A problem on Baire classes

bv

G. Lederer (Reading)

Introduction. In what follows all sets are subsets of [0, 1], all functions are defined thereover and have real values.

E. Marczewski introduced the following definition:

A function f(x) is almost continuous with respect to a closed set F at a point x_0 in F, if a function g(x) exists, such that g(x) = f(x) a. e. and if $\lim g(x) = f(x_0)$.

 $x \rightarrow x_0$ $x \in F$

He raised the following problem:

P. Let f(x) be such that for every non-empty closed set F there is x_0 in F such that f(x) is almost continuous w.r.t. F at x_0 . Is then f(x) a.e. equal to a function of Baire class ≤ 1 ?

A modified form of the problem has been generalized by T. Traczyk to one concerning a Boolean algebra on which a certain topology is defined. He proved that under conditions of P a set X of zero measure exists, such that f(x) is of Baire class ≤ 1 w.r.t. [0,1]-X.

Independently the present author has generalized in a different direction and has concluded that — under conditions of P — a function g(x) of Baire class ≤ 1 w.r.t. [0,1] exists, such that f(x) = g(x) a.e. This conclusion is a special case of theorem II of this paper — which does not seem to be covered by Traczyk's work.

Though theorem II provides a more general result than is asked for in Professor Marczewski's question, I wish to emphasize that it was his problem that gave me the original incentive.

I must express my gratitude to Mr. H. Kestelman for a very valuable suggestion which shortened the argument leading to theorem I considerably.

Lastly I wish to thank the referee of Fundamenta Mathematicae for useful suggestions shortening the text.

Statement of the theorems. Before stating theorems I and II let us introduce the following definition:

Given a closed set F, and a point x_0 in F, a function f(x) has property $D(\alpha)$ with respect to F at x_0 , if for any $\varepsilon > 0$ there is an open neighbourhood

I of x_0 and a function g(x) of Baire class $\leq \alpha$, such that $|f(x)-g(x)|<\varepsilon$ a. e. over $F\cap I$.

THEOREM I. If a > 0, and if a function f(x) is such that for each non-empty closed set F, f(x) has property D(a) w.r.t. F at least at one point x_0 in F, then for any $\varepsilon > 0$ there exists a function $\varphi(x)$ of Baire class $\leqslant a$, such that $|f(x) - \varphi(x)| < \varepsilon$ a. ϵ .

Theorem II. Under conditions of theorem I there exists a function g(x) of Baire class $\leq a$, such that f(x) = g(x) a.e.

Proof of the theorems. Notation. Denote by \mathcal{B} ($\leq \alpha$) the aggregate of functions of Baire class $\leq \alpha$, by $\mathcal{G}(\alpha)$ the α -additive class of Borel sets.

Proof of theorem I. Let us recall first the following known facts:

- (1) A theorem due to Lebesgue [1]: If [0,1] is an enumberable union $\bigcup_{n} S_n$ of disjoint sets S_n such that, for each n, $S_n \in \mathcal{G}(a)$, and there is a function $g_n(x)$ in $\mathfrak{B}(\leqslant a)$, such that $g_n(x) = g(x)$ over S_n , then $g(x) \in \mathfrak{B}(\leqslant a)$.
 - (2) Romanowski's theorem [2]:

Suppose that \mathcal{E} is a non-empty aggregate of open subintervals of [0,1] with the following properties:

- (i) If $(a, b) \in \mathcal{E}$ and $(b, c) \in \mathcal{E}$, then $(a, c) \in \mathcal{E}$.
- (ii) If $(a, b) \in \mathcal{E}$ and $a \leq a < \beta \leq b$, then $(a, \beta) \in \mathcal{E}$.
- (iii) If $(a+1/n, b-1/n) \in \mathcal{E}$ for all sufficiently large n, then $(a, b) \in \mathcal{E}$.
- (iv) If P is a non-empty perfect set in [0,1] and every open interval of [0,1] contiguous to P belongs to \mathcal{E} , then there is an open interval which belongs to \mathcal{E} and includes a point of P.

Then $(0,1) \in \mathcal{E}$.

Having fixed a > 0 and $\varepsilon > 0$, denote by \mathcal{C} the aggregate of open intervals (a, b) for which there exists a function $\varphi(x)$ in \Re $(\leq a)$ such that $|f(x)-\varphi(x)| < \varepsilon$ a. e. over (a, b). To prove theorem I we shall show that \mathcal{E} satisfies conditions of (2).

Since [0,1] is closed, by conditions of theorem $I, \mathcal{U}x_0$ in [0,1] such that f(x) has property $D(\alpha)$ w.r.t. [0,1] at x_0 , i.e. an interval I open w.r.t. [0,1] and a function g(x) in \mathfrak{B} $(\leqslant \alpha)$ exist, such that $|f(x)-g(x)| < \varepsilon$ a.e. over I. Thus $I \in \mathcal{E}$, i.e. \mathcal{E} is not empty.

