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A central limit theorem for stochastic processes with independent
increments

by
M. FISZ (Warszawa)

1. The central limit theorem for sequences {¥j} of random variables
(vectors) states, roughly speaking, that whatever are the probability
distributions of the particular random variables (vectors), provided that
some assumptions are satisfied, the sequence of probability distributions
of suitably normed sums &, of ¥ (k=1,...,n) converges as n —>co
to the corresponding normal probability distribution. The central limit
theorem has been generalized in [10] and [5] to random elements in
Banach spaces. However, we often have to deal with stochastic processes
whose realizations form — by the choice of a convenient distance —
a metric non linear function-space. In this case the central limit theorem
can be formulated in the following way: Consider a sequence of real
stochastic processes Y(t) with realizations belonging to some metrie,
complete and separable function - space 2. Denote by £&,() a suitably
normed sum of Y, (k=1,...,n) and by &(t) a Gaussian stochastic
process with realizations in 2. Let P'» and P% denote the probability
measures in 2 induced by the finite dimensional distributions ([8],
§ TI1,4) of &,(t) and &,(i) respectively. We shall say that the central Hmit
theorem holds if,

(1) P> Ph,  as

" —> o0,

As we know, relation (1) means by definition that for any bounded
and continuous function 7(z), where z<?, the relation

lim f f () AP = f (@) dP%
oo §f i
holds.

If we limit ourselves to perfect measures ([6] chap.1 §3) then, as
Prohorov ([11] Theorem 1.8) has shown, relation (1) holds if and only
if for any real function f(z), xe?, continuous almost everywhere (P%o)
in 2 the sequence of probability distributions of f[£,(t)] converges as
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n — oo to the probability distribution of FL&o(t)]. In this case, whatever
the nature of the stochastic processes Y,(f) under consideration, if
some assumptions sufficient for the validity of the central limit theorem
are satisfied, the probability distributions of a wide class of functions
defined on suitably normed sums &,(f) of Y, (¢) converg> as n — oo to
the probability distribution of the funetion under conside stion defined
on the limiting Gaussian stochastic process.

This approach has been used by the author in an earlier paper [4],
in which some conditions have been imposed on the moments of (i)
of order 1-4. In the present paper processes with independent inerements
are considered and only weak assumptions are imposed on the moments
of the first and second order.

2. We consider a sequence {¥(t),0 <t <a} (k=1,2,...), where
0 < a < oo, of real, separable, independent and equally distributed
stochastic processes. The last property means that for an arbitrary finite
set of parameter points t,, ..., %, the finite dimensional distributions of
(Yt oy Yilt)} (B =1,2,...) are equal. We assume further that
the Y, (¢) have independent increments, that the relation

P(Y,(0) =0) =1
holds, and that the variance o*(t) of ¥,(t) satisfies the relation
(2) o%(a) < oo..

It follows that o2(f) is a mnon-decreasing and continuous function.
Further write

r1 -
®) b =V [;2 T —F (0]
=1
where F(t) = EY,(t). We then have for arbitrary #,,%, (0 <t, <t < a)
(4) BEg(t) €nlts) = BY3 () Yr(ts) —F (8,) F () = o2(2y).

The processes Y.(f) are also supposed to be centered and without
fixed points of discontinuity. The realizations of such processes have
({21, Chap. VIII} with probability 1 left-hand and right-hand limits at
each, point. We shall finally assume that they are continuous from the
right at every ¢ (0 <? < @) and from the left at ¢ = a, and we remark
that this assumption is not an essential restriction. In other words, the
realizations of the processes considered belong with probability 1 to the
space D [0,a] of Skorohod-Prohorov ([12] and [11]). This is a metric,
complete, separable space with the distance d introduced by Prohorov

([11], p. 228).
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TEEOREM. Let {¥Y,.(1), 0 <t <a} (k=1,2,...), where 0 < a < oo,
be a sequence of real, separable, centered, independent and equally distributed
stochastic processes with independent increments and with no fized points
of dzscommmty and let the realizations of ¥, (2) be continuous from the right
(at t=a from “the left). If relation (2) is satisfied, then relation (1) holds,
where {Eo(t) <t < a}, is a real, centered, separable, Gaussian stochastic
process with independent increments and no fized points of discontinuity,
satisfying the relations

P(Eo(o) = 0) =1,
() BE (1) =0, (0 <t<a),
BE(8) &o(ta) = 0%(8), 0<t <t < a),

and where P and P% are probability measures induced in D [0, a] by the
finite dimensional distributions of £,(t) and &,(t) respectively.

Proof. We remark first of all that the realizations of &y(f) are
continnous with probability 1. Indeed, taking into account the assumed
properties of ¢%() and relations (5) we conclude that the process {,(t)
= £y(7), where t = ¢%(7), is the Brownian motion process in the interval
[0, 0*(a)].

We are now going to use a theorem of Skorohod ([14], Theorem 2.1,
and a Remark on it, as well ag [13], Theorem 3.2.1, and Remark 3.2.5)
concerning the convergence of a sequence of functiomals defined on
D[0, a] and continuous almost everywhere (P%) in a special topology J;
introduced by him ([13], . 293). In our case, however, there is no necessity
to deal with this special topology since the realizations of &,(?) are almost
all (P%) continuous and consequently the continuity of functionals defined
on D[0, a] with regard to the topology J, reduces to continuity with
regard to the usual uniform topology as well as with regard to Prohorov’s
distance d.

In order to prove our theorem it is sufficient-according to the
above-mentioned theorem of Skorohod-to show. that:

1. For s =1, 2, ... and arbitrary £,,...,% from [0, a] and arbitrary
real 2, ..., 2, the relation

(6) HMPM(£,(t) < 21, oy Enlly) < 2) = PR(Eg(tr) <, .oy Golt) < 24

holds.
2. For an arbitrary ¢ >0

) lm Hm sup P(|£,(8) — £ (t)] >¢) = 0.

¢80 n—>c0 | —lpl<C
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Taking into account relations (3)-(5) we obtain (6) at once from the of our theorem, we have in virtue of Bachelier’s [1] result (see also [3]
classical limit theorem. We shall now show that (7) holds. and [7]) for 4 >0
Tet ¢ > 0 be a fixed constant. Denote by @, (1, 2, %), Where 0 <1, — .
< t, < a, the characteristic function of &,(t)— £,(). Since Tim Pr ( sup &, (1) < l) _ ]/ : fexp (_ . \) i,
nsw  0<t<a o (q) 3 20%(a)

B, (t)— & ()] = 0,

o0 i .
(8) ) . . : 4 (=1 (2j+1)"n?0*(a)
2 — = —a(t lim Pr( suw D <4 =— e - .
D[, (1) — £, ()] = 0®(t)— 02(t), Iim. r(ostzal«sn( N <) =— 251 xp o
we have
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f[Le(8)], continuous in the uniform topology, where {,(f) is a Brownian
motion process, are known. Hence using our theorem we can find the
limiting distributions of /[ £,(t)]. For instance, if &, (f) satisfy all agsumptions
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