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On the countable sum of zero-dimensional
metric spaces *

by
J. Nagata (Osaka, Japan)

1. Introduction. As is well known, not every infinite-dimensional
metric space is the countable sum of zero-dimensional spaces; in fact’
the Hilbert-cube I, is not the countable sum of zero-dimensional spaces.
It is known that by the generalized decomposition-theorem due to
M. Katétov [3] and to K. Morita [4] a metric space is the countable sum
of zero-dimensional spaces if and only if it is the countable sum of finite-
dimensional spaces. We call such a space a countable-dimensional space.
It seems, however, that our knowledge of countable dimensional spaces,
owing to peculiar difficulties in the infinite-dimensional case, is very
little if compared to that of finite-dimensional spaces,

The purpose of this paper is to extend the theory of finite-dimensional
spaces to the countable-dimensional case. First we shall characterize
countable-dimensional spaces by extending Hilenberg-Otto’s theorem [1].
Then we shall characterize such spaces by closed coverings and show
that every countable-dimensional space is an image of a generalized
Baire zero-dimensional space N (2)(*) by a closed continuous mapping
such that the inverse image of each point consists of finitely many points.
Furthermore, it will be shown that a countable-dimensional space with
2 o-gtar-finite basis can be imbedded in N (2) X R,, where R, is the sef
of points in I, at most a finite number of whose coordinates are rational.
Finally we shall discuss on a metric space which is the countable sum
of finite-dimensional closed sets.

All spaces considered in the present paper will be assumed to be
metric spaces unless the contrary is explicitly stated. Dim B denotes
the strong inductive dimension of R, i.e. dim@=—1, dim R n if
and only if for any pair of a closed set ¥ and an open set G

* A part of this paper was published in Proe. Jap. Acad. 34 (1958), p. 146-149.
M N@)= {{ar, ap, )} ;2 i=1,2,..}. We define the metric of N () as
follows: if @ = (az, Gy, +.)s B = (B1s Pas o) ;= B; fOr ¢ < @, a, #* B, then o(a, f) = 1/n.
As is well known, N(2) is a 0-dimensional metric space. This notion is due fo [4].
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with FCGC R there exists an open get U such that FCUCGE,
dim (T~ U) < n—1 ). :

2. An extension of Eilenberg-Otto’s theorem. For a point p
and for a covering ¥ of a space B we denote by order, U the largest
integer n such that there are » members of [ which contain p. We
also use the notation B(U)={B(U)| Ue U}, where B(U) moans the
boundary of U.

. Levma 2.1, Let An, n=1,2,.., be a countable nwmber of zero-
dimensional sets of a space B. Let {U, | a < 7}(%) be a collection of open sels
and {F, | a <t} a collection of closed sets such that F,C U,, a <7, and

such that {Us | B < a} is locally finite for every a < v. Then there emisls
& collection of open sets Vo, a << 1, such that

(1) F.CV,CU,, a<rt,
(2) ordery, B(B) << n—1 for every pe d,,
where B= V| a <}
Proof. We shall define, by induction on a, V, satisfying (1) and
(2)e orderp, B(B.) < n—1 for every p e Ay, where o= V5| < a).
We take open sets Gy, W, such that

GDOF, WDUI (), GAW,=0.

Since 4, is zero-dimensional, there exists an open cloged set N, of Ay
satisfying
G~ A CN, C(W) ~4y.

If we put By = Z_\TluFl, Oy =(4;—N,) Ui, then (B,AC) v (B,nC)=0.
Hence there exists an open set ¥, such that B,CV,CV,C . Since
B{Vy) ~n A, =0 is clear, V, satisfies (1) and (2)q for a=1.

Suppose that ¥, has been constructed for every 8 <a (< 7). Then
we puf

Hi=4y, Ho=UBTs)nnBVs,_Jrdn|fiy s foci<a}, ne=2,3,...,

Ka':GE”.

T

It follows from dim A, =0, n = 1,2, .., that dim H, <0, == 1,2, ..

(*) The equivalence of this dimension with the Lebes
space was proved by [3] and [4).

