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Putting
fue"“dcp =I+J
0
we have
%o
I= f ue “dp

We are going to prove that

(19) lim#*I = 0.
ts0
Since the function w(p) is continuous in (0, =) and bounded at ¢ = 0,
there is a number N >0 such that w(p) <N for 0 < ¢ < ¢,. Thus
I < Nt—40~9g, and this implies (21).
Since @ and b can be chosen arbitrarily close to (simam)C—9, it
follows from (17), (18), (19) that

lim® f ue " dp = (1— a)sinral'(a).
tao
This is equivalerit to (5).

References

[11 G. Doetsch, Handbuch der Laplace-Transformation I, p. 163.

[2] J. Mikusifski, Sur les fonctions emponentielles du calcul opératoire, Studia
Math. 12 (1951), p. 208. .

[3] — Sur la croissance de la fonction opérationnelle exp(—s®A), Bull. Ac. Pol.
Sei., CL III, 4.7 (1956), p. 423-425.

[4] — Sur la fonction dont la transformée de Laplace est e—%°, ibidem, & paraitre.

[5] H. Pollard, The representation of e as a Laplace integral, Bull. Amer,
Math. Soc. 52 (1946), p. 908-910.

[6] A. Wintner, Cauchy’s stable distributions and an ewplicit formula of Mellin,
Amer. J. Math. 78 (1956), p. 819-861.

[7] L. Wiodarski, Une remarque sur une classe de fonctions ewpomentielles du
caleul opérationnel, Studia Math. 13 (1953), p. 188-189.

Regu par la Rédaction le 12. 9. 58

- .
lm© STUDIA MATHEMATICA, T.XVIIL (1959)

Consistency theorems for Banach space analogues of Toeplitzian
methods of summability

by
A. ALEXIEWICZ and W. ORLICZ (Poznaf)

We deal in this paper with the generalized Toeplitz sequence-to-
-sequence transformations from one Banach space X into another Y;
these transformations will be called in conformity with the case of numer-
ical sequences methods of summability. One instance of such methods,
namely those involving the strong limifs, has recently been introduced
by Robinson [6] and Melvin-Melvin [4], who derived the Toeplitzian
conditions for permanency.

One of the non-trivial results in the theory of summability of numer-
ical sequences is the bounded consistency theorem, stating, roughly
speaking, that if two Toeplitzian methods are consistent for convergent
sequences and if every bounded sequence summable by the first method
is summable by the second, both methods are consistent for bounded
sequences [3].

It is the purpose of this paper to prove the bounded consistency
theorem in the case of sequence-to-sequence transformations in Banach
spaces. Our method consists in considering the spaces of bounded summable
sequences as two-norm spaces; in these spaces a notion y of limit arises
in a natural way, leading to the class of continuous distributive functionals
called the y-linear functionals. Essential for the success of our method
is the fact that the spaces we are dealing with are such that the limit
of any pointwise convergent sequence of y-linear functionals is y-linear,
which is not the case in all the two-norm spaces.

The authors are indebted to Mr. Bogdanowicz for valuable simpli-
fications and corrections.

1. Preliminaries. We shall deal in this paper with the following
methods of summability of sequences of Banach spaces. We are given
two Banach spaces X and ¥ and a system A = {4,} of linear operators
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from X to Y. For a sequence x = {x,} of elements of X let us consider
the transforms

3]

Ay(m) = D Ay (@)

v=0
If all the series defining 4;(x) are convergent and if lim4;(x) = 4 (x)
1—00

exists, the sequence & is said to be strongly A-summabdle to A (2) or shortly
s-A-summable 1o A (x). Such methods of summability were introduced
by Robinson [6] and Melvin-Melvin [4]. We shall also deal with other
cases.

The weak case: the series representing A;(x) are weakly convergent
and A (x) = w-lim4,(x) (); then the sequence will be termed w-A-

-summable to A ().

The mixed case: the series representing 4;(x) are weakly conver-
gent and A;(x) tend strongly to 4 (a); then the sequence will be called
m-A-summable to A (x).

