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A problem on Baire classes
_ by
G. Lederer (Reading)

Introduction. In what follows all sets are subsets of [0, 1], all
functions are defined thereover and have real values.
E. Marczewski introduced the following definition:

A function f(z) is almost continuous with respect to a closed set F at
a point x, in F, if a function g(z) exists, such that g(z) = f(x) a. e. and
if lim g(2) = f(w,)-

P

He raised the following problem:

P. Let f(x) be such that for every non-empty closed set F there is
@y in F such that f(x) is almost continuous w.r. t. F at «,. Is then f(x)
a. e, equal to a function of Baire class <1%

A modified form of the problem has been generalized by T. Traczyk
to one concerning a Boolean algebra on which a certain topology is defined.
He proved that under conditions of P a set X of zero measure exists,
sueh that f(z) is of Baire class <1 w.r.t. [0,1]—-X.

Independently the present author has generalized in a different
direction and has concluded that — under conditions of P — a function
g(») of Baire class <1 w.r.t. [0,1] exists, such that f(x) = g(z) a.e.
This conclusion is a special case of theorem IT of this paper — which
does not seem to be covered by Traczyk’s work. ’

Though theorem II provides a more general result than is asked
for in Professor Marczewski’s question, I wish to emphasize that it was
his problem that gave me the original incentive.

I must express my gratitude to Mr. H. Kestelman for a very valuable
suggestion which shortened the argument leading to theorem I considerably.

Lastly I wish to thank the referee of Fundamenta Mathematicae
for useful suggestions shortening the text.

Statement of the theorems. Before stating theorems I and IT
let us introduce the following definition:

Given a closed set ¥, and a point x, in F, a function f(z) has property
D(a) with respect to F at x,, if for any &>'0 there is an open neighbourhood
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I of z, and a function g(») of Baire class <a, such that [f{z)~g(x)] < e
a. e. over Fnl.

PrropEM L. If a> 0, and if a function f(w) is such that for each
non-empty closed set F,f(x) has property D{a) w. . t. I ai least' at one
point @, in F, then for any ¢ > 0 there exists a function p(x) of Baire class
<a, such that |f(z)—elz)| <& a. e

TaeorEM IL. Under conditions of theorem I there emists a function
g(x) of Baire class <a, such that f(2) = g(@) a.e.

Proot of the theorems. Notation. Denote by B (<a) the
aggregate of functions of Baire class <o, by §(a) the a-additive class
of Borel gets.

Proof of tlieorem I. Let us recall first the following known facts:

(1) A theorem due to Lebesgue [1]: If [0, 1] is an mumbcmble
union \J Sy of disjoint sets Sy such that, for each n, S, G{a), and there is a

n
funciion g(x) in B (< a), such that gu(x)= g(x) over Sy, then y(&) ¢“B(<La).

(2) Romanowski’s theorem [2]:

Suppose that € is a non-empty aggregate of open subintervals of [0, 1]
with the following properties:

i) If (a,0)e& and (b, 0) e, then (a,¢)cl.

(1) If (@, 8)e€ and a < a<f b, then (a,f)el.

(ii}) If (a+1/n, b=1/n) « € for all sufficiently lorge n, then (a, D) e &,

(iv) If P is a non-empty perfect set in [0, 1] and every open interval
of [0, 1] contiguous to P belongs to €, then there is am open interval which
belongs to € and includes a point of P.

Then (0,1) e E.

Having fixed ¢ >0 and > 0, denote by ¢ the aggregate of open
intervals (a,b) for which there exists a function ¢(s) in 9B (<a) such
that |f(#)—@(®)| < & a. e. over (a, b). To prove theorem I we shall show
that ¢ satisfies conditions of (2).

Sinee [0, 1] is closed, by conditions of theorem I, &, in [0, 1] such
that f(z} has property D{a) w.r.t. [0,1] at @, i.e. an interval I
open w.r.%. [0,1] and & function g(z) in B (<o) exist, such that
f@)—g(x)] <e a.e. over I. Thus [ e &, i.e. &€ i not empty.

"~ Now let (a,b)e€ and (b, ¢)e . Then there are functions ()
and gy(e) in B (<) such that |g(w)—f(z)| <e a.e. over (a,d) and
|gx{2) —F(2})| <& a. e. over (b,0). Then put:

f(w) over (b,0),
g(z)=1 g(z) over (a,b],
0 over [0,1]—(a,c).
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The sets (a, 5], (b,¢) and [0, 1]—(a,c) are disjoint. Their union
is [0, 1]. They are all in @(a). Also over each of these sets g(w) equals
some function in 9B (<a). Thus by (1), g(z) e B(<La).

Also by the above: |f(x)—g(z)| < ¢ a.e. over {a, b) and a.e. over
(b,c). Hence: |f(#)—g(2)| <& a.e. over (a,e¢). Condition (i) iz thus
satisfied.

Batisfaction of condition (i) is obvious.

Next assume that 0 <a < b<<1 and that for all sufficiently large
n: (a-+l1/n,b—1/n)e & Let % be the smallest value of # for which
a-+1/n < b—1/n. Then, by definition of €, there is a sequence of functions
{ga()}, such that, for each n>%k, gu(2) ¢V (<o) and |gn(@)—F(2)| < &
a.e. over (a-+1/n,b—1/n). Put: (a-+1/k,b—1/k) =J;, and for » > k:

(@+1/(n-+1), b—1/(n+1))~ (a+1/n, b—1/n) = J,.
Let: [0,1]—(a,bd) = K. Put further:

gu(z) over J, for each w3k,
0 over K.