3 V\Ze denote by a, 8, v, ¢ ordinal numbers.

(*) We denote- by US the complement set of U,.

gue dimension in every metric
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We easily see that, for every n, Ln) H; is open in K,. For let p ¢ Lnj H;,
i=1 i

=l

n
then p e | 4;; hence we have order, {B(V,) | § < a} <n—1 by the assump-

i=1 .
tion of induection. Therefore we can find, from every collection {B(Vs), ...,
B(Vy)} with fi, ..., By << a, B(Vy) with B(Vg) 3 p if j> n. On the other
hand, U(p) = N{B—B(Vs) | B < a, p ¢ B(Vg)} is an nbd (= neighborhood)
of p by the local finiteness of {U;| < a}. Hence we conclude
U(P) n(iU H;) = @, which implies the openess of CJH,— in K,. Thus,
q=1

g1

n—1
for every n, H, — ) H;is a 0-dimensional F,-set. Hence we have, by the

=]
generalized sum-theorem [4], dim X, < 0. Consequently we can define,
in the same way as for the case of =1, an open set V, such that

¥,CV,CU,, BV)~nE,=0,

which implies (2);. This completes the proof.

TaEOREM 2.2. A space R is countable-dimensional if and only if
there exists a countable collection of locally findte open coverings By such
that B= (V| VeBy,i=1,2,..} i¢ o basis of open sets of B and

_order, B(B) < +-oco for every point p of E.

(-]
Proof. Let R be countable-dimensional, i. e. R=1J 4, for

0-dimensional 4,; then by a theorem of A. H. Stone [8] tﬁe;e exists
a countable collection of locally finite open coverings ; of B such
that {S(p, W) | ¢=1,2,..} (%) is an nbd basis of each point p. Let
W= {U,| %1 < a< %}, 7o= 1. Then there exists, by the local finiteness
of U;, a closed covering {F,| 741 < a < 73} such that F,C U,. Putting
t=sup {z;| 4=1,2,..} we have the collection {U, | @<t} of open
gets satistying the condition of Lemma 2.1, Hence there exists a collection
B={V,| a< 7t} of open sets satisfying (1), (2) of Lemma 2.1. B;
={F,| i< a< T}, t=1,2,.., are clearly open coverings satisfying
the condition of this proposition.

Conversely, if there exists such a collection {B;|1=1,2,..} of
open coverings of R, then we let

{p| order, B(B)=n-—1}=4,,

Since B={Vrd,| VeBy, 4=1,2,..} is an open basis of 4, such
that order, B(B) = n—1, we have, by [4], dim 4, < n—1. Thus it follows

n=1,2,..

from the generalized decomposition-theorem that R =) A, is countable-
=1

dimensional.
() We denote by S(p, Y,) the union of all the sets of A, eontaining p.
1#
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THEOREM 2.3. A space B is countable-dimensional if and only if
for every collections {U,| a <7} of open sels and {F. | a<t} of closed
sets such that B, C Uy, a < 1, and suck that {Uy| f < a} is locally finite
for every a <7, there exists a collection of open seis Vo, o <7, sabisfying

(1) F,CV,CU,s a<T,

(2) order, B(B) < +oo for every peR,
where B={Vo| a <7}

Proof. The “only if”’ part is a direct conseguence of Lemma 2.1.
The #if” part is a direct consequence of Theorem 2.2.

3. Characterizations by closed coverings and by N (£).

Iemma 3.1, Let Ay,n=1,2,.., be a countable number of 0-di-
mensional sets of a space B. Let W = {U, | a < 1} be a locally finite open
covering. Then there exists a closed covering § = {I,| a < 1} such that
F < U and order, F < n for every peA,.

Proof. We obtain by Lemma 2.1 an open covering 8 = {V,| a < 7}
such that ¥, C U,, order, B(B) < n—1 for p ¢ 4,, where we notice that
we can easily choose V) satisfying 7, C U, instead of (1) of Lemma 2.1.
Let

F=7,, Fo=V— Vs, a<=.
B<a

Then § = {F,| a <7} is a closed covering satisfying the condition of
this lemma. In fact, leb p e dn, p eV, p ¢V, for every f < a. Then it
is clear that p ¢ F, for every y > a, and p < Iy for some S < a implies
peVs—Vy=B(Vs). Thus it follows from order, B(B)<n—1 that
order, § < n.