‘We shall denote by I, €, €, the classes of sequences of elements
of X which are bounded, convergent and convergent to zero, respectively.
Let us denote by S, 207, A, A, A™, A the sets of sequences x which
are respectively s-4-, m-4-, w-A-summable to zero, s-A-, m-4-, w-A-
-summable.

Let % be equal to s, m, or w. The method 4 will be called k-null-
-conservative if €, C U, Similarly, the method will be called k-conser-
vative if € C A*; the method will be termed k-null-permanent if €,C 2%,

1.1, ProprositioN. The method A is s-null-conservative if and only
if the following conditions are satisfied:

(@ sp s sup || 3 dula)

n=0,1,... m=01,... o<1

< oo,

v=0

(as) for any xeX there exists

limd,,(2) = 4,(z).

If these conditions are satisfied, then

) ® w~1§m denotes the weak limit; a sequence w, is called weally convergent
if there exists an element z such that &(zy)— &) for any linear funetional &;

a series is weally convergent if the sequence of its partial sums is weakly com-
vergent.

icm
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for &= {n,}eC,, the series involved being sirongly convergent. Hence the
method A is s-null-permanent if and only if it is s-null-conservative and
A m) =0 for v="0,1,...

The quantity defined by the left-hand side of (a;) will be denoted
by M or ||4] without further reference.

This proposition and the proposition 1.2 to follow are due to
Robinson [6] and Melvin-Melvin [4] (for a simple proof see Zeller [7]).

1.2. PROPOSITION. The method A is s-conservative if and only if it is
s-null-conservative and

o0
N sl
(2s) lim }'4,,(2) = 8(z)
T—>00 y—
exists for each xeX, the series involved being strongly convergent.
If these conditions are satisfied, then

Afw) = 8(z)+ D A, (@,~x)

for any x = {x,} ¢ C with limit z.

Propositions 1.1 and 1.2 are easily deduced by standard methods
of Functional Analysis, €, and € being regarded as Banach spaces with
the norm (x| = sup |=,].

p=0,1,...

It is easily seen that the general form of linear functionals in €, is

0

§@) = D' &(®)

»=0

where &, are linear functionals on X, and

lghh = DN

»=0

This result directly implies

1.3. PROpOSITION. Let ®, = {@,,} ¢ Cq, @& = {1,}<Cy. Then &, converge
weakly to = in Gy if and only if sup |, < oo end w-limaz, =, for

n=01,... N—>00
vy=0,1,...

The Toeplitzian conditions for m-summability are deduced simi-
larly. We need the following propositions, whose proof may be obtained
by a repeated use of the Banach-Steinhaus theorem:

1.4. PROPOSITION. Let U, be linear operations from X to Y and let
w-lim U, (z) = U(a) for every weX. Then sup | U, < oo and U is a linear

M=t

©0 n=0,1,...
operation from X to X.
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1.5. PrOPOSITION. The sequence {U,} of linear operations from X
to Y converges weakly for every weX if and only if sup |U,|| < co and

n=0,1,..,

{Un(m)} converges weakly in a set dense in X.

From these propositions we easily deduce

1.6. PROPOSITION. The method A is m-null-conservative if and only
if it is s-null-conservative. The method A is m-null-permanent if and only
if it is s-null-permanent. The method A is m-conservative if and only if it
is s-null-conservative and

oo

(b) lim ) 4,,(2) = 8(z
71—)00‘; " ( )
exists, the series being weakly convergent.

1.2. PROPOSITION. The method A is w-null-conservative if and only
if the condition (a,) and the following conditions are satisfied :

(¢;) w-lmdAd, (z) = A4,(2) exists for any zeX.
N300

The method A is w-null-permanent if and only if 4t s w-null-
-conservative and A ,(z) =0 for each <X and vy = 0,1, ...

1.8. PROPOSITION. The method A is w-conservative if and only if it 4s
w-null-conservative and

(c,) w-]imZAm(m) = S.(x) ewists for any weX.

