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whence, by Theorem 3.1, B (z*) = 0. Thus 0 = B (x*) = B (x)—B (u)
— B (2)—yp(u) = B.(#)—1.4 (13" (A.(®) = B(@)—4.(@).

We conclude with the following remarks. The formulation of the
generalizations of Theorem 3.9 for the case of sequences not necessarily
summable to zero is left to the reader. In Theorem 3.1 the methods A
and B need not transform the sequences of X into sequences of the same

space Y.
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Spaces of continnous functions (II)
(Spaces C(R) for Q without perfect subsets)

by
A. PEECZYNSKI (Warszawa) and Z. SEMADENI (Poznah)

A topological space T is said to be dispersed () if it contains no
perfect non-void subset. In this paper we present some investigations on
spaces C(Q) of real-valued continuous functions defined on dispersed
compaet Hausdorff spaces £.

In the main theorem we give a number of necessary and sufficient
conditions for a compact Hausdorff space @ to be dispersed (in terms of
the space C (), of its conjugate space V(2), or in terms of Borel measures
on ). In particular, we prove that the dispersedness of a compact Q is
d@n invariant of the linear dimension (2) of C(R); conditions (5), (6), (8)
and (9) give characterizations of dispersedness by invariants of linear
dimension. The most essential condition is the following one:

In order that a compact Hausdorff space Q be dispersed, it is necessary
and sufficient that the condition dim; X < dim;C(Q) imply dim, X > dimye,
or X is of finite dimension.

Other characterizations may easily be derived from the above.

By condition (10), the dispersedness of a compact £ is necessary and
sufficient for any Borel measure on £ to be purely atomic, which enables
us to derive some properties of the first and second conjugate to (Q).
At the same time, these properties characterize the dispersedness of 2,
e.g. a compact Q is dispersed if and only if the space V(R2) conjugate to
C(R) contains no subspace isomorphic to the space L.

In a further section of this paper we consider some singular pro-
perties of the spaces C(£2) for dispersed Q. The great importance of these
spaces consists in the faet that many general questions concerning Banach
spaces may be negatively solved by a suitable counter-example of a space
C(R) with dispersed 2.

(%) clairsemé in French (see [14], p. 46).

() The definition of linear dimension .is given by Banach ([1], p. 193; see

also [2]). The symbol dim;X <C dim;¥ means that X is isomorphic to a subspace
of ¥, dim;X = dim; ¥ means that dim; X < dim; ¥ and dim; X > dim; ¥, and so on.


GUEST


A. Pelezyhiski and Z. Semadeni

o
-
1341

1. Preliminaries. In the sequel, 2 will denote a compact Hausdorft
space and C(Q2) will denote the Banach space of all real-valued contin-
unous funetions x = #(t) defined on Q with the norm |l =ntaa,x\w(t)|

R

and with the natural ordering;

V(2) will denote the Banach lattice conjugate of C(R2);

g will denote the closed interval <0,15;

€ will denote the Cantor discontinuumj;

o and o, will denote the least ordinal numbers of power ¥, and ¥,
respectively;

a being an ordinal, I'(a) or I, will denote the set of all ordinals < a
(with order topology); we shall also write C, instead of O(I,) or O (I'(a)};

y(N8,) will denote the one-point compactification of an isolated seb
of power §.; thus, O {y(x,)) is equivalent to the space ¢(,) of all transfinite
sequences ®, = #(a), ¢ < w,, such that the set {a:|z(a)—a(w.) = &}
is finite for all ¢ > 0; we shall write ¢ in place of ¢(Ry);

B(x.) will denote the Stone-Cech compactification of an isolated
set of power ¥,; thus, the space ¢ (ﬁ(&)) is equivalent to the space m(¥,)
of all bounded functions on a set of power ¥,; for v = 0 we shall write m
instead of m(N,);

