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7. being the element of 0*(a,d) defined by y — f(#, y). This is so be-
cause h, is simply @™ (0)/n!, where ¢ denotes the holomorphic vector-
valued function # — f,; thus

by = (2mi) [ gla)a™ e,

@] =r

and (3.3) follows at once, just as for the Cauchy inequalities for a scalar-
valued holomorphic function.

4. Other extensions. Theorems 1 and 2 admit extensions in
which the function f takes its values in a separable Fréchet space F. &(D)
would be replaced by the space ¢(D, F) of funetions from D into F which
are continuous on D and holomorphic on D; and C®(«, b) would be modified
in like manner. (D, F) will be a Fréchet space when equipped with
the topology defined by the seminorms

Supp,(9(¥),
yeD

where the p, (n =1,2,...) are seminorms defining the topology of F.
It is easily seen that &(D, F) will be separable whenever F has this
property (cf. [4], p. B8, Proposition 5). (One might weaken continuity
on ¥ to weak continuity on ¥, together with separability conditions on
the function involved, but this would have little advantage from the point
of view of applications.) Similar remarks apply to the space of vector-
valued 0% functions.
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The two-norm spaces and their conjugate spaces

by
A. ALEXTEWICZ and Z. SEMADENI (Poznan)

In this paper we continue our investigations on the two-norm spaces,
presented in the papers [2], [3], [5].

A two-norm space is a linear space X provided with two norms:
Il | and a coarser (1) one || |*; these two norms lead to the following
notion of limit: the sequence @, is termed y-conwergemt to =, (written

@, B> wp) it sup |m,ll < co and lim|m,—a* = 0. Thus, as regards the
Nn—00

n=12,,..
distributive functionals, thiee classes arise in a natural way: the spaces
CE > and &% || I*> conjugate to the normed spaces (X, | |
and (X, || |[*), respectively, and the space 5, of functionals sequentially
continuous with respect to the convergence y. Obviously 5*C &,C 5.

The triplet <X, || [, || II*> is called the two-norm space. The space
CE*, I, 01 1D () seems to be the natural two-norm space conjugate
to <X, | |, I| *>. We show that, analogously to the Banach space case,
every two-norm space may be canonically embedded into its biconjugate
two-norm space, with the preservation of both norms. The canonical
mapping enables us to embed any two-norm space into a two-norm space
sequentially complete with respect to the convergence y; this process will
be called the y-completion.

The main purpose of this paper is the study of the interrelations of
the two-norm spaces and of the concepts arising in connection with them.
Some pages are devoted to the y-reflewive spaces, i. e. such which are cano-
nically embedded onto the biconjugate two-norm space; a characteri-
zation similar to the Banach space case is derived. We study algo the
y-compact spaces, i. e. such that each y-bounded sequence contains a sub-
sequence which is y-convergent (to an element); a detailed study is devoted

(1) The norm | |* is called coarser than [|]| (or ||| is called finer than | [*) if
llenll = 0 implies |fzg)/* — 0.

(%) In the triplet-notation for a two-norm space the finer norm will always
precede the coarser one; so in this case the norm |[|| is coarser than || [[*.
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to the spaces for which =, = 5
sequel.

1. Preliminaries. We recall first some notions and results to be found
in [2], [3], and [5] and introduce some new ones, which are needed later.

We shall often say the space (X, || ||, || |I*> or simply <X, || [I, || [*>
instead of the two-norm space <X, | ||, || |*>- By a subspace of a two-norm
space <X, || Il | I*> we shall always mean a linear subset of X provided
with the norms || || and || ||* restricted to that subset.

For any two-norm space (X, || [, || [[*> we shall suppose in the sequel
that the norm || |* is coarser than || ||. Hence there exists a constant K
such that |jz]* < K ||z]|; so we may, and in fact shall, suppose in this paper
that

(mg)  liell*
Any two-norm space <X, | [, | |I*> suech that

(m)  limfa,—al* =0 implies o]l < Lm ]
N—>00 Nn—00

these spaces are called saturated in the

< @) for any zeX.

will be called normal (let us notice that this condition was automatically
assumed throughout the paper [5]); this is the case if and only if the ball
= {m:1eX, o] <1} is closed in the space (X, | [*>. In the sequel

we shall deal mostly with normal two-norm spaces.

A two-norm space is called y-complete if it is sequentially complete
for the convergence y, i. e. if it satisfies the condition
(ny) If (@p,—@g,) % 0 as p, — 0o and g, — oo, then e X ewists such

that , % .

The conjunction of the conditions (n) and (n;) is equivalent to the fol-
lowing condition of Orlicz ([14], p. 240):

The ball 8 =
distance o(z, )

{z: 2eX, o]l <1} is a complete meiric space with the
= o~y

According to the definition of Banach, a sequence &, will be called
y-bounded if t,x, > 0 for any sequence i, of reals tending to zero. Evi-
dently the sequence z, is y-bounded if and only if sup ln]] << oo.

A functional £ defined on X will be called 'y-lmear it it is distribu-

tive and if @, >0 implies &(w,) — 0; the set of those functionals will
be denoted by 5, . We shall deal also with the spaces (&, || > and {&*, || [I>
conjugate to <X, | > and (X, | ||*> respectively. Thus

6]l = sup{&(2): weX, |lnf| < 1},
€* = sup{&(@): @< X, [lo]* <1},
el < U, B*CE,CE B ={&:£e8, |€* < o).
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We shall use the following nofation without further reference:
8 ={w:2eX, |2 <1},
={z:me X, |z* <1},
2 ={&:EeE, 8 <1},
= {£:8<E" 6" <1}
obviously §C §*,2*C .