TEROREM 3.2. A space B is countable-dimensional if and only if
there exists a countable collection {%;| i=1,2,..} of locally finite closed
eoverings of R satisfying

(1) for every nbd U(p) of every point p of R there emists some & with
8(p,%:) C U(p),

(2) Fi={Play, - a)| axel, b=1,2,..,43), where F(ay, ..., a)
may be empty,

(8) Flagy ey gyy) = U (ayy -y a4, 8) I Be2},

(4) sup forder, §:| ©=1,2,..} < --oco for cach point p of R.

Proof. Tet B be a countable-dimensional space with R = @An
Tieml

for‘O-dimensi_ona.l 4, and &, > &, > ... a nniformity of R. Then we shall
define §, satisfying (2), (3), § < & and order,§; < n for each point
P € 4,. We can define § by Lemma 3.1. Assume that we have defined §
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for every % < 4; then we put §i—y = {F, | @ < 7} for brevity. To obtain
#: we shall define closed sets Fy, a <7, fef, such that
(0) Fo=U{Fop| e}, {Fyp| R} <&y,
({) Ga={Fup| a’'<a,Bel}u {Fr| o' >a} is locally finite for
every a < T,
(i) order, G, < n for every a < v and for each point p e 4,
First we define Hys, f ¢ 2, as follows. We let
Hy=Fn~A4, »
Hy = {p| order, {F,| 1<a<t}=1, peF,ni,},
Hy = {p| ovder, (F.| 1 <a<7}=2, pel, 4},

Ky =HoHywHgyu..
and. .
Hyy= {p| order, {F,| 1<a<t}=10, peFind,},
Hy= {p| order, (F.| l<a<r}=1, peFni},
Hy= {p| order, {F,| l<a<t}=2, pel,nd,},
Ky=HyuHguHpu...
and generally

Heizo={p| ovder, {F,| L<a<t}=8, peFynArs},
—Kr= UHr+as-
&0

If peH,ss then pPeFyn..nF, for some a,..,e and
p{r‘Falr\...r\F

gy LOT 6VETY @y ...y Ogiy . Hemce the nbd U (p)= (M{Fal p ¢ Fa,
1< a< 1} of p satisfies U(p) ~ Hypzs = O for every ¢ > s, which implies

8
the openness of | J H,yo o in K,. Since evidently dim H,.,s < 0 for every
g'=1

§>0, we have dim K,<0, r=1,2,.. Therefore we can define by
Lemma 3.1 a locally finite closed covering Gi= {Fiz | § €2} of F, such
that G; < &;, order, G << n for every p e K,.

To show order, G, <n for ped, and for G,= G;w{Fy| a’' > 1},
we assume ordery Fi—1=s+1 and p eFy AFy ~...~F, , Where a, ..., ¢, > 1
and 0 < s <n—1 because of order, §—; < n. Then peH,,C K, and
hence order, ®; < n—s, proving order, G, < n. Assume that we have
defined Fyp, fef2, for every a’< a; then we can define F,, e,
satisfying (i)-(iii). The method of defining F,, is parallel to that of Fy,
except that we use F, and {Fop| o’ < a, B eQ}v {Fo| o« > o} instead
of F, and {F, | a > 1} respectively; hence its proof is left to the reader.
Thus we can define the required covering ;= {F| a <7, e}

Conversely, if there exists a countable collection {¥;| ¢=1,2,..}
satisfying (1)-(4), then we set {p | sup {order, ¥ | i=1,2,..} = n} = 4,.
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Since order, F<n,i=1,2,.., for every pedy, we have, by [5],
dim A, <n—1. Hence B=|_J 4, is countable-dimensional.
n=l

TaEoREM 3.3. A space R is countable-dimensional if end only if
there ewist a subset § of N (Q) for suitable Q and a closed continuous mapping
{ of 8 onto B such that for each point p of R the inverse image X p) consists
of finttely many poinis.