N300 ;50

If these conditions are satisfied, then

for'any ® = {a,} e € with limit @_(all the above series are weakly convergent).
For any s-, w-, or m-conservative and null-permanent method A
the operation 8. (z) will be called the characteristic of A and written y ,(x)

'2. Auxiliary notions. Let Z be a linear space in which there are
defined two mnorms [/ || and || |*; the triplet <Z, |||, |l I*>, called the
two-norm space, leads to the following notion of convergence: the

sequence {z,} is called y-convergent to 2, (written tB2) it sup g, < co
. n=01,..,
and lim [z, —2|* = 0. We suppose the following postulate to be satisfied:

the functional || || is lower semicontinuous with respect to the conver-
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gence y. The space (Z, | ||, | I*> is called y-complete if each sequence {z,}
satisfying sup [z,]| << co and lim [z, —2,|* = 0 is p-convergent to an
m,n—»00

n=0,1,... x

element of Z. The set D is called y-dense (in Z) if each element of Z is
equal to the limif of a y-convergent sequence of elements of D. A functional
¢ defined on Z is called y-linear if it is distributive and if 2, % 2 implies
E(2a) — £(2).

In a general two-norm-space case, in contrast to the Banach space
case, the limit of a convergent sequence of y-linear functionals need not
be p-linear. However, there are known some sufficient conditions to be
satisfied by the two-norm space, ensuring the y-linearity of the limit
functional. The condition we shall use is the following:

(Z;) Given any z,e8 = {z: [l <1} and & > 0 there is a 6 >0 such
that any 2z¢S satistying [j¢]* < & is of form 2z = 2,—=2, where 2, 2,¢8
and |l —2[" < g, Jea—2l" < e

The following proposition, whose proof may be found in 1], p. 55,
or [5], p. 10, is basic for the sequel:

2.1. PropOSITION. Let the space <{Z,| ||, |l |"> be y-complete and let
it satisfy the condition (Z,). Then the limit of any pointwise convergent
sequence of y-linear functionals is y-linear.

We shall deal in the sequel with two two-norm spaces. Let the
method 4 be s-null-permanent. The first space, M ~ A, consists of
bounded sequences & = {,} s-A-summable to zero, the norms being
defined as

lell = sup |,

r=0,1,...

Jel* =§‘§(Hm,n+ sup ]}j’Aw(wq)
p—y u=0,1,... pry

The second space,- M ~ A, consists of bounded sequences m-A-
-summable to zero; in this case

) + sup 4, @)

y=0,1,...

=)

el = 5l + sup (@)l

v=0

el = sup [z,
y=0,1,...

Obviously M ~ 25 C M ~ APF. We shall show that these spaces are
y-complete and satisfy the condition (X,), and that the set €; composed
of sequences with only a finite number of terms different from zero is y-
-dense in both spaces.
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22. Lemya. Let A, be linear operations from X to Y such that the
series > A,(x,)
r=0

for every fumctional n-linear on ¥ and o fized k

converges weakly for every sequence x = {m,}eC,. Then

Z sup [5(4,(=,))] < oo,
& i<k
whence

lim sup y|17 (m,))| = 0.

n—co |2l y5g

Proof. Let us consider the functionals f,(x

) = W(ZOA,(%))
bilinear on the product €,x ¥* of €, and the space ¥*, conjugate to Y.

By hypothesis the sequence f,, converges on €,x Y*, whence the sequence
of norms

Ifull = sup sup ]17 ZA

llz, <1 inil<<1

" is bounded: Ifal < M. Since &= {z,} «€, implies {¢,3,}eC, for arbitrary
&, = +1, we infer that

n

ifull = sup > "sup |n(4,(z,))| < M
" umxsng “,,ufl‘"( (@)
and, finally,
D) sup |n(4,(@,))| < M.
IS i<k
2.3. PROPOSITION. The spaces <M ~US, | 1], [[1*> and (M ~ A",

L T are y-complete.