1(%,) will denote the space of all sequences ¥y, = y(a), ¢ < w,, such
that the set {a:y(a) 7 0} is countable and } |y (a)] < co; we shall write I

instead of 7(X,).

g% will denote the Tychonoff cube with the product measure »,
(see [12], p. 157-158) and with the product topology; L(,) will denote
the space of all functions z(¢) absolutely integrable on 9% (or the equi-
valent space of all signed-measures on 9% absolutely continuous with
respect to »,); we shall write L instead of L(X,).

c(R;), m(N,), 1(8,) and L(N,) are Banach spaces with the norms

suple(a)l, suplz(a)l, Dly(a) and [lo() dy,
a a a oLl
respectively. Moreover, it is known that I(8,) is equivalent to the space
conjugate of ¢(X;) and m(N,) is equivalent to the space conjugate of
l(R,) for any 72> 0.
a being an ordinal, ¥® will denote the a-th derivative of the set ¥.

LEMMA 1. Let ¢ be a continuous mapping of a compact set Q onto
another set @. Then the inclusion

() g(_Q(a)) C @@

s satisfied for every ordinal a.
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Proof. Let « =1 and let we®Y; then o (u)~ QW 0 (in the
contrary case o~ '(u) as well as o[o™!(x)] must be closed, open and finite,
whence o[o7!(u)]~ &M = 0). Next, let us assume (*) for an ordinal a;
writing ¥ = 0~}(®®) ~ 0@, we obtain P®C Q6D and @@ C o(¥),
whence

o (QED) D ¢(FW) D [o(yp)]® D @+,

Finally, let us assume (*) for all a < 1, 4 being a limit number; we
shall prove that ¢(Q®W) D @M. Let we®®; then %ed® for o< i
Write 4 = 7' (w) and 4, = 4 ~ 2®. By the assumption of induction,
all 4, are non-empty, whence, by the compactness of Q and by 4,0 4,,,,
the intersection (A4, = 4 ~ (N 2® = 4 ~ 2™ is also non-empty. ¢ being

a<l a<i
a point of A~ 0P we have o(f) = u. :
Lemma 2. Let 2 be compact and let it be possible to choose, for every finite
Sequence &, ..., &, of numbers 0 and 1 (n =1, 2,...), a dlosed-and-open
non-empty subset Q. . of Q so that

Qoo 2, = Q, Qy~ 0, =0, -Qal,,_,,sn_l,o ~ ‘Qq,.“,s"_l,l =0,

0 v 2 2 for n =1,2,...

Lpeeesf—1,0 lyeesbp—1ol T Tt —1

Then the mapping
o(t) = {e1, &3, ...} for teM Qsl ,,,, o
is continuous, end o(2) = C.
X being a Banach space, X* will denote its conjugate space.
A series Y'm, of elements of X will be termed w. w. c. (weakly uncondition-
ally convergent) if 3 |&(m,)|<<co for every £eX* (we do not assume 3w,
n=1

to be weakly convergent to an element of X). The further terminology
and notation used in this paper follows Banach’s monograph [1] and
that of Day [8].

Levma 3. In order that ¢ Banach space X contain tsomorphically
the space ¢, it is necessary and sufficient that there ewist in X a sequence x,

such that lim|jz,)| >0 and thet D%, be w. w. c.
N300
Lemma 3 is given in [18], p. 797 and p. 160. The condition lim |jz,|| >0
may be replaced by |z, =1 for n =1,2,...
LeMMA 4. Let x, be a sequence of elements of a space C(£2). In order
that the series Y, be w. w. ¢., it is necessary and sufficient that there exist

a number K such that 3 |5,(0) < K for all tef.
n=1
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This is a well-known consequence of a theorem of Banach (see [1],
. 224).

