an arbitrary irrational with $a_3 \in J_{23}$; then there exist open intervals $J_{3k} \subset J_{2k}$, k = 4, 5, ..., such that

$$\{a_1\} \times \{a_2\} \times \{a_3\} \times J_{34} \times J_{35} \times \ldots \subset F_3^c$$

By repeating such processes we have a sequence $a_1, a_2, ...$ of irrational numbers satisfying

$$(a_1, a_2, \ldots) \in R_{\omega} - \bigcup_{n=1}^{\infty} F_n,$$

which contradicts $R_{\omega} = \bigcup_{n=0}^{\infty} F_n$. Therefore R_{ω} cannot be a countable sum of finite-dimensional closed sets.

THEOREM 5.3. In order that R be a strong countable-dimensional space it is necessary and sufficient that there exists a sequence $\mathfrak{U}_1 > \mathfrak{U}_2^* > \mathfrak{U}_2 > \mathfrak{U}_3^* > ...$ (11) of open coverings $\mathfrak{U}_i, \ i=1,2,...,$ of R such that

- (1) $\{S(p, \mathcal{U}_i) \mid i=1, 2, ...\}$ is an nbd basis of each point p of R,
- (2) $\sup \{ \operatorname{order}_{p} \mathfrak{U}_{i} | i = 1, 2, ... \} < +\infty \text{ for each point } p \text{ of } R.$
- (11) $\mathfrak{U}^* = \{S(U, \mathfrak{U}) \mid U \in \mathfrak{U}\}.$

Proof. Necessity. Let $R = \bigcup_{k=1}^{\infty} F_k$ for closed sets F_k , k = 1, 2, ..., with $\dim F_k = n_k$. In order to prove the necessity it is enough to show that for every open covering & there exists an open covering u such that $\mathfrak{U} < \mathfrak{S}$, order_p $\mathfrak{U} \leqslant m_k = n_1 + ... + n_k + k$ for each point p of F_k . Let \mathfrak{U}_k be an open covering of F_k satisfying $\mathfrak{U}_k < \mathfrak{S}$, order $\mathfrak{U}_k \leqslant n_k + 1$. Let

$$\mathfrak{U}_k = \{ U_\alpha \mid \alpha \in \Omega \}, \quad U_\alpha \subset S_\alpha \in \mathfrak{S}, \quad \alpha \in \Omega.$$

Then for every point $p \in U_a$ we define $\varepsilon(p) > 0$ such that

$$S_{s(p)}(p) \subset S_a$$
, $[S_{s(p)}(p)] \cap F_k \subset U_a$.

Letting

$$U_a' = \bigcup \{S_{\epsilon(p)/2}(p) \mid p \in U_a\},\,$$

we obtain a collection $\mathfrak{U}_k' = \{U_a' \mid a \in \Omega\} < \mathfrak{S}$ of open sets with order $\mathfrak{U}_k' \leqslant n_k + 1$. Then

$$\mathfrak{B}_k = \{ [\bigcup_{i=1}^{k-1} F_i]^c \cap U_a' \mid a \in \Omega \}$$

is a collection of open sets covering $F_k - \bigcup_{i=1}^{k-1} F_i$ such that

$$\begin{split} \mathfrak{B}_k < \mathfrak{S} \,, \\ & \text{order}_p \mathfrak{B}_k \leqslant n_k + 1 \quad \text{ for } \quad p \in \bigcup_{i=k}^{\infty} F_i \,, \\ & \text{order}_p \mathfrak{B}_k = 0 \quad \quad \text{ for } \quad p \notin \bigcup_{i=1}^{k-1} F_i \,. \end{split}$$

Therefore $\mathfrak{U} = \bigcup_{k=1}^{\infty} \mathfrak{B}_k$ is the required open covering.

Sufficiency. We let

$$F_k = \{ p \mid \sup \{ \text{order}_p \mathfrak{U}_i \mid i = 1, 2, ... \} \leqslant k \}, \quad k = 1, 2, ...$$

Then F_k is cleary a closed set. Since \mathfrak{U}_i , restricted to F_k , is of order $\leq k$, it follows from [6], [7] that $\dim F_k \leqslant k$. In consequence $R = \bigcup_{k=1}^{\infty} F_k$ is a strong countable-dimensional space.