})ro of. We omit the easy proof for the space <O ~ 2, || I, | |*> and
consider only the second case. Let @, = {5}, sup [, < oo and let

n=0,1,...

mllm [, —a,]|* = 0. Hence for a fixed v, &y, 18 a Oauchy sequence in X,

whence it converges to an element x,. We shall prove that the series

%Ai,(w,,) converges weakly for i =0, 1,... Let ¢ be fixed and let us set

= D4, (@y,);
p=0

this sequence converges strongly to an element y_, for
sup HA Ay(@)] >0

as m, n — oo,
i=0,1

icm
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Let us write

s

Agy(®,)—Y;

By =

I
o

»:

it is sufficient to prove that z, converges weakly to zero. For any

functional # linear over Y

n(em) = (D) Au(@,)— ZAW ,)—ZAW Bpr) ) + 1 (¥

»=0 v=0

= (Y Aulw, =) —n( D) Aul@)) +n—1),

y=m-+1

(et < T [ ( ) Ay, — )] +1m | 2 4y (@,)| +
P+ p=1 y=m+1
1l iy (1~ )| < sup o 3 4,00,)
P—ro0 oae y=m-+1
< A (L0, su A,
sup v_%;In (@) < ngkvﬁ%lln( @),
where k& = sup |lzpll, Whence, by Lemma 2.2, (2, )—>0 Thus we have

p=0,
proved the ex1stence of the transforms 4;(x) = Z’Aw z,).

»=0
argument shows also that the sums ZA” z,,) converge strongly to 4,(x),
whence

The above

14 (3,) — Ay ()| < Hm |4, () — 4 (%))

lim sup [|4;(%,)—4;(e)] <lm sup lim [[4;(a,) — A ()| = 0.
p—roo 1=0,1,.,, p—soo 1=0,1,.., g—00
This implies strong convergence of A4;(x) to zero as ¢-— oo, whence
xeM ~ AT and (e, —2[* — 0.
2.4, ProPOSITION. Let & = {3} eM ~ AT; then for each ¢ >0 and n
there exists a p and an element z = {2,} €, such that

x, for v < m,
dw,, for w<wv< n—l—p,
0 elsewhere ,

13 0y 2 Oy > oo = Payp 20,

sup HA () —A,(2)] < &

i=0,1,.
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Proof. Let us write
4
Yni —Eﬂ wl@), = 4i(@),

= {Um}r ¥ = {8}

From Proposition 1.3 we eagily infer that the sequence {y,} converges
weakly to y in the space €,, whence by the theorem of Mazur ([3], p. 81)
there exist non negative constants ,,..., A, such that 1,+4-...4+4, =1
and

“y_ (llyn+l+‘ . + lpyn-w)” < e&.

Setting ®™ = {2y, ..., 2,, 0,0, ...} we have y,, = 4,(x™), whence

MYnatoot ApYpp = {4, (A @04 2,204))
and an easy computation gives

Qa4 4 1,2 = L By D1 Bty s DnppTagps 05 0y .0,

where 4,,, = 4,+...+4, for v =1,...,p, whence 1=0,,,>...
> By, = 0. It is sufficient to choose z = A&+, . 42,20+7),
2.5. PrOPOSITION. The set G, is y-dense in both the spaces,
SMAUT NN NI and <M~ |, -

Proof. For the space (O ~2AP, || I, || |I'> this follows directly from
Proposition 2.4. To prove our proposition for (M~ A, I |[, || II*> let
us notice that in this case Proposition 2.4 may be stated in a stronger
form. Indeed, let us maintain the notation of the proof of 2.4: let s be
a positive integer, and let us write

@) = D 4, (3,);
u=0
Vip = {Siu(wm))? Sil(m(n)); }y v = {Sio(w)y S“(:E), . } .

Then the sequence (Y., ®g,; ..., Vs,) is easily seen to converge weakly
o (y,%,...,v,) in the space €xEx...xE (s+2 factors), whence
applying the theorem of Mazur we obtain the conclusion of Proposition
2.4; moreover

. HZ[A@(w A @) < e
holds in this case for i =0,1,...,s
y-density of €7 in <M~ 2L, |1, || > follows from this version of

Proposition 2.4 when s is taken sufficiently large.
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2.6. ProPOSITION. The spaces (M -~ 2Ag,
s 1> satisfy the condition (3,).