Tn the paper [5] we adopted weaker hypotheses: the space (X, | ">
was supposed to be of By-type only. One may, however (as shown in the
proof of Theorem 2 of [5]), always introduce a (homogeneous) norm
| ¥ in X, finer than || |*, leading in (X, | ||, ] |i> to the same y-con-

vergence as that in <X, | I, 1l I*>-
The following theorems are of principal importance for this paper:

TaEOREM A. Let the space <X, | |, || I*> be normal; then the set E,
is equal to the closure of B* in the space {5, || |I>.
TasoreM B. Let the space <X, | ||, |l II*> be normal. Then the set
is strietly norming for (X, | |I> (®) and

ol = sup{&(x): &e 5y, €]l <1}

-
=

14

for each xeX.

Theorem A was proved in [5] (p. 130). Theorem B results by a theorem
of [4] (p. 109), since as shown in [5] (proposition 1.5) the set E* as well
as the set Z, are norming and the set = 5, is closed in {5, || II> (18], p. B7).

An opera,tlon U from <X, | I, I| I > to <Y, | 1, 1| "> will be called
y-yp-linear if it is distributive and if =, % 0 implies U(m,) > 0. Since

y-y-linear operations transform bounded sequences into bounded ones,
we geb

1.1. PROPOSITION. Any y-y-linear operation is lnear as an opera-
tion from (X, || Iy to <X, Ib-

Given a subset A of the two-norm space (X, | [, I*>, we shall
denote by y(4) the set of all the limits of y-convergent sequences of ele-

(*) A subset I' of Z is called striotly norming for <X, |l|> if every sequence

@p such that sup [£(za)| < o0 for every &eI' is necessarily bounded.
n=13,

A subset I' of &
the functional

is called norming for (X, || [[> if there exists an r > 0 such that

llelle = sup{1€(@)]: £6I ~ X}

is a norm equivalent to the norm || ||. Every strictly norming set is norming, the
converge not being true in general,
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ments of 4. In general, y(4) ;éy(y(A)) ([8], p-133). A subset 4 of X
will be termed y-closed if y(A) = A. Since the intersection of any family
of y-closed sets is y-closed, there exists for any set 4 a smallest y-closed
set, 7(4), containing 4. Let us write y,(4) = 4, y,(4) = y{U 7s(4))
for any ordinal a > 1. We obviously have the p<a

1.2. PROPOSITION. The set y(A) is identical with y, (4) where w,
is the smallest uncountable ordinal.

2. The conjugate two-norm spaces. Given a fwo-norm space

<X, I I, the space (&%, ]| I*, || II> is obviously & two-norm space
satisfying the condition (n,); it will be called the y-conjugate space to
S LI

2.1. PROPOSITION. The space {E*, || [[*, ]| > is & normal, y-complete
Two-norm space.

Proof. Let ||&|* <K and [§,—&,|—~0 as n,m —> co. Then
én(0)—&m(w) = 0 for every zeX whence &(z) =1limé&,(x) is a linear
functional and [&|* < K. o0

Now let us denote by <%, || [[> and (¥X*, || [*> the spaces conjugate
to (&, | I> and (E*, | [I*>, respectively. Thus

llell = sup{r(&):£eEnE} re%,
el = sup(e(£):ée8* ~Z*  for peX*.

for

<, | []Z and X%, || |I*) are the second conjugate spaces to <X, || [I>
and' <X, || II") respectively. Next, let us denote by <(X®,| |I> the space
conjugate to {&*, | |>; the norm is equal in this case to *)

el = sup{r(&):re8* ~ Z}).

~ Thus <XO, 1], 11> s y-conjugate to (&*, || |*, || >, whence it
is the second y-conjugate to <X, || |, || [*>.

Finally, in accordance with the notation adopted, let us denote
by*%, t]:e set of 1‘3he y-linear functionals on (&%, || |*, || II>. The space
CE5TIF, 1> being normal, the set %X, is identical with the closure
of X in (¥*,|| |*), and X¥ C %, C %*.

2.2. (I;)ROPOSITION. Let' the space <X, || I, | *> be normal. Then the
space (XD, || |> may be identified with the space conjugate to {5, || II>.

(*) We denote the norm of linear functionals on <E, || I> and =
morx g, on {E* | |I> Db
the same symbol | ||; this will be useful and will not cause confusion. In pa.rltlilculaz
as follows by 2.4, the norm of the functional t(£) = &(x) is the same in both cases,
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Proof. The space <&, || ||) is identical with the completion of the
gpace (E*, || I> (by Theorem A), whence their conjugate spaces may be
considered as identical, and

el = sup{r(8):é B ~ X} = sup{(§):ée &, ~ T},

However, the weak topologies o(X®, 5% and o(%%, 5,) are differ-
ent (%), and «(¥®, Z,) is not coarser than the topology of the norm |f ||*.
The first y-conjugate space depends on the norm || |[* essentially, that is,
when two starred norms || [} and || |3 give rise (together with || [}) to the
same y-convergence, the spaces Zf and S, (conjugate to (X, | [}> and
(X, || Il5> respectively) need not be identical. The second y-conjugate
space XY, however, depends only on the space (&, || [). More precisely:
92.3. ProOPOSITION. Let || | and || |l be two coarser morms in a normed
space (X, || |I>, satisfying (n) and leading to the same class B, of y-linear
functionals. Then the spaces X are equal in both cases.

This follows immediately by 2.2. Let us remark that two coarsel
norms || |I¥ and || |} leading to the same class 5, may determine different
y-convergencies. On the other hand, the norm | |* in %% determines
| II* in X uniquely.