9(a) ={

Now each J, belongs to @(a) and so does K. Over each of these
sets g(x) equals some function in B (< a). Also [0,1]=K u {G Jn} and
%

the members of the union are disjoint. Hence by (1): g(z) e B (<a).
Further, by the above, [g(z)—f(®)] <& a.e. over each J,. Thus

lg{z)—f(®)] <& a.e. over G J, and (j Jn=(a, b). Condition (iii) is thus
% %

satisfied.

Now let P be a non-empty perfect set such that all ingervals
contiguous to P belong to €. Since P is closed, by condition of theorem I,
there are #, in P, an interval I, open w.r.t. [0, 1] including ,, and
a funetion gy(x) in 9B (<a) such that [f(2)—g(w)] <& a.e. over I A P.
The intervals contignous to P form an enumerable aggregate {I,}. Since
each I, e, a sequence of functions {g,(x)} exists such that for each :
gnlz) € B (<a) and |gu(2)—f ()] < & a. e. over I,.

Next put:

gol®) over IAP,
gn{w) over I, for each n,
g(z) = 0 over [0,1]—{IA~P)o (UL}
n

=[0,1]-{Iv (LﬂJIn)} = K (say).

Now I and each I, are open w.r.t. [0,1]. Hence K is closed. Thus
K,I~P and each I, belong to §(a). They form a disjoint enumerable
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union which equals [0, 1]. Also, over each of these sets g(2) equaly some
funetion in B (£ a). Hence, by (1), ¢(#) ¢ B (<a). )
Next, I=({IAP)u{lJI~L)} This union is enumerable and
n

|f(#)—g(@)| <& a.e. over each member. Thus [Hm)—g(@)| < e a. e. over I,

Hence, and from the above: Iel.

We see therefore that Hu, in P and I in ¢ such that &, e I. Hence,
condition (iv) is satbisfied.

We conclude: (0,1) ¢ &, i. e. there exists a function ¢(2) in VB (<a)
and such that |f(z)—p(z)| < e a. e, over (0, 1}, and hence a. ¢. over [0, 1],
Theorem I is thus proved.

Theorem I leads to the obvious but important

CoroLrARY I. Under conditions of theorem I a sequence of funclions
{fu(®)} emists, such that for each :

(1) fal®) eB(<La), (i)  [fale)—~F@)] <27" . e

Proof of theorem II. We recall the following known facts:
(a) I g(2) €B (<o) and f(2) e B (<a) then: [g(z)—f(@)]eDB (<a).
(b) It gi@) ¢ B (<a) for each r < n, then: (3 g(a)) B (<a).
]l
(e) If gn(w)—>g(z) uniformly over [0, 1] a8 n-+co and if g,(x) € 03 (€a)
for each =, then: g(z) e (<La).

(d) Let [g(x)) denote g(z) truncated by bounds ¢ and 5. Then if
g(=) belongs to B (<a) s0 does [g(@)]5.

Under conditions of theorem I corollary I holds. By that corollary
a sequence {f,(#)} exists such that for each m: f, (1) e B (<a) and
|fal@)—fl@)] <27" & e, L e w{F(|fa(z)~F(2)| > 27"} = 0. Then putting

X =HQIE(|fn(w)—f(m)l>2“) and T'=[0,1]-X we have: u(X)= 0,

#(T)=1 and for each x in T and each n: |fal@) — ()] < 27
Next for all & put g,(x) = fy() and for n>1

0@ = D TH)] = Fumal@) 200+ o).

k=2
Now, since fy(@) (k=1, 2, ...) belongs to % (<a) by (a), (M) and (d)
gn(z) does for each «. :

We observe next that by Weierstrass’ M - test gnl®) converges uniformly
over [0,1] to some limit g(x), which by (¢) belongs o O3 (<a).
Now — as stated above — over 7

fal@)—f(2)] <27  for any 7.
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‘Thus for all ¢ in T

Ifn(w) “fn—l(m)‘ <3.27%
and hence f,(2) = g,(x).
Hence over T: f(x) = lim fu(z) = g(x). This completes the proof
of theorem IT. i

Notes to theorems I and II. Note I. In problem P each
non-empty closed set F includes a point x, such that a function g(z)
exists which is a. e. equal to f(») and for which: Lim g(z) = f(x,). This

-+2g

means that for any s> 0 there is an interval I open x:TEFr . [0, 1T including
@ and such that |g(w)—f(x,)]<e for all & in I~F. In this case, since
@)= g(®) a. e., [f(z)—f(@)|<e a. e. over T ~F. Now F(w,) is a constant
and belongs therefore to 93 (<1). Thus f(z) has property D(1) over ¥
at @,. The affirmative answer to the guestion is therefore a special case
of theorem II.

Note IL. By considering the characteristic function of a nowhere
dense, closed set of positive measure, the reader can easily verify that
neither theorem is true for « = 0.

Note IIL. Let us introduce ome more difinition: A funection f(z)
has property M if for any £ > 0 and any closed set F there is Zy in F, an
open neighbourhood I of », and a measurable function g(x) such that
f(x) =g(x) over I~ F.

Sinee any meagurable funetion g(z) is a. e. equal to a member of
B (<£2), if f(x) has property M it satisfies conditions of theorem I for
a = 2, and is then — by theorem IT — a. e. equal to a member of 93 (<£2).
The same conclusion is obviously reached for f(x) if it satisfies conditions
of theorem I for any a.

Note IV. All results of this paper, except those of note III, remain
valid if the class of sets of measure zero is replaced by any o-ideal of
subsets of [0,1], i.e. a class of such subsets closed under enumerable
union and the passage from a set to any of its subsets.
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