Proof. We give the proof for the first case only.

By Proyosition 2.4 there exists a sequence y = {y,} such that
Il <1, lly—=x|* < £/2 and y, = 0 for n > p, say, and we may suppose p
to be so large that 1/27 < ¢/8 M. Let us choose

& = e[(232M+32), & <<&'/2P.

Il [H7 and (N~ 24,

Then & <1, 6§ <& <efl6. Let z = {z,}, [2||" < §; then

IM<5,HE&M)

I4:(2)) <o for

for »=0,...,p,0=0,1,...,

Let us consider the sets @ = {»:v <p, |y, +2] <1}, 4= v <
< p, ly,+2l >1} and let us write
-1
= M.L for 'pEA,
lly, 4+l
then 0 <o, <1+e&' 46 —1 = 2¢. Now, let us setb
y,+2, for ve0,
Z, =1 %+25—0(y,+7) for ved,
2, elsewhere,
Y, for #¢0,
= [%wcn(yﬂrzv) for ved,
0 elsewhere,
2 = {2}, & = (%}

Obviously 2z = 2,—=z,. For veAd

lewll = A—oly,+2l =1—¢ <1,
el = A=yl + o2} <1—0,40, =1,
whence 2z, z,e8. Now

00

2+2+ Z = Y+II-+IIT,

6@ ved v=p+1

('.‘l zl) = Z 'A’w v zlv

'Lll
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1) = | X dof =7 to. (t+2) | < Mswpll =240, +2,)]

< M[26'+26(1+¢")] < bMe,

_ZA. (2,)

WAy ”

= || 3 4 < 0+Me

»=0

whence ||4;(y—=,)] < 6+7M¢. Let us notice that any subsum of I
and II satisfies also the above inequalities. Hence for ¢ < p, setting

Q=11,...,p}, we get:
»®
Z‘Am —a) = Y+ D+ Y =T+Ir4ur,
. ae@nQ aednQ o=p+1
< Me, |IT| < 5M,
: u “
mry< | D due—=0| =] Y 4tz
o=p+1 o=p+1
I »
< D Awte||+] X 4t
o=0 a=0
whence
.
| 2 Aulye—2) | < (6M+2)e
Finally =
Stuwi=] 33+ 5
»=0 ved v=
BENE by 1 11
< D Flalt D) s al+ o ln+2h+ Z 7 Ikl
ve@ ved y=p41
* N ’
< Z,:Q” I, ||+ZA—5M8 < [ H10Me < 5+10Me,

o0 1 u“
—ay* 0Me 45 : = y.—2
ly=al” < 10N+ 84T+ 3 o | > 4l
_ <

k4
1
< 2864+17Me +2§;

r=0

1
(6+2) e+ =20 < 26+ (201 + 4)6'+4f < S,

whenece [e—z,|* < e;‘ similarly | —z,|* < .
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3. Consistency theorems. Now we are able to prove our principal
theorems. 4 and B will denote two methods of summability with the
same spaces X and Y; B;(x), B (x) will have a meaning analogous
to A;(x), 4, (x).

3.1. THEOREM. Let the method A be s-null-permanent, let B be w-null-
-permanent, and let k = s or k = m. If any bounded sequence x k-A-
-summable to zero is w-B-summable, then B () = 0.

Proof. The case k¥ = s. Let # be any linear functional on Y. The
functionals 5(B;(x)) are y-linear on <9Jt A3, 11, [1*> in virtue of

Proposmon 2.1, since 75(B;(®) = 1111177(231

(ZBw
again, y-linear. By hypothesis #(B () =0 in the set Gf, which is
y-dense in (M ~ 5, || [, | ">, whence 7(B () =0 in M ~A;, which
implies B (a) = 0 in M ~ A;. :

In the case k& = m the proof is the same.