Given an element z « X, the formula g, (&) = &(x) determines a functio-
nal which is linear on <&, | |> and on (5%, || |I*>. It is well known that
the mapping # — I, called canonical, embeds isometrically the space

(XD into <X, || Y, and also embeds isometrically <X, || [*> into

(X*, | II*>; the canonical mapping, since it defines linear functionals
on ¢E*, || |IY, embeds the space (X, | |, Il I[*y into <%, [, | [[*). The
canonical mapping restricted as above will be called y-canonical.

9.4. PROPOSITION. Let the space (X, | ||, 1l I*> be normal. Then the
y-canonical mapping embeds (X, || [, 1 I dnto XD I with
the preservation of both norms | || and || |4 e ltall = Il and lell* =l
for meX, 1y e X9, Comversely, the preservation of morms by the y-canonical
mapping implies condition (n) in (X, [ lI, | I*>.

Proof. By Theorem B

ezl = sup {&(@): £ &%, 18l <1} = lal)
and by the definition of the norm | ||* in %*

el = sup {£(2): £ 5%, lEF <1} = [l

(*) Given a linear subset Q.of the algebraic dual of X, o(X, Q) denotes the
weakest topology on X for which the functionals w(z) are continuous for we2;
concerning the details see [7].
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On the other hand, the space (XM ||, || I*> it normal (by 2.1)
and any subspace of a normal two-norm space is also normal.

Now let <X*, | ", ]l > be the y-conjugate space to (X, || ||, | |I*);

the canonical mapping of &* into X* is given by

{—>2(3) = 3(D).

Let us denote by X, the space of the y-linear functionals on
DY, Il [*>. Since the y-canonical mapping of (&% || [, || > em-
beds Z* into the space <X™, | [*, ]| I> y-conjugate to <X, | |, | |*>
with the preservation of both norms, and since the canonical mapping em-
beds <, || |*> into the space (X, | [> conjugate to (X, | |*> with
the preservation of the norm || [*, we infer by Theorem A

2.5. ProposIrION. Let (X, || |, | |[*> be normal; then the canonical
mapping of {8, |[*> into <X, | [*> embeds Z, into X,.

] 3. y-reflexive two-norm spaces. A two-norm space <X, | |, || I
_will be called y-reflewive if it is normal and if the y-canonical mapping
embeds <X, || |, [*> onto <X®, | {I,] |*), or equivalently, if each
linear functional on (&, | ||> is of the form r(#) = &(x) with z<X.
EBach y-reflexive space is obviously y-complete.

Let <X, |l [, |l I*> be normal. The space conjugate to X equipped
with the topology o(X, 5,) is equal to Z,. Let us consider the strong
topology 8(Z,, X) of Z,: the basis of neighbourhoods of zero is composed,
for this topology, of all polar sets of bounded (for the topology o(X, 5,))
subsets of X. Let 4 C X be bounded for (X, 5,); then

sup{|é(@)|: wed} < oo

for every &eX,, whence A C oS for some n, since by Theorem B the set
£, is strictly norming. Conversely, each ball oS is bounded for the topo-
logy ¢(X, Z,). Indeed, let ¥ be a basie neighbourhood of zero for o(X, 5,),
i e. let :

V= N{z:&@) <1}

n
1=

1

w‘ith e85 E,C Z implies | £ ()| < M; |||, whence nS C (M. M) V.
Since the polar set of 4§ is equal to n™.%, we obtain

3.1. LE:’D\IA Let the space (X, | I, 1 I be normal, then the strong
topology B(Z,, X) of the space E,, since it is conjugate to X provided with
the topology o(X, 5, is identical with the topology of the norm || ||

) 3.2. THE(?REM. The space (X, | |l,| II*> is y-refleaive if and only
if the ball S is compact for the weak topology o(X, 5).

7y
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Proof. By Lemma 3.1 and Proposition 2.2 the space conjugate to
(E,, B(B,, X)) is equal to X%, whence our theorem follows from a theo-
rem of Koethe-Dieudonné-Schwartz ([8], p. 79).

3.3. Remark. In Theorem 3.2 the topology o(X, 5,) may be replaced
by o(X, EY).

Proof. The proof follows from a theorem of Dixmier ([9], p. 1059)
and Theorem A.

3.4. PROPOSITION. Any y-closed subspace of a y-reflewive space is
y-reflewive.

Proof. Let X, be a y-closed subspace of a y-reflexive space (X, || ||,
I I*>. Thus the ball § is compaet for the topology o(X, &*). The unit
ball of (X, || [[> is equal to X, ~ 8, and since it is closed and convex,
it is (by Mazur’s theorem, [11], p. 80) closed for the topology o(X, =%,
whenece, as a subset of 8, it is compact for o(X, £). Let 5j be the space
conjugate to (X, | |*>; by the Hahn-Banach theorem the topology
o(X,, 5% is identical with the topology induced by o(X, E¥) on X,.

“Thus X,~ 8 is compact for the topology o(X,, Zy) and our proposition

follows by 3.2 and 3.3.

3.5. PROPOSITION. A space which 18 y-conjugate o a y-reflexive
two-norm space s y-reflexive. .

Proof. Let <X, || |, || II*> be y-reflexive. Then the topologies c(E*, X)
and of 5%, X) are equivalent. The ball T* is compact for the topology
o(E*, X) by the Alaoglu-Bourbaki theorem ([1], . 255) and the desired
conclusion follows by the application of 3.2 and 3.3.

3.6. PROPOSITION. Lei the space <X, || ||, II II*> be normal and y-com-
plete, and let (E*, || *, || > be y-reflemive. Then (X, liy | Iy ds also
y-reflemive.

Proof. The space <X®, [ I, || [*> is y-reflexive by Proposition 3.5
and <X, {, |l I'> may be identified with a subspace of the y-bicon-
jugate space, that subspace being y-complete by hypothesis. Thus Pro-
position 3.6 follows from Proposition 3.4.