Proof. The “only if” part is a direct consequence of Theorem 3.2.
In fact, let R be countable-dimensional and &; closed coverings satisfy-
ing (1)-(4) of Theorem 3.2. Then we define a subset § of N (&) by

8= {(ay, aay, ...} | Y Flagy ooy ) = @) and 2 mapping f of § onto R by
i=1

fa)=p= ﬁ Flay,y oy ag) fOor o =(a, az,...). To show the clogedness

fm1 .
of f we pubt N(ay, ..., o) = {(af, a3y ) | efp= ap, =1, ..., %}, Ry={N(ay,
vy @) | apeR, k=1, ...,7}. Let K be a cloged subget of § and let f(K) 3 p.
Then it follows from the finiteness of f~'(p) that §{IK, V)~ (p) = @ (9
for some i. Hence 8(f(X), &) 3 p, 1. 6. we obtain annbd U(p)=[S(/(K), )]’
of p satisfying U(p) ~f(K) = @, which shows that f(K) is closed. The
other conditions of f are clearly satisfied.

Conversely, if there exist such N(Q), S and f, then putting
Ap={p] f(p) consists of » points} we obtain, by [5], an at most
n-dimensional subset 4, of B. Thus R = |_ A, is countable-dimensgional.

n=1

4. Imbedding.

Levua 4.1, Let R be a countable-dimensional space with B =\ A,,

Nl

dim 4, =0. Let {Un| m=1,2,..} be a collection of open sets and
Fn| m=1,2, ..} a collection of closed sets such that Fp, C Uy, m = 1 12,
Then there ewists a collection of open sets Uy, m =1, 2, ..., [r| < /2/2m,
* rational, such that

(1) P C Ut C Upae C Uy C U C Uy for r < o,

2) Umr= N {Un |1 >1}, Upr=" {Upr | v <},

(3) order, {B(Un) | m=1,2, .., |r| <V2/2m, r rational} <n—1
for each point p e A,.

Proof. First we number all rational numbers with |7| < y/2/2m
so that

Tmiy Tme <Tm < Tus,

Then we put

Tma <Tme < Ymg < Vit < Ping < Tms < Yoy s

Noa= {rm}, Npe= {rmes Tme}y Npg= {Tmas Y'mss Ymay Tmr}

(®) 8(K, %) denotes the union of all the sets of N; intersecting K.

icm
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We shall define Uy, satisfying (1), (3) and
(2") tf rmi and vy are adjoining numbers contained msL-j Nty i € Nons
AN Pri < Fmg < Vi, Then e
Utyey C Busl ) ()
(O, C Susl(T%,)

where we denote, for brevity, Ups,, bY U,,,. Then it will easily be seen
that {Un} also satisfies (2). In fact, let U, satisfy (2'). Let p¢ U, ,,
ms € Nmo—z; then we take an odd ¢ with @3> max[s, o(p, Uy,)] and

if s is odd,

if ¢ is even,

t
Tmj € Ny which is next to rp in |\ ) Npg. It follows from (2’) that
k=1

Uroy CSut( Ury) 90 Lot p e Uy ) Tmp€ Nypoy; then we take an even
t with > max[s, ¢(p, (U7,))] and #m; e Ny to which 7y is next in
' — -

\J M. It follows from (2°) that p e [Sy((T5,,))|° C U4,y Droving (2).

k=l
We define, by induetion, all Uy, in such order that U, Us,, Upy,,

Usnay Urggyr Urgys Uy - Fizst we define, in the same way as in the proof
of Lemma 2.1, an open set U,, such that

F,C U CT,CU, B(Up)nd=0.

Agsume that we have defined all Uy, before U,

"

and that 7p; e Np,.

a1

Then we define U,m ay follows: we take 4, Pup €\J Nup such that
- I=1

8~1
Tt < Pmj < Tmp a0 such that r,; and 7, are adjoining in |} Ny, We can
k=1

define U, nd such that

Ui C Upy C U, if ¢ is odd,

mf

C Upy C Uy C Uryy

C Ur,,,k ~ Byl ﬁrmi)

[Ssis((Tra )} Try

ol if s is even

and such that

ordery, B(Wp;) < n—1  for each point p e Ay,

where  Way == {Upyy Uy Ungyy ooy Upyyhe The method of defining U,
ig parallel to that of V, in the proof of Lemma 2.1, and hence it iz left
to the reader. Thus the proof of this lemma is complete.