THEORIEM 5.4. In order that a space R with a \sigma-star-finite basis be a strong countable-dimensional space it is necessary and sufficient that R be homeomorphic with a subset of $N(\Omega) \times K_{\omega}$ for suitable Ω , where $K_{\omega} = \bigcup_{k=1}^{\infty} K_k$, $K_k = \{(a_1, a_2, ...) \mid |a_i| \leq 1/i \text{ for } i = 1, ..., k, a_i = 0 \text{ for } i > k\}.$

Proof. Since the sufficiency is obvious, we prove only the necessity. Let $R = \bigcup_{k=1}^{\infty} F_k$ for closed sets F_k with $\dim F_k = n_k$, k = 1, 2, ... For convenience we rewrite K_{m_k} for $m_k = 2(n_1 + ... + n_k + k) - 1$ with K_k ; then $\dim K_k = m_k$. If R has a σ -star-finite basis, then we obtain the open sets U_{ij} and closed sets F_{ij} in the proof of Theorem 4.3. Since $F_{ij} \subset U_{ij}$, $\{F_{ij}^o, U_{ij}\}$ is an open covering of R. We denote by $\{\mathfrak{U}_n \mid n = 1, 2, ...\}$ the totality of such coverings. Furthermore, we define the following notation:

 $C(R) = \{f \mid f \text{ is a continuous mapping of } R \text{ into } K_{\omega} \text{ and maps } F_k \text{ into } K_k \text{ for } k = 1, 2, ...\},$

 $C_n(R) = \{ f \mid f \in C(R), \text{ for every point } x \text{ of } I_w \text{ there exists an nbd } U(x)$ of $x \text{ such that } f^{-1}(U(x)) \in \mathfrak{U}_n \},$

where we denote by $f^{-1}(U(x)) \in \mathfrak{U}_n$ the fact that $f^{-1}(U(x)) \subset U$ for some $U \in \mathfrak{U}_n$.

Now let us show that $\bigcap_{n=1}^{\infty} C_n(R) \neq \emptyset$. To see this we prove first that $C_n(R)$ is open in the functional space C(R), which is a complete space with strong topology. The method of proof is analogous to that of the finite-dimensional case [2]. Assume that $f \in C_n(R)$. This means that every point x of I_{∞} has an nbd U(x) with $f^{-1}(U(x)) \in \mathcal{U}_n$. Since I_{∞} is compact, there exists a finite sub-collection of these nbds which covers I_{∞} , i. e. $I_{\infty} = \bigcup_{j=1}^{s} U(x_j)$. We take a positive number δ such that for every $x \in I_{\infty}$ and for some x_j , $S_{\delta}(x) \subset U(x_j)$ holds. Now let g be any mapping satisfying $g'(f,g) < \delta/6$, where we denote by g' the metric of C(R). Let $x \in I_{\infty}$, $g^{-1}(S_{\delta/6}(x)) = N$. Then it is easy to see that $f(N) \subset S_{\delta}(f(y)) \subset U(x_j)$ for some x_j . Hence $N \subset f^{-1}(U(x_j)) \in \mathcal{U}_n$, proving $g \in C_n(R)$.

Next we shall show that $C_n(R)$ is dense in C(R). Let f be an arbitrary element of C(R) and ε a positive number. We shall construct g such that $\varrho'(f,g)<\varepsilon$, $g\in C_n(R)$. Let

$$I_{\omega} = igcup_{j=1}^s S_{s/4}(x_j) \,, \qquad \mathfrak{B} = \left\{ f^{-1} ig(S_{s/4}(x_j) ig) \mid j=1 \,, \, ..., s
ight\} .$$

Then we define a finite open covering \Re of R such that

 $(1) \quad \mathfrak{N}^{\Delta} < \mathfrak{V} \wedge \mathfrak{V}_n \ (^{12}).$

By the proof of Theorem 5.3 we can select an open covering \$\mathbb{M}\$ so that

- (2) $\mathfrak{N} > \mathfrak{M} = \bigcup_{k=1}^{r} \mathfrak{M}_{k},$
- (3) order_p $\mathfrak{W}_k \leq n_k + 1$ for $p \in F_i$, $i \geq k$,
- (4) order_p $\mathfrak{W}_k = 0$ for $p \in F_i$, i < k.