3.7. THEOREM. Let <X, || ||, | > be & two-norm space, then the fol-
lowing conditions are equivalent:

1° KX, ||, || I 48 p-reflemive and 5, = Z,

20 KX, || |I> 1s reflemive.

In particular, the reflemivity of (X, | |> implies conditions (n) and
(ny) for any morm || ||* satisfying (n,).

Proof. At first, we shall prove that the reflexivity of (X, || I[)
implies 5, = 5. The set &, is closed in (&, || I> (see [15], p. 57) and it
is total with respect to X (since Z* is total). By the Hahn-Banach theorem
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and by the definition of reflexivity any closed total subset of the space &

s

conjugate to a reflexive Banach space must be equal to = (see Dixmier
[9], p- 1061). '

Thus, &, = £ being proved, y-convergence in (X, || [, | [I*> implies
weak convergence, whence <(X,| [, [*> must be normal. Let ¢ be
a functional linear on (5, || ||>; by the reflexivity of (X, | ||> and by
B, = B, ¢ is of the form (&) = &(w), with an <X, which means that
G, ||, I I is preflexive. '

Now, let us assume that <X, || [, || [*> is y-reflexive and that E,= 5.
Then the spaces conjugate to (Z, | > and to (Z,, | [} are identical,
whence (X, || [> must be reflexive.

4. Completion of two-norm spaces. Since the y-complete spaces
reveal important properties, the question arises naturally whether it
i possible to embed a two-norm space into a y-complete space, with
the preservation of both norms. We may require also that every y-linear
functional be uniquely extensible to the new space. We shall show that
it can always be done, moreover, there i only one such extension (within
isomorphisms). The nsual Cantor method of completion is not appropriate
in our case, for y(y(4)) 5= y(4) in general.

4.1. TEEOREM. Let <X, || [, || I*> be @ normal two-norm space. There
ewists a mormal, y-complete two-norm space {(X°, || ||, | II*> containing
L LI as a subspace. Bvery y-linear functional & on X may be
uniquely emtended onto X° with the preservation of the morm || |.

Proof. Let %, be the y-canonical image of X in %X®. Since (by
2.1) the space ¥ iy y-complete, the smaflest y-closed hull 7(%,) spanned
on %, (see 1.2) is also y-complete. The set X identified with %, is a
linear subspace of %®. Thus, the y-canonical mapping being isometrical
(withrespect to || || and || ||* simultaneously), (%), || [, | I[*> is a normal
y-complete space containing a subspace equivalent to (X, | I, || I>.

Let & ba any y-linear functional on X, i. e. let &yeZ,. Since XY may
be congidered as the space conjugate to (&, | I> (see 2.2), the mapping

L) =t(&)  (tep(%)
exbeniis in a natural way the functional £, onto »(%,). We shall prove
that & is y-linear on (p(%,), || I, || II*>. Leb 1, %> 0. Then sup{gn(ef ):Eeh,,
Bl <l,n=1,2,..} <oo and sup{r,(():le5* C* <1} >0 as
7 —> 00, Whence 5(1:,, =1Ia() =0 for every feE* Thus, the sequence
%, i convergent to 0 in a dense subset of £, and sup|t,| < oo, whence
ta(§) = 0 for all £ef,; in particular, &(r,) = T (&) = 0.
The uniqueness of the extension & — £ follows by 1.2. Finally, ||E] =
= Bup {£(8): 1eXV, |z <1} = ¢
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The set- X is not strictly contained in y(%,); however, we can de-
fine X° = X v [$(%)\X,]. Then X° provided with linear operations
and norms induced by 7(%,), is the desired completion of (X, |, || II*>-

X0 1,1 %y will Dbe called the y-completion of (X, [, | [*;
it is easily seen that X° is the smallest y-closed set containing X. This

~ condition, however, does not determine X° uniquely, as can be seen from

the following considerations.
Let us denote succesively: by I' —the space of all real sequences

o0
2 = {u,) such that |} |a,| < oo, with the norms
n=l

[==] oo 1
lell = 3 lauls llal® = ) o ol

by M — the set of Mazmkiewicz in I* (see [13] or [5], p. 133);
by @, — the element Z'ez,,_ /2" in I (where 6, denotes the n-th unit

vector in I'); X — the set of all elements of form y-+iz, with yeM;

by A — the functional defined on X by A(y-+tz) =1#; (X, | ||,
Il [*> — the y-completion of <X, || [, [*; Xy = p(X) in a1

The functional A is y-linear on (X, | II, || [*>; however, it cannot
be extended to the whole of X, with the preservation of y-linearity (see
[5], p.133).. Thus, by Theorem 4.1, the completions X, = X°¢ and X,
are essentially different; more preclsely, we have proved that there exist
normal two-norm spaces <X, || [, I I'>, <Xu, [l I, 1l I and (X, | 1,
| I*> such that 1° X C X,, X C X,, 2° the norms I and || * respectl—
vely are identical on X, X ~ X, and X ~ X,, 3° the spaces (LTI
and <X,, | I, || II*> are y-complete, 4° if X is considered as & subset of X4,
then y(X) = X,, 5° if X is considered as a subset of X, then y(X) X,
6° there exists no y-y-linear one-to-one mapping of (Xy, || I, |l I*> onto
Xy, 11, | > equal on X to the identical mapping.