(") 8:(U) = {y] inf {p(z, y)| ® e U} < e}, where g(w,y) denotes the distance
between x and .
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DEFivrrroN 4.2, Let {9 | ¢=1,2,..} be a collection of sbar-
finite open coverings (8) of a space B. If N = 1EU N is a basis of open sets,
vl

then we call {9 | ¢=1, 2,..} a o-star-finite basis.

TomoreM 4.3. Let B be a space with a o-star-finite basis. Denote
by R, the set of points in I, at most finitely many of whose coordinates are
rational. Then K is countable-dimensional if and only if B is homeomorphic
o @ subset of N(Q)x R, for suitable .

Proof. Let R be a space with a o-star-finite basis. Then, sinco R
is homeomorphic o & subset of N (2)x I, by a theorem of X. Morita (%),
we obtain a sequence $, > M, > ... of star-finite open coverings such
that {S(p, W) | 4==1,2, ...} is an nbd basis of each point p of B. Wolet

S = {87V, M) | NeM}, where SN, N)= UIS”(N » ) (19).
Pyl
Then we can put &;= {8, | a2}, S;n8=@ for a B Since Ny is
star-finite, for a e; we can put §, = UNe | 1=1,2,..}; NuyeRy.
We take an open covering %; of R such that

Pi={Py| ae2;yj=1,2,..}, P,yCNy,
Letting

ae.Q;, j=1,2,...

Us=Ule| e}, Fyy=U{Py| a ey},

we obtain an open set Uy and a closed set Py withFy CUy, 4,i=1, 2, ...
Then we put
Fyld,j= 1,2,.}={Fu| m=1,2,..},
Uy 4,j=1,2,..}= {(Un| m=1,2,..}.
Now, if B is countable-dimensional, then for these I, and Up we
define Uy, by Lemma 4.1. Next we define a real-valued continuous

function f, of R by
fmlp) =1nf{r | p ¢ Upe}. .

Then it is obvious that .
InlTm) =—V212m,  fu(Un)=V32m, |fu| <V3j2m .

To show that fm(p) has an irrational value at  every poing
P¢ULB(Unm) | 7| < V2/2m, r rational} we take any point p ¢l B( Uy

(%) A covering U ig called star-finite if each member of U intersects finitely many
members of 1,

(°) The proof of the theorem is uﬁpublished.
() SN, Q)= S(F, R), §4N, R) = S(S"YN, ), R).
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and any rational number » with [r| <V2/2m. It pe Upe, then there
exists, by (2) of Lemma 4.1, # with +' < 7, P € Uy henee f(p) <v' < 7.
If p¢ Une, then there exists, by (2), » with 7" > 1, p¢ Upv; hence
fum(p) = 7" > r. Therefore fn,(p) s r in either case. Hence at most finitely
many of {f,(p), fo(p), ...} are rational by (3) of Lemma 4.1.
Putting Q = Ulﬂt, we define a continuous mapping ¢ of B inte
N(Q) by
e(p) =a={(u,a,..) for

DelSy, iel2y, i=1,2,..

PFinally we define a. continuous mapping ¢ of B into N (2)x R, by

() = (0(p), (), 1u(p), ) e N(R)X R,  for
To see that ¢ is homeomorphic, let U(p) be an nbd of a point p- of E.
Let §(p, %) C U(p), p e Fij= T, p ¢ () S, Then wo define an mbd

V(f(p)) of o(p) by
V(((P(p)) = N{ay.,a )X N(‘P(p)) ’

pelR.

where ‘
N(ayy ooy o) ={(of, ofy...) | =, e =1,...,i} CN(Q),

N(‘P(P)) = {{ay, @y, ...) | @n>0}CR,.