We notice that we can assume without loss of generality, that $n_1 < n_2 < ...$ and hence we can assume that r is a finite number not greater than the number of elements of \mathfrak{R} . To see this, let $\mathfrak{R} = \{N_j \mid j = 1, ..., l\}$, and assume that $\bigcup_{k=1}^{l-1} \mathfrak{B}_k$ does not yet cover R. Then, since $l \leq n_l + 1$, putting $\mathfrak{M}_l = \{[\bigcup_{i=1}^{l-1} I_i]^c \cap N_j \mid j = 1, ..., l\}$, we get a covering $\mathfrak{M} = \bigcup_{k=1}^{l} \mathfrak{M}_k$ satisfying (2)-(4) for r = l. Now let $\mathfrak{M}_k = \{W_{ki} \mid i = 1, ..., t_k\}$. Then we can select vertices $x(W_{ki})$ in $K_k - K_{k-1}$ such that

- (5) $\varrho(x(W_{ki}), f(W_{ki})) < \varepsilon/4, \ k = 1, ..., r, \ i = 1, ..., t_k,$
- (6) any $2n_1+2$ of the vertices $x(W_{1i})$ and any $2n_2+2$ of the vertices $x(W_{2i})$ and ... and any $2n_r+2$ of the vertices $x(W)_{ir}$ are linearly independent,

because K_k can be regarded as the $2(n_1+\ldots+n_k+k)-1=m_k$ -cube containing K_{k-1} .

Then we define a Kuratowski mapping g by

$$g(p) = \frac{\sum\limits_{k,i} \varrho(p, W_{ki}^c) x(W_{ki})}{\sum\limits_{k,i} \varrho(p, W_{ki}^c)} ;$$

in this formula we regard $x(W_{ki})$ as a point-vector. Let p be an arbitrary point of R and assume $p \in W_{ki}$. Then from (1), (2), (5) we get $e(f(p), x(W_{ki})) < 3e/4$ for every W_{ki} with $p \in W_{ki}$. Hence the centre of gravity g(p) of the $x(W_{ki})$ satisfies

$$\varrho(f(p), g(p)) < 3\varepsilon/4$$
, i. e. $\varrho'(f, g) < \varepsilon$.

Finally we shall prove $g \in C_n(R)$. Suppose that $W_{k_1i_1}, \ldots, W_{k_ii_i}$ are all the members of \mathfrak{B} containing a given point p of R. Then we denote by L(p) the linear (s-1)-space spanned by $x(W_{k_ii_i}), \ldots, x(W_{k_ii_i})$. Since there is only a finite number of linear subspaces L(p), there exists a number $\delta > 0$ such that any two of those linear subspaces, L(p) and L(p'), either meet of else are at a distance $\geq \delta$ from each other. If $p, p' \in g^{-1}(S_{\delta l^2}(y))$ for some $y \in I_{\omega}$, then $\varrho(g(p), g(p')) < \varepsilon$. Since $g(p) \in L(p)$ and $g(p') \in L(p')$ are clearly verified, we have $L(p) \cap L(p') \neq \emptyset$. Let L(p) be spanned by $x(W_{k_ii_1}), \ldots, x(W_{k_ii_i})$ and L(p') by $x(W_{k_ii_1}), \ldots, x(W_{k_ii_i})$. Then

⁽¹²⁾ $\mathfrak{A}^d = \{S(p, \mathfrak{A}) \mid p \in R\}$.