On the other hand, the y-completion (X°, | |, | [*» is defined uni-
quely (within isomorphisms) by requiring that it be y-complete and that
the y-linear functionals be extensible only in one manner on X°, with
preservatlon of the norm | ||

. PROPOSITION. There ewisis a natural ';somorphiaal embedding
of the set X° into the completion X* of the space (X, || |If*>. Hence X° may
be identified with a part of X* and every " functional linear on (X I
may be extended uniquely to X with the preservation of norm || I

Proof. Let us retain the notation of the proof of Theorem 4.1. The
set %, equal to the y-canonical map of X may be considered as a subseb
of ¥® or of %*, and

%, C 7(%,) C X C %**.
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The canonical map of X* in (X*, || |*> may be obtained as the
closure of %, in (X*,|| I*> and, obviously, this closure contains the
set 5(%,).

As an example let us consider the space (L, || ||, || [*> of essentially
bounded measurable functions defined on [0, 1], with the norms

llo] = esssupla(®)], llol* = [ |w()dz.
o<1 0

This two-norm space is equivalent to the y-completion of the space
<Cy [l 1, 1 I*y of continuous functions, with norms defined by the above
formulas.

Let (X, | I, ]| II*) be a normal two-norm space. In [5] (p. 123) we
dealt with the completion of the space (X, || [|>. For that completion, x s
the norms || || and || ||* may be extended from (X, | |, | I*> by passing
to the limit, and the space (i 1L 1P is also normal. This completion
is not necessarily equal to the y-completion, since the completeness of
<X, | |I> does not imply y-completeness. On the contrary, the y-comple-

teness of (X, | |, || I[*) together with normality implies the ecomplete-
ness of <X, || |I> (see [14], p.1, [5], p.122), whenece X C X°.
4.3. ProposITION. Let (X, || [, 1| "> be normal and let XD

denote the completion of (X, || |>. Then the y-completion of (X, | [, | II>
coincides with (X, || ||, || II*> if and only if every linear functional on (X, | >
has a unigue ewtension to a functional linear on (X°, || I>.

Proof. Necessity is trivial. Sufficiency follows by the Hahn-Banach
theorem.

5. y-separability, y-compactness. A subset 4 of a two-norm space
X, 01 1% will be termed p-dense it y(A) = X; <X, || ||, || II* will
be termed y-separadle if X containg a countable y-dense subset.

5.1. PROPOSITION. The following conditions are equivalent:

(@) <X, [ 1, 1 1% 48 y-separable,

(b) there emists a countable subset A of X such that pld) =X

(6) <X, || I*> is separable.

Proof. I y(4) = X, then y(4)= X, too; if p(A) =X, then,
by 1.2, A is dense in (X, || |*). If <X, || |I*) is separable, then <8, ">
is also separable, whence § and in turn X is y-separable.

A two-norm space <X, | [, || [*> will be termed y-compact if every
y-bounded sequence contains a y-convergent subsequence; yp-compact-
negs is equivalent for normal spaces <X, || [, I I*> to the compactness
of the ball § with respect to || |*. <X, || ||, I I*> will be called p-precompact

’
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if every y-bounded sequence contains a Cauchy subsequence for the con-
vergence y; this is equivalent to the precompactness of ¢S, || [*>. As
stated in 5.6 a normal space is y-precompact if and only if its y-completion
iy y-compact; this justifies the term “y-precompact’’.

Any subspace of a y-separable space is y-separable; any subspace
of a y-precompact space is y-precompact. A space is y-compact if and
only if it is y-precompact and y-complete. The separability of (X, | [I>
implies the y-separability of <X, || [, || I[*>; the y-separability of <X, || |,
Il > implies the y-separability of its y-completion. Any p-precompact
space is y-separable.

Typical examples of y-compact two-norm spaces are the following:

A. The space of all bounded complex-valued functions x(2) analytic
on the circle |2| < 1, with the norms

oo
lloll* =

7

1 1
ol = sup {ln #): 4l < 1}, gl =121,
=1

B. The space X conjugate to a separable Banach space Z, with
the norms

.\ 1
ol = supfo(e):ell < 1}, Il = ) = lotan)],
A=1

where 2, 2,, ... is & fixed sequence dense in the unit ball in Z; y-conver-
gence in <X, | ||, || [I*> is identical with weak convergence with respect
to topology ¢ (X, Z). N . .

C. The space of real functions satisfying the condition of Lipschitz
in <0,1>, provided with the norms

|2 (t+h)— (1)

. ;0<t<1,0<h<1—},

llzll = Im(O)[+SuP{

ll#* = sup = (£)].
01

D. Let <X, | > be a Banach space and let T be & one-to-one linear
completely continuous operation from <X, | | into =|f:\.no.tlner Banach
space (¥, || I, and let [a* = [T2]. Then <X, | ||| [> is y-compacs.

B. Let (X, | > be a separable Banach space with a Schauder basis

€1, 6, ... and let
o 1
ol = ) = lé(@)

N=1
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where &, &,, .-

sueh that &m( Mists) = fm. Then (X, | [, | I*> is yp-precompact.
n=1

. denote the functionals bi-orthogonal to e, e,,...,1. e.

F. Let <X, | {> be a Banach space, {Z, | > its conjugate space,
let a subset 4 of & be a compaet basis in the sense of W. Orlicz
and V. Ptak ([15],p. 63),1. e. a total (%) and (strongly) compact subset of
<&, |l >, and let

llo|* = sup{|é(@)|: ed}.

Then <X, | |, I "> is y-precompact ([15], p. 64).

5.2, THEOREM. Any normal y-compact two-norm space is y-reflexive.

Proof. This follows by Theorem 3.2, since the topology of the norm
Il [[* is finer on S than the topology ¢(X, 5,).

The converse statement is false, as shown by the example (L2, || |,

1
[l ., Where izl = ( of lw(#)Pd)"® for p = 1,2.