It is clear that ¢ '[V(p(p))]C U(p), proving this assertion. Thus the
“only if” part of this theorem is valid.
Conversely, since

N(Q)x B, = le[m) X By

for Rn= {(ay, @y, ...) | a; ave irrational for j > n, a;| < 1/i for 1 =1, 2, ...}
and since dimR, = n, N(2)x R, is a countable-dimensional space. This
proves the “if” part of the theorem.
The following corollary is a direet consequence of Theorem 4.3:
CoROLLARY 4.4. Let B be a separable space. Then R is countable-
dimensional if and only if R is homeomorphic to a subset of R,. '

5. The countiable sum of zero-dimensional closed sets.

Dxrinrrron 5.1, If a space R is the countable sum of finite-
dimensional closoed sets, then wo call B a strong countable-dimensional space.

A strong countable-dimensional space is countable-dimensional, but
the converse is not true.

Bxamern 5.2. The cowntable-dimensional space R, of Theorem 4.3
8 mol a strong countable-dimensional space. ‘
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0
Proof. Assume the confrary, i. e. B, = (JF, for finite-dimensional
Rl
closed sets F,, n=1,2,.. First we notice that for F; and for every
number @, with a; e Lp= {z| [#] <1/k} and every open inferval I,
with I;4pC Lyip, P =1,2,.., there exist open intervals Jy.p, C Iy,
p=1,2,.., such that
{@:} X oo X{ag} X 1 X 42X .. C Iy,

For, if the assertion ig false, then there exist ay,...,a; and Ijiq, Lpa, ...
such that for every Jiup Cljyy, p=1,2,..,
[{a:} X oo X {8} X Tjra X Tppe X ]P0

Hence #e[{a;} X o X {5} X Ijp1 X Ij4eX o] n R, implies 2 ey = 1y,
which means
[} X oo X {83 X Tj4a X ] A B, CHYy.
Since dim[{a}> ... X {@} X Ijp1 X o] A Bypp=p, dm[{a,} X ... X {a;} %
X I;41X ] n R, = oo, which contradicts dimF; < oo.
Now we take an irrational a, with a, e L,. Then there exist, by the
above notice, open intervals Jy, C Ly, k= 2, 8, ..., such that

{a} X Jye X g% ... CFY.
Let a, be an arbitrary irrational with a, €Jy,; there exist open intervals
Jop CIagy k=3, 4, ..., such that
{@} X (@} X Ty X Jpy X ...CI5.
Let a; be an arbitrary irrational with @, eJy; then there exist open
intervals Jg, CJor, k=4,5, ..., such that
{al}x {az}x {aa}xJ34XJ35>< ...C.Fg.
By repeating such processes we have a sequence @y, Ay, ... Of irrational
numbers satisfying

o0
(a’l7 aZ! "") eRm" U—Fny

B Tzl
. - <
which contradiets R, = |\ F,. Therefore B, eannot be a countable
=],
sum of finite-dimensional closed sets.
TEEOREM 5.3. In order that B be a strong countable-dimensional
space 1t s mecessary and sufficient that there emists a 8eqQUENCe

W>UWE>W>W>. () of open coverings W, &= 1,2,.., of R
such that

1) 8, W)] i=1,2,..) is an nbd basis of each point p of I,
(2) supforder, W| ¢=1,2,..} < +oco for cach point p of R.
(%) Uk== {§(T, )] Teu}.
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Proof. Necessity. Let R=k® Fy, for closed sets Fy, k=1,2,...,
=]

with dimF), = ny. In order to prove the necessity it is enough to show
that for every open eovering & there exists an open covering I such
that U < &, order, W < my = ny+...+-n--% for each point p of Fy.
Let Uy be an open covering of ¥y satisfying I, < &, order Uy, < np+1.
Let

W= {Ua| €}, U,C8, 6,

Then for every point p ¢ U, we define ¢(p) > 0 such that
SS(D)(T’) C&, ’

ael.

[Bun(p)] " Fr C U,
Letting

Us=U {Sewyie(p) I pe U},
we obtain o collection
order W}, < ng--1. Then

k1
%k;“ {[ UFﬂcr\ Ul;] aeQ}
del,

W= {Us] aeR}<S of open sets with

k—1
is a collection of open sets covering Fp— U F; such that

i=1
ﬂgk <G ,
; o0
order, Bp np4-1 for  p e Fy,
fmk
k-1

pEUF,;.