By the Riesz representation theorem on the general form of
Linear functionals over C(R) (see [21], p. 326, and [13], p.1012), the
space V() is equivalent and lattice-isomorphic to the space of all regular
Borel signed-measures on Q with usual addition and multiplication by
scalars, with the norm |jul| = || () and with the natural ordering (see [1],
p. 122). By the Radon-Nikodym theorem it follows that, for any fixed
measure po, the set ¥ of all signed-measures absolutely continuous with
respect to u, is a closed linear subspace and a lattice-complete l-ideal
in V() (in the sense of G. Birkhoff, see [6], p. 222 and 232), and a pro-
jection of norm 1 transforming V(£2) on Y exists.

2. Main theorem. Q being a compact Hausdorff space, the following
statements (3) are equivalent:

(0) @ is dispersed,

(1) every continuous image of Q is dispersed,

(2) Q is 0-dimensional and the Cantor discontinwum C is not a contin-
uous image of 2,

(3) the unit interval J is not a continuous image of £,

(4) every separable subspace of C(R2) is contained in a subspace equi-
valent to a space C(I,), where o < wy,

(B) every infinitely dimensional subspace of C(R2) contains isomorphi-
cally the space ¢,

(6) no subspace of C(£2) is isomorphic to I,

(7) no subspace of (L) is isometric to C(J),

(8) for every separable subspace X of C(2) the space X* is also separable.

(9) every bounded subset of C(2) is conditionally weakly (sequentially)
compact, i. e. for every bounded sequence ,, of elements of C () a subsequence
@y, ewists suoh that for every EcV(Q) the sequence &(w,) is convergent,

(10) every regular Borel atomless measure on 2 is didentioally zero,

(11) every linear functional over C(Q) is of the form

. . . x
where 1y, 1s,... 18 a fized sequence of poinis of Q and D |y << oo,
n=1

1

@) So}llfe implic‘atiol}s between these statements are known. Excluding some
that are trnfla.l, the implications (0) — (1) and (0) — (10) - (11) have hbeen proved
by W. Rudin [20], whose proofs are different and somewhat more concise.
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(12) V(R) is equivalent fo a space 1(X,), or dim;V(Q) < oo,

(13) V() contains no subspace tsomorphic to L,

(14) V() contains no lattice-complete I-ideal equivalent (in the
linear-metric-lattice sense) to a space L(N,),

(15) every separable subspace of V(L) is contained in o subspace of
V(Q) isometric to 1,

(18) the second comjugate to O(RQ) is equivalent to a space m(R,).

Proof. We shall prove the following implications:

(13 () m @ ®
(15 Gy
(16
12) Q) ~—1Q ) ®
an 3 @ (6)

(0) = (1) follows immediately from Lemma 1.

(1) = (4). Let X, be a separable subspace of 0(R2) and let X, be the
smallest subring with unit spanned on X,. X, being separable, by a the-
orem of Eidelheit [9], X, is equivalent to a space O(£,), where £, is
compact and metrisable. By a theorem of M. H. Stone (see [23], p- 475),
0, is a continuous image of 2, whence, if we assume (1), 2, is countable,
and, by a theorem of Mazurkiewicz and Sierpinski [16], £, is homeomorphic
to a space I, with a < w;, whence X,C X, =0,.

(4) = (8). Since every Borel measure on a countable set must be
purely atomie, the space conjugate to C, is (for w < « < w,) equivalent
with the space I. Thus, under assumption (4), condition (8) follows by the
known fact that if X C ¥ and if ¥* is separable, then X* is also
separable (if a sequénce 7,7, ... is strongly dense in Y™, then the re-
stricted functionals #,]X, 7,/ X, ... are dense in X).

(8) - (9) is a consequence of the following well-known theorem :
if X* is separable, every bounded set in X is conditionally weakly
compact (an analogous theorem is in [1], p. 123).

(9) - (6), since the weak and strong convergences in [ are equivalent
(see [1], p.137).