The next theorem is an analogue of & theorem of Banach ([6], p. 189),
and the proof is quite similar to that of Banach.

5.3. THEOREM. The y-separability of the space 2%, | I, | > implies
the y-separability of <X, | I, Il I*>.

Proof. Let (&%, | II*,| |I> be y-separable. Then, by 5.1, =2* is se-
parable with respect to | |l. Let £, {,, ... be a sequence dense in (@, ||,
where Q = {£:£e5*,||¢]| = 1}, and let @, ,,... be a sequence of ele-
ments of X such that |z, =1, and {,(2,) > § for n =1,2, ...

‘We shall prove that the smallest linear set ¥ spanned on the elements
@, is dense in (X, || |[*>. Indeed, assuming the contrary, there would exist
a functional £e5* such that ||| =1 and £(#) = 0 for all ze¥. Then

[iln— Ell = 1Cn(z)— &(@a)| = [Cn(®n)] > % n=1,2,..,
" which is impossible. Thus (X oI I is separable, whence <X, | II, || I*>
is y-separable.

5.4. PROPOSITION. Let <X, || ||, 1| > be normal. Then the space
CE*, | I*, | ) ds y-separable if and only if the space {8y, || II> is separable.
This follows by Proposition 5.1 and by Theorem A.

for

5.5. THEOREM. The space (X, || ||, | |I*> is y-precompact if and only
if the space &%, | [*, || > 4s y-compact.
Proof. Leb us assume that (X, || |, || [[*> is not y-precompact. Then

there exist e > 0 and a sequence 2, such that § < ||, <1 and ||, — &)
= 3¢ for n = m. We shall define a subsequence v, = @y, by induction.

(°) A set QC Z is called total if sup{lé(m)]: Esl"} > 0 for every z # 0.
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Let ¥, = @, and let us assume y,, ..., y; to be already defined. The sef
Y, of the linear combinations of y,, ..., yj is finitely dimensional, whence
(X~ 8% || II*) is compact. For every k the set

By = {n: @ (@, Ti) < e} @*(4, B) = inf{lo—y|": wed, yB}

is finite. Indeed, for every n B, there exists 2, ¢Y; such that [lg, —o,]* < &.
Then for neHy and meHy

”zﬂ”* < ”zn"'wn“*”}‘ “mn"* < etllo,) < 14-¢,
which means that z, ¥y ~ (14-¢) 8%, and

where

lltn— 2mll* = 1tn—@l* — ([l — 2][* + 1 — 2"} > .

Since ¥ ~ (14¢)8* is compact (with respect to || [[*), B is finite.
Let s; be the least index not belonging to Hy, and let yzyy = &y,
Thus, d*(yz41, Yy) = ¢ for every k, whence

3

o |m

1
sup{a:llayys+- .+ ap¥p+ Wl <1} = " sup{a:d* (¥, ayz) < e} <

which means that the functional

Nepa (@Y1t Gp1¥eg1) = Orga

congidered on { ¥y,1, || I*) has the norm < 1/e. Let £y be the Hahn-Ba-
nach extension of en, on (X, | >, Then |Gl <1, Lelyx) =¢ and
Lrpa(®) = 0 for we¥x, whence

imtnll > [Gulgg)—Enlg = ¢ Tor  m > k.
Il

Thus, (&%, || [[> is not precompact.

Now let us assume that <&*,| |, |l [ is not y-compact. Then
<Z*, || ||y is not precompact, since (5%, || |[*; || [[>is normal and y-eomplete.
Arguing as above we can choose a sequence iy &ay ... of functionals
s0 that [|L,* <1 and

-1
o S aa] >0

k=1
for arhitrary a, ag, ..., @, a0d n = 2,3,... By a theorem of Banach
([6], p. 119) there exists, for every fixed n >>2, an element , X suc.h
that &,(4,) =&, @)l = 1 and im(w,) = 0 for m = 1,2,...,n—1. This
implies

”wm'_mn“* = Cm(wm_mn) = Cn(@m) = ¢

for m < n, which means that {8, ] |I*) is not precompact.
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5.6. Provosirion. Let (X, | |, | I*> be normal. le?f [ T
is y-precompact if and only if its y-completion SXC N Il % 48 p-compact.

Proof. This follows by Theorem 5.5, since the spaces <X, | |, || [*>
and (X% || I, || > have the same y-conjugate space.

5.7. ProposITION. Let (X, || |*> be prereflewive (") and separable.
Then all y-conjugate spaces to <X, || [, || I*> are y-separable.

Proof. The space (X, ]| |*> being prereflexive, (5%, || [*> and (%X*,
Il 1> are reflexive. Thus the sepa.ra.blhty of (X, || |I*> implies the same for
CE*, IS, By the reflexivity of (E%, || [*>, by 2.1 and by Theorem 3.7,
the space (E*, | |I*, | {> is p-reflexive, and, by Proposition 3.3, (%¥,
Il IF > and its y-conjugate spaces are y-rveflexive. Thus, E*, e,
Il > being y-separable, all odd y-conjugate spaces are y-separable, whence,
by Theorem 5.3, the even py-conjugate spaces are also y-separable.

One-to-one y-y-linear operations from a y-complete two-norm space
onto another have not, in general, the Banach inversion property (a tri-
vial example: identical opemtion considered as an operation from (X, | [,
Il > onto <X, I, I*>). However, the inverse operation is y-y-conti-
nuous if the first space (X, || [, || [*> is y-compact. More precisely:

5.8. THEOREM. Let the space (X, | |l,]| |*> be y-compact and let
(X, D> and <X, || [[> be complete; let U be a y-y-linear one-to-one mapping
of <X, NI onto KX, | I, | I*>. Then U ds an isomorphism between
(XD an@ <X, | >, and the inverse mapping U™" is also y-y-linear.