J. Nagata

 $x(W_{k_it_1}), \ldots, x(W_{k_it_i}), x(W_{k_it_1}), \ldots, x(W_{k_it_i})$ are linearly dependent. On the other hand, by (3), (4) at most n_k+1 of the $x(W_{k_it_1}), \ldots, x(W_{k_it_i})$ spanning L(p) are vertices corresponding to members of \mathfrak{M}_k . This combined with (6) implies that at least one of the $x(W_{k_it_1}), \ldots, x(W_{k_it_i})$ is also one of the $x(W_{k_it_i}), \ldots, x(W_{k_it_i})$. Hence p and p' are contained in a common member of \mathfrak{M} . It follows from (1), (2) that $g^{-1}(S_{\delta p}(y)) \in \mathfrak{U}_n$, meaning $g \in C_n(R)$. Thus we have concluded that $C_n(R)$ is open and dense in C(R). In consequence, by Baire's theorem, $\bigcap_{n=1}^{\infty} C_n(R)$ is dense in C(R), and especially

 $\bigcap_{n=1}^{\infty} C_n(R) \neq \emptyset.$ Since, for any element f of $\bigcap_{n=1}^{\infty} C_n(R)$ and for the same mapping c(p) with the one in the proof of theorem 4.3, $\varphi(p) = (c(p), f(p))$ is clearly a homeomorphic mapping of R onto a subset of $N(\Omega) \times K_{\omega}$, the assertion is established.

COROLLARY 5.5. Let R be a separable space. Then R is strongly countable-dimensional if and only if R is homeomorphic to a subset of K_{ω} .

References

- [1] S. Eilenberg et E. Otto, Quelques propriétés charactéristiques de la dimension, Fund. Math. 31 (1938), p. 149-153.
 - [2] W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1941.
- [3] M. Katétov, On the dimension of non-separable spaces I, Czechoslovak Mathematical Journal 2 (77) (1952), p. 333-368.
- [4] K. Morita, Normal families and dimension theory for metric spaces, Math. Annalen 128 (1954), p. 350-362.
- [5] A condition for the metrizability of topological spaces and for n-dimensionality, Sciences Reports of the Tokyo Kyoiku Daigaku, Sec. A, 5 (1955), p. 33-36.
 - [6] J. Nagata, Note on dimension theory, Proc. Japan Acad. 32 (1956), p. 568-573.
 - [7] Note on dimension theory for metric spaces, Fund. Math. 45 (1957), p. 143-181.
- [8] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), p. 977-982.

OSAKA CITY UNIVERSITY

Reçu par la Rédaction le 26, 6, 1958

Concerning dense metric subspaces of certain non-metric spaces

by

J. N. Younglove (Austin, Tex.)

In this paper it is shown that if Σ is a space satisfying R. L. Moore's Axioms 0 and 1, [1], then Σ contains a complete metric subspace Σ' such that the set of all points of Σ' forms a dense subset of the set of all points of Σ . A sufficient condition is given for a point set M in order that it be the set of all points of some such Σ' . The terminology used in the paper is largely that of R. L. Moore.

AXIOM 0. Every region is a point set.

Axiom 1. There exists a sequence G_1, G_2, G_3, \dots such that

- (1) for each positive integer n, G_n is a collection of regions covering the set of all points,
 - (2) for each positive integer n, G_{n+1} is a subcollection of G_n ,
- (3) if R is a region and A is a point of R and B is a point of R, there is a positive integer n such that if g is a region of G_n containing A, then \bar{g} is a subset of R and, unless B is A, \bar{g} does not contain B,
- (4) if M_1 , M_2 , M_3 , ... is a sequence of closed point sets and for each positive integer n there is a region g_n of G_n such that M_n is a subset of \bar{g} and for each positive integer n, M_{n+1} is a subset of M_n , then there is a point common to all the sets of this sequence.

It has been shown that every space satisfying Axiom 0 and the following Axiom C is metric [2]:

- AXIOM C. There exists a sequence $G_1, G_2, G_3, ...$ satisfying conditions (1), (2) and (4) of Axiom 1 together with the following condition
- (3) if A is a point of a region R and B is a point of R, there is a positive integer n such that if x is a region of G_n containing A, and y is a region of G_n intersecting x, then x+y is a subset of R and, unless B is A, x-y does not contain B.

PROPERTY Q. A point set M is said to have Property Q provided it is true that if G is a collection of domains covering S, the set of all