(4) — (5). Assuming (4) we may restrict ourselves to the case
C(Q) = C,, a being countable; we have to prove that any infinite
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dimensional subspace X of C, contains a subspace X, isomorphic to ¢
(for @ = o this theorem has been proved by Banach, see [1], p. 194).
Let us suppose, a contrario, that there exisfs an ordinal 1 < w, such that
the space C, contains a subspace X whose linear dimension is uncompa-
rable with the linear dimension of ¢; moreover, let us suppose that 1
is the least number with this property (it is easily seen that A must
be a limit number). Write
X, = {weX: x(d) =0};

sinee the set of all « such that #(1) = 0 has the deficiency 1 in C,, X,
must be infinitely dimensional. Let « be any ordinal smaller than 4 and
let ¢ > 0. We shall prove that there exists a function zeX, such that

(#%) ol =1 and

Let us denote by Z, the set X|I", i. e. the set of all funetions #()
belonging to C, for which there exist funetions #(¢) belonging to X, such
that #(?) = 2(t) for ¢ < a, and let us distinguish two cases.

A. Z, is finitely dimensional. Then, since X, is infinitely dimensional,
there exist functions x,,s, of X, such that #, # w, and @, () = @,(t)
for ¢ <o, whence the function » = (w,—®,){e;— )" satisfies (wx).

B. Z, is infinitely dimensional. Then, by assumption and by Z,C 0,,
we have dim;Z, > dim;e, whence, by Lemmas 3 and 4, there exists
a sequence 2, of elements of Z, such that

() <e forall t<a.

St = K < oo.

n=1

leallo, = suple, () =1 and 1< sup

<a t<a

Let @, be functions belonging to X, such that ,(t) = z,(t) for ¢ < a

and for n =1, 2,... Obviously, |z,|| = St‘lPJ%(t)l = lk,llo. = 1. By the
<A “

assumption about A and by Lemma 3, the series Zi, is not w.w. c.
(in C;). Hence, by Lemma 4, there exist a point teI'/I, and integers
My <y < ... <y such that [y (8)+. ..+ @, (8)] > K¢, whence the
function & = (2t ..+ )|, - - 2 | sabisfies (i)
Now, let 2, be any element of X, of norm 1. Since limz, (t) = 2 () =0,
e}

there exists an ordinal &, < 2 such that |e,(f)| < % for ¢ > dy. Next, by
(++), there exists a function z,¢X, such that |2l = 1 and L‘hat
}zz(}f)[ < gfor t < 4. Let us assume 2y, #,, ..., 2, (of norm 1) to have been
defined, and let §; be an ordinal such that [2,(t)] < 1/2% for i = 1,2,..,k
and for %> 8. By (**), there exists a function 216X, such’ th’at
[li,:ﬂu =1 and |5 ()] <1/2® for t<6,. It is easily seen that

nzl [#.(f)] < 2 for all tel, whence the series 2%, I8 w.u. c. Thus, by
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Lemma 3, the space €, contains isomorphically ¢, which contradicts our
agsumption.

(5) — (6), since the space I (being weakly complete) does not contain ¢
isomorphically.

non (3) — non(7) by the gquoted theorem of Stone ([23], p. 475).

Jon (2) > non (3). If @ is not 0-dimensional, it contains an infinite
closed connected subset 2, (see [5], p. 174). Q, is homeomorphic to a sub-
set 2, of a Tychonoff cube O%; evidently, the projection of 2, onto
a suitable axis is a continuous mapping of 2, onto a compact connected
infinite subset of that axis, which means that a continuous mapping of
0, onto O exists. 2 being normal, by the Tietze extension theorem any
continuous mapping of Q, onto I may be extended to the whole £.