Prooif. By Proposition 1.1 and by the Banach inversion theorem
(061, p. 41), |, — )] = O is equivalent to [[U(z,)— U(z,)| — 0.

Now, let 4, = U(m,) = 0 and let #, be any subsequence of ,. Then
sup |lyall < oo, Whence sup ﬂm,,H < oo, By the y- compactness of the space

n=12,...

K0y I >, there ex;lsts a subsequence z, of m,, and an element ,
such that @) % #,. This implies U(a;,,) - Ul(my), Ulw,) = 0. Since U is
one-to-one, U(m,) = 0 gives @, = 0; @, being an arbitrary subsequence
of =,, we infer that =, Zo.

5.9. PROPOSITION. Let (X, | I, || "> be y-compact, let U be a p-y-
linear operation from <X, || I, I II*) onto <X, || I, || ">, and let <X, [ I>
and <X, | |[> be complete. Then (X, | |, |*> is y-compact.

Prooi. Let y, be a y-bounded sequence in ¥. Then sup |y, = M <
n=12,...

< oo. By a theorem of Banach ([6], p. 40) there exists a number & such
that U(kS) D{y:yeY, |yl < M}. Thus, there exist elements s, of X
such that ||lz.| <k and U(s,) =y, for n =1,2,... Since <X, | I, | ">

(") A linear normed space is called prereflewive if its completion is reflexive.
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is y-compact, a subsequence T, of &, iy y-convergent to an element e X.
Then ¥, == U(wy,) 5 Um,).

Let us remark that the assumptnon of the completeness of <Y, | >
is indispensable in 5.8 as well as in 5.9. Example: a y-compact space
(X, s Il IF> and the identical operation from (XA IS onto
KX, 0I5, 0 I*y; if X is infinitely dimensional, <X, | |I*, || [*> is not
y-precompact ([6], p. 84).

5.10. THROREM. 4 two-norm space <X, | |, || |*> is y-precompact
if and only if it is y-separable and if y-convergence in {E*, | II*, | > s
equivalent to convergence with respect to the topology o( E*, X).

Proof. Let <X, ||, || I*> be y-precompact. Then it is y-separable,
whence, by 5.1, there exists a sequence z, dense in. {8, || [*>. Lt us write

S
el = 2 £l
n=1l

then [|£], < [[€]] < [|£]* for £ 5" Since y-convergence in (&%, || |, || [l
is equivalent to convergence with respect to a(,_ , X), the space
CE*, I, 1 Il is y-compact. On the other hand, (&*, | |*, || |> is also
y-compact (by Theorem 5.5), whence, by Theorem 5.8, the y-conver-
gences in (&%, || |, || > and in (&%, || |, || [,> are equivalent.

Now let us assume that (X, | |, | I*> is y-separable and that y-con-
vergence in (E*, | |*, | > is equivalent to weak convergence. Then
CE* 1% 0 1> is y-compact, whence, by Theorem 5.5, <X, | II, | I*
is y-precompact.

5.11. ProposITION. Let (X, || > be o Banach space. The following
conditions are equivalent. :

(a) there emists a coarser norm || |[* such that (X, || I, || II*> 4 y-pre-
compact,

(b) there emists a total sequence of linear functionals on (X, |-

If (X, || > is separable, then () and (b) are always satisfied.

Proof. If <X, || I, | *> is y-precompact, then, by Theorem 5.5,
{E*, | II> is separable, and any sequence x, dense in £* is total. The
converse implication follows by a theorem of W. Orlicz and V. Ptdk
([15], p. 63-64).

Now let (X, | [|> be separable, let x, ., ... be a gequence dense in
the set 4 = {zeX, |#| = 1} and let &, &,,... be functionals of & such
that [|&,]| =1 and &,(z,) =1 for n =1, 2,... Obviously, the sequence
&, is total. Moreover,

llof] = sup [&n(®)]
1,2,

for every weX.
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6. The case Z, = 5. As shown in [5], p.127, we have 5, = 5*
for normal two-norm spaces if and only if the norms || | and | II* are
equivalent. On the other hand, the second extreme case Z = &, may
oceur in non-trivial cases (in particular, Theorem 3.7 deals with such spa-
ces). Therefore it seems to be worth while to examine more precisely the
spaces satisfying this condition. .

Any two-norm space (X, | ||, || II*) satisfying Z, = & will be ter-
med saturated.

6.1. PROPOSITION. Any saturated two-norm space is normal.

Proof. Let @,eX, let |jo,)| < M for n=1,2,...,and let |12, — 2l — 0
as n — oo, Then a, converges weakly to ,, whence ||z, < M.

6.2. PrROPOSITION. The following conditions are equivalent:

(a) Ey = £,

(b) & is dense in {5, )

(e) any y-convergent sequence is weakly convergent with respect to the
topology o(X, E),

(d) for every E<E and for every & > O there ewists a constant K such
that ’

§(@) < e+ |lof*

(e) the set &,~ X is closed for the topology o( &, X),

(£) every cowvew and closed subset of <X, |l [|> 4s y-closed,

(g) every linear closed subset of (X, || | 4s y-closed.

Proof. The equivalence (a) (=) (¢) iz trivial; (a) {=) (b) follows by
Theorem A and by 6.1.

(0) (=) (d). Let ZeZ, let ¢> 0 and let {eZ* be such that [|£— & <e;
then

for all wes,

L) = L(0)—e
¢(@) < Klol*

for any xeS,
for any weX.