=1

order, By =0 for

00
Therefore U = | By is the required open covering.
b1
Sufficiency. We let

Fr={p | supfovder,Ws| i==1,2,..} < kY, k=1,2,.

Then I, i cleary a cloged set. Since 0, restricted to Fy, is of order <%,
o
it follows from [6], [7] that dimk, <k In consequence R:kLnjl F i3

a strong countable-dimensional space,

ToroREM B4 In order that a space B with o o-star-finite basis
be a strong coundable-dimensional space it is necessary and sufficient that K

2]
be homeomorphic with a subset of N (Q) X K, for suitable Q, where K, =kyl Ky,

K= {(gy @y o) | |ag| <5100 for d==1,..,% a;=0 for i>k}
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Proof. Since the sufficiency is obvious, we prove only the necessity.
Let R= GF’k for closed sets Fy with dim¥Fy=n;, k=1,2,... For
k=1

convenience we rewrite Ky, for my = 2(n+..4m-+k)—1 with Ky;
then dim K = my. If K has a o-star-finite basis, then we obtain the open
sets Uy and closed sets Fy; in the proof of Theorem 4.3. Since Fy C Uy,
{F, Uy} is an open covering of R. We denote by {U, | n=1, 2, ..}
the totality of such coverings. Furthermore, we define the following
notation:

C(B) = {f | fis a continuous mapping of B into I, and maps I into I,
for k==1,2,..},

Cu(R) = {f | f € C(R), for every point x of I, there exists an nbd Ul(w)
of » such that /(U () e Wa},

where we denote by f7 (U (2)} ¢ W, the fact that (U (@) CU for some
Uel,.

Now let us show that (| Oa(R) % @. To see this we prove first that
=1

On(R) is open in the functional space O(R), which is a complete space
with strong topology. The methoed of proof is analogous to that of the
finite-dimensional case [2]. Assume that f e On(R). This means thatb oevery
point » of I, has an nbd U(z) with /(U (2)) e U,. Since I, is compact,
there exists a finite sub-collection of these nbds which covers I,

Le I,= Lj) U(zy). We take a positive number 8 such that for every
j=1

z eI, and for some @;, Sy(«) C U(z;) holds. Now let g be any mapping
satistying o'(f, g) < /6, where we denote by ¢ the metric of C(R).
Let @ eI, g~Y{Sus(x)) = N. Then it is easy to see that f(N) C S (1)) C U (a5)
for some x;. Hence N C f“(U(w,-)) € Uy, proving g e O, (R).

Next we shall show that C,,(R) is dense in C(R). Let f be an arbitrary
element of ¢(R) and ¢ a positive number. We ghall consgtruct ¢ such that
dfrg)<e ge Un(R). Let

1, =L=J Susen), B = {Suen) | =1, ...,8) .

Then we define a finite open covering N of R guch that

1) N <BAN, ().

) = (S(p, N)| p<R}.

icm
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By the proof of Theorem 5.3 we can select an open covering I so that
r
(2) M> W= Wy,
B=1

(8) order, Wy, <mp+1 for p e Fy, i > k,

(4) order, W, =0 for peFy, i <k.
We notice that we can assume without loss of generality, that n, < 5, < ...
and hence we can assume that » is a finite number not greater than the
number of elements of 9. To see this, let N = {N;]j=1,..,1} and

-1
assume that | ) W, does not yet cover R. Then, since !< n; + 1, putting
k=1

Wy = {[QF{]"/\N; | i=1,..,13 we get a covering I =kLlJ1 MW, satisfying
i~ =
(2)-(4) for r =1. Now let M= {Wy; | 4 =1, ..., %}. Then we can select
vertices (W) in K,— Kj_, such that
(5) Q(w(Wki)) f(sz)) <l E=1,..,7, i=1,..,1,
(6) any 2m, -2 of the vertices #(Wy) and any 2n,+2 of the vertices
#(Wy) and ... and any 2n,+2 of the vertices (W), are linearly
independent,
because K, can be regarded as the 2(y 4 ... + 15+ k) —1 = my-cube
containing K.
Then we define a Kuratowski mapping g by

k); o(p, Wis)2(Wi)
o) = Selp, Wi

2

in this formula we regard (W) as a point-vector. Let p be an arbitrary
point of B and assume pe Wp. Then from (1), (2), (B) we get
olf(p), #(Wis)) < 3e/4 for every Wy with p e Wy;. Hence the centre of
gravity g(p) of the x(Wy,) satisfies

e(f(p),g(p)) <34, e of,g) <e.