On the other hand, if Q is 0-dimensional, we apply the well-known
theorem stating that O is a continuous image of €.

non (0) — non (2). Let Q be non-dispersed and 0-dimensional, let ¥
be a perfect non-void subset of 2, and let ¥ = ¥, ¥ be a decompo-
sition of ¥ into two disjoint, closed, infinite and relatively (in ¥) open
subsets. £ being 0-dimensional and compact, there exist closed-and-open
subsets Q, and £, of @ such that ¥,C 2, P;C 2, 2,2 =0,
Qyv £, = Q. Since ¥, and ¥, are open in ¥, they are perfect (see [14],
P. 46). Repeating the above reasoning we can choose closed non-dispersed
sets Qgoy 201, 210 and 2y, such that

Qoo 2o = 24y Qoo Loy =0, Qi 2y = 4y Q1o 24y =0,

and so forth; by Lemma 2 a continuous mapping of £ onto C exists.

non (10) — non (2). Let u be a non-trivial regular atomless Borel
measure on 2. Then u, considered on the Boolean algebra of open-and-
-closed subsets of £, is finitely additive, and the values of u(4) for
open-and-closed 4 are dense in the interval (0, u(2)} (see [12], p. 169
and [13], p. 1011). Thus there exist open-and-closed subsets £, and
2, of Q such that

2n0 =0, T<up)<3 FS<u@)<3,

Qo 2, = 02,
and similarly, there exist open-and-closed sets g9, 215 Q10) Q1 SUCh
that Qoev Qo= 2o, Lo Lu =10, Qv @y =22, 2n0y=0
and 5 < u(Qy) < 5 for i,k =1, 2, and so forth; by Lemma 2 a contin-
uous mapping of @ onto € exists.

(10) — (11) follows by the quoted Riesz representation theorem
on the general form of linear functionals on the space () for a com-
pact Q (see [13], p. 1009 and 1012).
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non (3) — non (11). Let o be a continuous mapping of £ onto 9. It
is known that the set X, of all functions of the form (f) = #(o(t)) with
teQ and zeC(9) is a subspace of C(£2) isometric to C(J). The functional

n(z) = fz(v)dv

is 1i}1ea1* over C(»Q); let & be the corresponding functional over X, ‘and

let £ be the Hahn-Banach extension of & onto C(£2). Assuming a contrario

condition (11), we have £(x) = ) a,x(f,) for all ze0(2), with fixed
n=1

tyy b5y ... and @y, a4y, ... In particular, we have

. 0O o0 0 1
Eo) = @) = Y a,a() = Y a,2(0(t) = Y a,2(,) = [2(v)dv
n=1 n=1 n=1 b
for all zeX,, 2¢C(9) and v, = o(t,) €9, which is impossible (*).

(15) > (13) follows from the fact that dim,! < dim,Z (see [2],
p. 108).

(13) - (14).. It suffices to prove that L(¥,) contains isomorphically
the space L. Since 9% = G x T™ (in the set-theoretical and measure
sense), we have (°) L(R,) = ¥,x L(N,). .

non (10) — non (14). Let u be a non-trivial atomless Borel measure
on Q. .By a theorem of D. Maharam [15], there exist a sequence z,, Tgyeee
of ordinals (z; > 0) and a sequence 4, 4,,... of disjoint Borel subsets

o0
of Q such that 2 = (J 4, and such that each space A, considered (with
n=1

respect. t0 x) as a measure space (modulo sets of u-mesasure zero) is iso-
morphic (modulo a multiplicative constant) to the measure space G,
Lgt Y, be the set of all signed-measures of V( Q) absolutely continuous
with ﬂestpe(l*t‘ dto # and vanishing outside A4;. Evidently ¥, is a lattice-
-complete Il-ideail in V(Q) and ¥, is equivalent and lattice-i i
with L) o q nd lattice-isomorphic

non (14) = non (16). Let ¥, be a lattice-com: i i

) (16) - plete l-ideal in V(R
equivalent and lattice-isomorphic to L (x,), and let Y, be the orthogogmi

(:) ;Ve are indebted to Mr. 8. Mréwka for this argument in the proof.
corms; Zm ;enfsn;f:z; i;{b 211(, iu1> (:;.nd T(Az, Ay, psd- being measure spaces, the
7(a, b} = %(a), »()~Tz(-,-) (where we¥; = L!(dy, A
ponde 1 U, and
TreZ = L' (A1 X A, Uy x Uz, 41X 4p)) establishes an equivalence bet;vee:t ?) and
a subspace Z; of Z, and the correspondence '