3.2. THEOREM. Let the methods A® (p = 0,1, ...) be s-null-permanent
and let B be w-null-permanent. Let k =s or k =m; if every bounded
sequence x k-AP-summable to zero for p = 0,1,... is w-B-summable,
then B_(x) = 0.

The proof may be carried out by the same method as for Theorem 3.1
it we consider the space 9N ~ 25 or IM ~ AP of the sequences s-A™- or
m-AM-gummable to zero respectively for n = 0,1, ..., with the norm || ||

- 20[2(1+11A<">u)1—"uwu:

where || |5 denotes the starred norm for the space of bounded sequen-
ces s-A™- or m-A™-summable to zero, constructed in section 2.

The methods A and B are said to be consistent for constant sequences
if each constant sequence is summable by both methods to the same
value.

,)) and the functionals

,)) are obviously y-linear. By the same argument n(B (x)) is,

as in 2, the norm | |* being defined by ||*

3.3. THEOREM. Let the method A be s-conservative and s-null-permanent,
let B be w-conservative and w-null-permanent, and let the methods be
consistent for constant sequences. Let k = s or k = m, and let the character-
istic of A be reversible (2). If every bounded k-A-summable sequence 2 is
w-B-summable, then A (x) = B (x).

Proof. It is easily seen that y, () =
uw = {u,u,...}; the sequence a* = {x,—

xz(2). Let us set u = 33" (4, (),
u} is k-A-summable to zero,

(*) This means that the operation is one-to-one and that the inverse operation
is continuous.

Studia Mathematica XVIII. . 12
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whence, by Theorem 3.1, B (z*) = 0. Thus 0 = B (x*) = B (x)—B (u)
— B (2)—yp(u) = B.(#)—1.4 (13" (A.(®) = B(@)—4.(@).

We conclude with the following remarks. The formulation of the
generalizations of Theorem 3.9 for the case of sequences not necessarily
summable to zero is left to the reader. In Theorem 3.1 the methods A
and B need not transform the sequences of X into sequences of the same

space Y.
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Spaces of continnous functions (II)
(Spaces C(R) for Q without perfect subsets)

by
A. PEECZYNSKI (Warszawa) and Z. SEMADENI (Poznah)

A topological space T is said to be dispersed () if it contains no
perfect non-void subset. In this paper we present some investigations on
spaces C(Q) of real-valued continuous functions defined on dispersed
compaet Hausdorff spaces £.

In the main theorem we give a number of necessary and sufficient
conditions for a compact Hausdorff space @ to be dispersed (in terms of
the space C (), of its conjugate space V(2), or in terms of Borel measures
on ). In particular, we prove that the dispersedness of a compact Q is
d@n invariant of the linear dimension (2) of C(R); conditions (5), (6), (8)
and (9) give characterizations of dispersedness by invariants of linear
dimension. The most essential condition is the following one:

In order that a compact Hausdorff space Q be dispersed, it is necessary
and sufficient that the condition dim; X < dim;C(Q) imply dim, X > dimye,
or X is of finite dimension.

Other characterizations may easily be derived from the above.

By condition (10), the dispersedness of a compact £ is necessary and
sufficient for any Borel measure on £ to be purely atomic, which enables
us to derive some properties of the first and second conjugate to (Q).
At the same time, these properties characterize the dispersedness of 2,
e.g. a compact Q is dispersed if and only if the space V(R2) conjugate to
C(R) contains no subspace isomorphic to the space L.

In a further section of this paper we consider some singular pro-
perties of the spaces C(£2) for dispersed Q. The great importance of these
spaces consists in the faet that many general questions concerning Banach
spaces may be negatively solved by a suitable counter-example of a space
C(R) with dispersed 2.

(%) clairsemé in French (see [14], p. 46).

() The definition of linear dimension .is given by Banach ([1], p. 193; see

also [2]). The symbol dim;X <C dim;¥ means that X is isomorphic to a subspace
of ¥, dim;X = dim; ¥ means that dim; X < dim; ¥ and dim; X > dim; ¥, and so on.
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