TFinally we shall prove ¢ e 0,(R). Suppose that Wiy s ooy Wy, are all the
members of 2 containing a given point p of E. Then we denote by L(p)
the linear (s—1)-gpace spauned by &(Wys), ..., (W), Sinee there is
only a {inite number of linear subspaces L(p), there exists a number

0> 0 such that any two of those linear subspaces, L(p) and L(p’), either

meot of olse ave at a distance > 6 from each other. If p, p’e g-l(S.,/g(y))
for some y e I, then ¢(g(p), g(p’)) < &. Since g(p) e L(p) and ¢g(p’) e L(p’)
are clearly verified, we have L(p)~L(p') = @. Let L(p) be spanned
and  L(p’) by @(Way,), .., #(Wng). Then
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(W, )y s %(Wrg), 2(Wag,}y ey o(Way,) are linearly dependent. On ?he
other hand, by (3), (4) at most ngx--1 of the (W), e m(W,%) spanning
L(p) are vertices corresponding to members of L7 '1‘1113' combined with (6)
implies that at least one of the O (Wyya,)s '"?“(Wksfs) is also one of the
(W) s ey @ Wiy, Hence p and p’ are contained in a common member

of M. It follows from (1), (2) that g—'l(Sa[g(fl/)) e W, meaning g e.Cn(R).
Thus we have concluded that Cy(R) is open and dense in C(R). In

o0 .
congsequence, by Baire’s theorem, mlon(ze) is dense in C(R), and especially
=

F\O,,(R)# @. Since, for any element f of pl(}’n(E) and for the same
=l -
mapping ¢(p) with the one in the proof of theorem 4.3, p(p) == (¢(p), H(p)
is clearly a homeomorphic mapping of R onto a subset of N (&)X K,,
the asgertion is established.

COROLLARY 5.5, Lét R be a separable space. Then R is strongly coun-
table-dimensional if and only if R is homeomorphic to o subset of IC,.
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Concerning dense metric subspaces of certain
non-metric spaces

by
J. N. Younglove (Austin, Tex.)

In this paper it is shown that if X ig a space satisfying R. L. Moore’s
Axioms 0 and 1, [1], then X contains a complete metric subspace X’ such
that the set of all points of X’ forms a dense subset of the set of all points
of Z. A sufficient condition is given for a point set M in order that it
be the set of all points of some such X’. The terminology used in the
paper is largely that of R. L. Moore.

Axtom 0. Every region is a point set.

Axrom 1. There exists a sequence @y, G, @, ... such that

(1) for each positive integer m, G, is a collection of regions covering
the set of all points, .

(2) for each positive integer #, Gy, is a subecollection of G,,

(3) if R is a region and 4 is a point of R and B is a point of R, there
is a positive integer n such that if g is a region of G, containing 4, then
g is a subset of B and, unless B is 4, § does not contain B,

(4) if My, M,, M, ... is a sequence of closed point sets and for each
positive integer n there is a region ¢, of G, such that M, is a subset of §
and for each positive integer n, Mp4, is & subset of M, then there is
a point common to all the sets of this sequence.

It has been shown that every space satisfying Axiom 0 and the
following Axjom C is metric [2]:

Axiom C. There exists o sequence G4, Gy, Gy, ... satisfying con-
ditions (1), (2) and (4) of Axiom 1 together with the following condition

(3) it 4 is @ point of a region R and B is a point of R, there is
a posibive integer o such that if « is a region of @, containing 4, and y
ig a region of @, intersecting @, then z-+y is a subset of B and, unless B
iy 4, x-]-y does not contain B.

PropERIY Q. A point set M is said to have Property Q provided
it is true that it @ is a collection of domains covering 8, the set of all
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