Uz(w, w) = fz(u, vdv, 2(,) > Uz(-,")
Ay
establishes, by Fubini’s theorem, a projection of Z onto Zy
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complement of ¥, i.e. the set of all y, eV (L) such that |yol Aly;| =0
for all y,eY,. Since V(2) is a complete vector lattice (see [20], p. 179)
by a theorem of F. Riesz (see [5], p. 233, and [20], p. 185-186), V(L)
may be represented as the direet sum ¥,x Y5, and (since Yol Alysl = 0
for yoe¥,, y1e¥y) we have [lyo+ 9.l = lyoll+lw.ll for all Yoe Yo, Y1 Y.
Hence the space = conjugate to V(L) is equivalent and lattice-isomorphic
to the Cartesian product of the spaces &, (conjugate to L(x,)) and =,

(conjugate to ¥,); moreover, the norm in £ is given by the formula
(&, ml = max ([, Iml)

(see [1], p.192). By a theorem of S. Kakutani (see [13], p. 1023) there
exist compact Hausdorff spaces 2, Q,, 2, such that the spaces &, 5, =
aTe equivalent to C(Q), C(8,), C(Q,), respectively, and, by a theorem
of S. Filenberg ([10], p. 377), 2 is homeomorphic to the discrete union
Q,v 2, (2, and 0, being considered as disjoint). Since F, is equivalent
to the space L®(9%) of essentially bounded measurable functions on g,
and since £, is the Stone space corresponding to the atomless Boolean
algebra of all measurable subsets of J% (up to sets of v,-measure zero),
Q, is dense-in-itself. Since every dense-in-itself subset of B(%,) is nowhere
dense in B(8,), the space £ is not homeomorphic to any space B(R,),
whence = is not equivalent with any space m(R.)-

The implications (1) — (2), (6) —(7), (11)— (12), (12) - (15) and
(12) — (16) are trivial.

3. Singular examples. It is known that numerous examples of Banach
spaces possessing special properties (such as the extension property,
the property of isometrically containing all separable Banach spaces,
etc.) are to be found among the spaces C(£) or their conjugate spaces.
In a sense, the M-spaces and L-spaces occupy two extreme, mutually
opposite places among the Banach spaces, while the reflexive spaces
take a central place.

In particular, the spaces C(2) with dispersed @ have some singular
properties. Firstly, by condition (12), the space conjugate to €(2) with
dispersed infinite £ is equivalent to the space 1(x,), where . denotes
the power of 2. Thus, the space V(&) depends only on the power of £;
however, the isomorphic properties of C(£2) depend also on the topological
properties of 2, and there are many examples of non-isomorphic Banach
spaces with equivalent conjugate spaces, even for metrisable 2 (i. e. for
separable C(0Q) and V(Q)). E.g. the spaces C(I'(w)) and C(I'(w™) are
not isomorphic (°); they give a negative answer to a problem of Banach
([11, p. 243); the first example of this kind is given in [4], p.250.

(%) The proof of this theorem will be publigshed in the next paper.
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Further singular examples are the following:

the space ¢(¥;) is not isomorphic to a strictly convex space (Day [7],
p. 521).

in the space ¢(¥,) the functional p(z) = |Jz|| is not a pointwise limit
of polynomial functionals (see [17], p. 180-181).

Alexandroff and Urysohn constructed a compact, non-metrisable
Hausdorff space @y of power 2%, containing a countable dense set T
= {t1, 13, ...} of isolated points (see [24], p. 936, and [22]). We are
indebted to S. Mréwka for this example.

Let us write Z = C(9)xC(Qy); then
dim;C(9) < dim; Z < dim;m.