Now let $(a, b) \in \mathcal{E}$ and $(b, c) \in \mathcal{E}$. Then there are functions $g_1(x)$ and $g_2(x)$ in \mathfrak{B} $(\leq a)$ such that $|g_1(x) - f(x)| < \varepsilon$ a. e. over (a, b) and $|g_2(x) - f(x)| < \varepsilon$ a. e. over (b, c). Then put:

$$g(x) = \begin{cases} g_1(x) & \text{over} & (b, c), \\ g_2(x) & \text{over} & (a, b], \\ 0 & \text{over} & [0, 1] - (a, c). \end{cases}$$

The sets (a, b], (b, c) and [0, 1]-(a, c) are disjoint. Their union is [0, 1]. They are all in $\mathcal{G}(a)$. Also over each of these sets g(x) equals some function in $\mathcal{B}(\leqslant a)$. Thus by (1), $g(x) \in \mathcal{B}(\leqslant a)$.

Also by the above: $|f(x)-g(x)|<\varepsilon$ a. e. over (a,b) and a. e. over (b,c). Hence: $|f(x)-g(x)|<\varepsilon$ a. e. over (a,c). Condition (i) is thus satisfied.

Satisfaction of condition (ii) is obvious.

Next assume that $0 \le a < b \le 1$ and that for all sufficiently large n: $(a+1/n,b-1/n) \in \mathcal{E}$. Let k be the smallest value of n for which a+1/n < b-1/n. Then, by definition of \mathcal{E} , there is a sequence of functions $\{g_n(x)\}$, such that, for each $n \ge k$, $g_n(x) \in \mathcal{B}$ $(\le a)$ and $|g_n(x)-f(x)| < \varepsilon$ a. e. over (a+1/n,b-1/n). Put: $(a+1/k,b-1/k) = J_k$ and for n > k:

$$(a+1/(n+1), b-1/(n+1)) - (a+1/n, b-1/n) = J_n$$

Let: [0, 1] - (a, b) = K. Put further:

$$g(x) = \left\{ egin{array}{ll} g_n(x) & ext{over} & J_n & ext{for each} & n \geqslant k, \\ 0 & ext{over} & K. \end{array}
ight.$$

Now each J_n belongs to $\mathcal{G}(a)$ and so does K. Over each of these sets g(x) equals some function in \mathfrak{B} ($\leqslant a$). Also $[0,1]=K\cup \{\bigcup_{k}^{\infty}J_n\}$ and the members of the union are disjoint. Hence by (1): $g(x)\in \mathfrak{B}$ ($\leqslant a$). Further, by the above, $|g(x)-f(x)|<\varepsilon$ a. e. over each J_n . Thus $|g(x)-f(x)|<\varepsilon$ a. e. over $\bigcup_{k}^{\infty}J_n$ and $\bigcup_{k}^{\infty}J_n=(a,b)$. Condition (iii) is thus satisfied.

Now let P be a non-empty perfect set such that all intervals contiguous to P belong to \mathcal{E} . Since P is closed, by condition of theorem I, there are x_0 in P, an interval I, open w.r.t. [0,1] including x_0 , and a function $g_0(x)$ in $\Im(x_0)$ such that $|f(x)-g(x)| < \varepsilon$ a.e. over $I \cap P$. The intervals contiguous to P form an enumerable aggregate $\{I_n\}$. Since each $I_n \in \mathcal{E}$, a sequence of functions $\{g_n(x)\}$ exists such that for each n: $g_n(x) \in \Im(x_0)$ and $|g_n(x)-f(x)| < \varepsilon$ a.e. over I_n .

Next put:

$$g(x) = \begin{cases} g_0(x) & \text{over} \quad I \cap P, \\ g_n(x) & \text{over} \quad I_n \quad \text{for each} \quad n, \\ 0 & \text{over} \quad [0, 1] - \{(I \cap P) \cup (\bigcup_n I_n)\} \\ & = [0, 1] - \{I \cup (\bigcup_n I_n)\} = K \text{ (say)}. \end{cases}$$

Now I and each I_n are open w.r.t. [0,1]. Hence K is closed. Thus $K, I \cap P$ and each I_n belong to G(a). They form a disjoint enumerable

A problem on Baire classes

89

union which equals [0, 1]. Also, over each of these sets g(x) equals some function in \mathfrak{B} ($\leq \alpha$). Hence, by (1), $g(x) \in \mathfrak{B}$ ($\leq \alpha$).

Next, $I=(I\cap P)\cup\{\bigcup_n (I\cap I_n)\}$. This union is enumerable and $|f(x)-g(x)|<\varepsilon$ a. e. over each member. Thus $|f(x)-g(x)|<\varepsilon$ a. e. over I. Hence, and from the above: $I\in\mathcal{E}$.

We see therefore that $\mathcal{I}(x_0)$ in P and I in \mathcal{E} such that $x_0 \in I$. Hence, condition (iv) is satisfied.

We conclude: $(0,1) \in \mathcal{E}$, i. e. there exists a function $\varphi(x)$ in \mathfrak{B} ($\leqslant a$) and such that $|f(x)-\varphi(x)| < \varepsilon$ a. e. over (0,1), and hence a. e. over [0,1]. Theorem I is thus proved.