These inequalities imply (d). Conversely, let (d) be satisfied. Choose
elements @y, ..., %, of § and positive numbers ¢,, ..., t, arbitrarily. Setting

& = ti(ty+...+1,)"" we infer that | 'zl <1 and, by condition (d),
=1
n n
Sttt — el = (ht. ) [6( D) i) —e]
=1 i=1

* =K Hzntiﬂ’},,,
=1

*
)

< (t1+...+tf,,>1f1[2nﬂiwi
i=1
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which implies, by a theorem of Mazur and Orlicz ([12], p. 147), the exis-
tence of a distributive functional { satisfying the inequality ¢(z) > &(z)—s
for all S and the inequality {(z) < K |j#|* for all z¢8. Thus ¢e 5* and
lt— & < ¢ which means that 5* is dense in (&, | |I>.

The implication (a) =) (e) being trivial, we shall prove that (e) = (a).
The set 5, ~rX is closed for every r > 0, whence by a theorem of Bour-
baki ([7], p. 129), the set Z, is closed for the topology o(Z, X). The set
B, is total, for 5*is total, whence &, is densein £ for the topology o( Z, X)
(Dixmier [97, p.1061) and Z, = Z.

(¢) =) (f). Let 4 be convex and closed in (X, || | and let =z,e4,
@, > . By (¢), @, converges weakly to x, in (X, | |[), whence, by
Mazur's theorem ([11], p. 80), zed.

(£) =) (g). Trivial.

(g) =) (a). Let &<&; then the set {:£(x) = 0} is closed in (X, || [|>,
whenece it is y-closed. By theorem 3.2 of [5] the functional £ is y-linear.

6.3. PROPOSITION. Any subspace of a saturated two-norm space 4s
saturated.

In particular, if <X®, || |, | I*> is saturated, so iz <X, [ I, | II>-

Proof. This follows by 6.2.

The converse of the second part of Proposition 6.3 is not true.

Indeed, let J denote the space of James; it is composed of the se-
quences x = {x,} convergent to zero and such that

o] = sup sup [ Gy~ T+ (Opg, ] < co.

n=12,,.. P1<Py<...<Pgp+l1 i=1
James proved ([10], p.523) that <J,| > is a separable, non-re-
flexive Banach space isomorphic to its second conjugate, and that the
functionals #,(x) = #, (n = 1,2, ...) compose a basis for the space con-
jugate to <7, | [I>-
Now, let us introduce in J the starred norm

0
1 1/2
fot* = ( 3 55 )

M=l

then [#f* < sup |o,| < |ll|. The space <J, || |, || I[*) i8 normal but not
n=L,...

y-cornplete. Since the functionals 7, are y-linear, the space <J, | |, | >

is saturated. The y-completion (J°, || I, [| [*> of <J, | [, 1l I*> is easily

geen to consist of all convergent sequences for which [jz|| < co; this space

is shown by James to be the biconjugate space of <J, || [[>. The functional

Noo (#) = lim &, is linear on (J°, | |>; it is, however, nob y-linear. Indeed,
N—>0

let a™ ={0,...,0,1,1,...} (n noughts), whence [o™] = Y2 and
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fla
7(0). This example implies the following

6.4. PROPOSITION. Neither the y-biconjugate space nor the y-completion
of a saturated space meeds to be saturated.

6.5. PropoSITION. Let || |[* be a coarser morm in the space I' (with

= 5’ 27 — 0; on the other hand, 700 (2™) = 1 does not tend to
y=n+1

lz)| = ZMI), such that <X, |, |l I*> 4s saturated. Then || || and | II* are
=1
equivalent.

Proof. This follows by Proposition 6.2, by the theorem of Schur

([6], p. 137) and by Theorermn 1.2 of [3].
6.6. ProvosITION. Let the y-completion <{X°, |1, | I*> be saturated
(this is the case in particular when N I, 0 I*> is saturated); then the

space <X°, || lI> 48 equal to the completwn (X LD of <X, 111> If, moreover,
(X, | is complete, then (X, ||, |l I*> is p-complete.

Proof. Since (X° |||, ||y is saturated, each linear functional
is uniquely extensible from <X, |||> to (:X‘, 1>, by Theorem 4.1.
From Proposition 4.3 it follows that X° = X.

6.7. TamorEM. Let (X, ||, | I*> be y-compact and saturated. Then
(X, | > is reflewive and separable, and y-comvergence in <X, ||, || >
is equivalent to weak convergence tn (X, || [I>.

Proof. The reflexivity of (X, | |> follows by Theorem 5.2 and The-
orem 3.7. Next, by Theorem 5.5, the space (E*, || |[*, | II> is y-compact,
whence it is y-separable. By Proposition 5.4, (&, || [|> is separable, whence,
by E= 5, {(&,|> is separable, and by a theorem of Banach ([6],
p. 189) <X, |||> is also separable. Finally, let &, £, ... be a sequence

dense in (X, || |[> and let [jgllf = 327" &,(#)|. BEvidently, y-convergence
n=1

in <X, 0, 1I* is equivalent to weak convergence. By 6.2, y-conver-
gence in (X, |||, | "> implies weak convergence; the converse follows
by the application of Theorem 5.8.

6.8. PROPOSITION. Let (X, | ||> be reflexive and not separable. Then

there emists no coarser norm || |[* such that y-comvergence in (X, | |l, || II*)
18 equivalent to weak convergence in <X, || .

Proof. The reflexivity of (X, |||> implies that every bounded
sequence of elements of X contains a weakly convergent subsequence
(Pettis [16]). Suppose that there exists a norm | {|* coarser than || || such
that weak convergence in (X, || ||> is equivalent to y-convergence in
<X, |Ill, I [*»; this implies the y-compactness of (X, ||, || |*y and, in
tarn, by Theorem 6.7, the separability of (X, || |>.
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