Indeed, Z is equivalent to a subspace of m, since there exists a count-
able set {y,{,,... of linear functionals over Z such that [kl = sup |Z,(2)|
n=12

for all zeZ. On the other hand, dim;Z = dim,;C(9) is impossib—le’ (by the
non-separability of Z), and dim;Z = dim;m is also impossible (since
the space conjugate to Z is of power ¢ = 2% and the Space conjugate
to m is of power 2°; see [11], p. 81-83).

It may be proved that the space C(Q,,) is not equivalent to any sub-
space of a Banach space with an unconditional Schauder basis (") of
arpl’arary power; however, for any separable subspace X, of ¢ (@) there
exists a subspace X, isomorphic to ¢ (in particular, it follows that X,
possesses an unconditional basis) and such that X,C X, C C(Qy). On the
Ethgr hand, the space I(c) conjugate to C(Q) possesses an absolute

asis.

) The linear dimensions of (/(Q,) and of ¢(c) are uncomparable
(dlm,p'(Qj,) = dimo(c) is impossible, since C(Q,) is isomorphic to
:(cs)trli(;tly convex space, and dim,C(Qy,) < dim;e(c) is impossible, since

ssesses an unconditi i ir j
eoialent onditional basis), although their conjugate spaces are

W. Bogdanowﬁcz has proved that any polynomial functional on the
space ¢ is weakly confinuous (see [6] and [17], p. 179). More generally
all spaces C(Q) with dispersed @ have this property (the proof of this’
fact is analogous to that of Bogdanowicz, but it is more complicated) It
may be proyed that if X is a Banach space, if X* possesses an unconditio.na
basis and if X* has the property of Schur, i. e. if the weak (with respecg

() The definition of an unconditional basi
O o asis can be found in [8], p. 73; +t
definition of an unconditional (absolute) basis of power N in [3]. (8 p. 78 the
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to X**) convergence is equivalent to the strong convergence, then any
polynomial functional on X is weakly continuous.

4. Problems. 1° Let Q be compact and let every polynomial func-
tional on C(R) be weakly continuous. Is Q dispersed? .

2° Let X be a separable Banach space such that every infinitely
dimensional subspace of X contains isomorphically the space ¢. Does
there exist & countable ordinal o such that X is isomorphic to a subspace
of C,?
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A central limit theorem for stochastic processes with independent
increments

by
M. FISZ (Warszawa)

1. The central limit theorem for sequences {¥j} of random variables
(vectors) states, roughly speaking, that whatever are the probability
distributions of the particular random variables (vectors), provided that
some assumptions are satisfied, the sequence of probability distributions
of suitably normed sums &, of ¥ (k=1,...,n) converges as n —>co
to the corresponding normal probability distribution. The central limit
theorem has been generalized in [10] and [5] to random elements in
Banach spaces. However, we often have to deal with stochastic processes
whose realizations form — by the choice of a convenient distance —
a metric non linear function-space. In this case the central limit theorem
can be formulated in the following way: Consider a sequence of real
stochastic processes Y(t) with realizations belonging to some metrie,
complete and separable function - space 2. Denote by £&,() a suitably
normed sum of Y, (k=1,...,n) and by &(t) a Gaussian stochastic
process with realizations in 2. Let P'» and P% denote the probability
measures in 2 induced by the finite dimensional distributions ([8],
§ TI1,4) of &,(t) and &,(i) respectively. We shall say that the central Hmit
theorem holds if,

(1) P> Ph,  as

" —> o0,

As we know, relation (1) means by definition that for any bounded
and continuous function 7(z), where z<?, the relation

lim f f () AP = f (@) dP%
oo §f i
holds.

If we limit ourselves to perfect measures ([6] chap.1 §3) then, as
Prohorov ([11] Theorem 1.8) has shown, relation (1) holds if and only
if for any real function f(z), xe?, continuous almost everywhere (P%o)
in 2 the sequence of probability distributions of f[£,(t)] converges as
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