Theorem I leads to the obvious but important

Corollary I. Under conditions of theorem I a sequence of functions $\{f_n(x)\}$ exists, such that for each n:

(i)
$$f_n(x) \in \mathfrak{P}(\leqslant \alpha)$$
, (ii) $|f_n(x) - f(x)| < 2^{-n}$ a. e.

Proof of theorem II. We recall the following known facts:

(a) If
$$g(x) \in \mathcal{P}(x)$$
 ($\leq \alpha$) and $f(x) \in \mathcal{P}(x)$ ($\leq \alpha$) then: $[g(x) - f(x)] \in \mathcal{P}(x)$.

(b) If
$$g_r(x) \in \mathcal{P}(x)$$
 ($\leq \alpha$) for each $r \leq n$, then: $(\sum_{r=1}^n g_r(x)) \in \mathcal{P}(x)$.

(c) If $g_n(x) \to g(x)$ uniformly over [0,1] as $n \to \infty$ and if $g_n(x) \in \mathcal{G}$ $(\leqslant a)$ for each n, then: $g(x) \in \mathcal{G}$ $(\leqslant a)$.

(d) Let $[g(x)]_a^b$ denote g(x) truncated by bounds a and b. Then if g(x) belongs to \Re ($\leqslant a$) so does $[g(x)]_a^b$.

Under conditions of theorem I corollary I holds. By that corollary a sequence $\{f_n(x)\}$ exists such that for each n: $f_n(x) \in \mathcal{B}$ $(\leq \alpha)$ and $|f_n(x)-f(x)| < 2^{-n}$ a. e., i. e.: $\mu\{E(|f_n(x)-f(x)| \geq 2^{-n})\} = 0$. Then putting $X = \bigcup_{n=1}^{\infty} E(|f_n(x)-f(x)| \geq 2^{-n})$ and T = [0,1]-X we have: $\mu(X) = 0$, $\mu(T) = 1$ and for each x in T and each n: $|f_n(x)-f(x)| < 2^{-n}$.

Next for all x put $g_1(x) = f_1(x)$ and for n > 1

$$g_n(x) = \sum_{k=2}^n [f_k(x)] - f_{k-1}(x)]_{-8\cdot 2^{-n}}^{3\cdot 2^{-n}} + f_1(x).$$

Now, since $f_k(x)$ (k=1,2,...) belongs to \mathfrak{B} $(\leqslant a)$ by (a), (b) and (d) $g_n(x)$ does for each n.

We observe next that by Weierstrass' M-test $g_n(x)$ converges uniformly over [0,1] to some limit g(x), which by (c) belongs to $\Re (\leq \alpha)$.

Now — as stated above — over T:

$$|f_n(x) - f(x)| < 2^{-n}$$
 for any n .

Thus for all x in T

$$|f_n(x) - f_{n-1}(x)| < 3 \cdot 2^{-n}$$

and hence $f_n(x) = g_n(x)$.

Hence over T: $f(x) = \lim_{n \to \infty} f_n(x) = g(x)$. This completes the proof of theorem Π .

Notes to theorems I and II. Note I. In problem P each non-empty closed set F includes a point x_0 such that a function g(x) exists which is a. e. equal to f(x) and for which: $\lim_{x\to x_0} g(x) = f(x_0)$. This

means that for any $\varepsilon > 0$ there is an interval I open w. r. t. [0, 1] including x_0 and such that $|g(x)-f(x_0)| < \varepsilon$ for all x in $I \cap F$. In this case, since f(x) = g(x) a. e., $|f(x)-f(x_0)| < \varepsilon$ a. e. over $I \cap F$. Now $f(x_0)$ is a constant and belongs therefore to \mathfrak{B} (≤ 1). Thus f(x) has property D(1) over F at x_0 . The affirmative answer to the question is therefore a special case of theorem II.

Note II. By considering the characteristic function of a nowhere dense, closed set of positive measure, the reader can easily verify that neither theorem is true for $\alpha=0$.

Note III. Let us introduce one more difinition: A function f(x) has property M if for any $\varepsilon > 0$ and any closed set F there is x_0 in F, an open neighbourhood I of x_0 and a measurable function g(x) such that f(x) = g(x) over $I \cap F$.

Since any measurable function g(x) is a. e. equal to a member of \mathfrak{B} (≤ 2), if f(x) has property M it satisfies conditions of theorem I for $\alpha=2$, and is then — by theorem II — a. e. equal to a member of \mathfrak{B} (≤ 2). The same conclusion is obviously reached for f(x) if it satisfies conditions of theorem I for any α .

Note IV. All results of this paper, except those of note III, remain valid if the class of sets of measure zero is replaced by any σ -ideal of subsets of [0, 1], i.e. a class of such subsets closed under enumerable union and the passage from a set to any of its subsets.

References

[1] Ch. J. de la Vallée Poussin, Intégrales de Lebesgue, fonctions d'ensemble, classes de Baire, Paris 1916.

[2] H. Kestelman, The modern theories of integration.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY, READING, ENGLAND

Reçu par la Rédaction le 17. 2. 1959