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On generalized variations (I)

by
J. MUSIELAK and W. ORLICZ (Poznan)

0. Introduction. N. Wiener [10] introduces the notion of higher
variations. These ideas have been developed by L. C. Young and E. R. Love
(for basic treatises, see [11] and [4]), who consider p-th variations of
a real or complex-valued function z(t) of a real argument ¢, defined as
follows:

n

(o) = [sup ) ot ot ]

in1
where I7 denotes the partition @ = t, < i, < ... <t,==b of the finite
interval <a, b>. In more recent papers [4] and [3] the concept of general-
ized absolute continuity with p-th power is introduced. The notion of
p-th variations V() has been generalized to that of M-th variations
Vy(x) of a function x = x(t), defined by the formula given in section 1.
We may mention a paper by L. C. Young [12] in which the author consi-
ders results related to the existence of Stieltjes integrals for functions of
bounded M-th variations, with the second Helly theorem on the limit
of Stieltjes integrals, some applications to the theory of Tourier series etc.

In section 1 of the present paper functions of bounded M-th varia-
tion are considered from a general point of view. Some results on the
linearity of the set of functions of bounded M-th variation and on con-
vergence in variation are given. Moreover, the first Helly exfracting-
-theorem is proved. Section 2 is devoted to functions absolutely con-
tinuous with respect to a function J. Here the greater part of the theorems
ave generalizations of results obtained by . R. Love [3]. Next, the equi-
valence of some definitions and approximation problems connected with
convergence in variation are considered. Section 3 introduces the norm
in the clags of functions of bounded M-th variation and in the class of
functions absolutely continuous with respect to a function M, making
these classes Banach spaces. The connection between convergence in
norm and convergence in variation is considered. Finally, in section 4,
we prove a theorem on sequences of Stieltjes integrals and give the form


GUEST


12 J. Musielak and W. Orlicz

of a linear functional over the space of functions absolutely continuous
with respect to a function M, generalizing some results of [4] (see also [5]).
The main results of sections 1-3 are given without proofs in our note [6].
The present paper is based on applications of methods introduced by
W. Orlics (see e. g. [8], [91) for L'-spaces to spaces of functions of boun-
ded M-th variation and to spaces of functions absolutely continuous with
respect to a function M. Our investigations ave also connected with the
general theory of modular spaces (seo [71).

We now give some notations used in thig paper. We denote by M (u)
a continuous and non-decreasing function defined for w = 0, with
M(0) =0, M(u)>0 for u > 0. We shall sometimes apply the following
conditions:

(0) there exist ¢ > 0 and L > 0 such that M (1) =< Lu for 0 << u = a,

(0) M(w)[u — 0 for u — 0.

(o0) M (u)[u — oo for u -—> oo,

(A,) there exist a >0 and x» >0 such that M (2u) << %0 (u) for
0<u L.

(¢) M(u) is a convex function.

If M (u) satisfies the conditions (¢), (0) and (oo), then we denote by
N(u) the function complementary to M (u), defined by the formula

N (v) = max[uwv—M (u)],
w20
satisfying also the conditions (¢), (0) and (oo) (see [1], p. 14, Theorem 4)-
For the functions M(u) and N (u), the Young inequality
w < M(u)+N(@w), wu,v>=0,

holds.

1. Functions of bounded variation. We consider complex-valued
functions w(¢), defined in a finite closed interval {a,b)>. The value

Vi(@) = sup 3! Mlla(t) — ()],

where IT is a partition @ =t, <y <... <lp=b of the interval (a, b
will be called the M-th variation of the function @(t) in {u, bd. The va-
riation in a subinterval (t',¢’> of the interval {a, b> will e denoted by
Vulw; ¢,1""), where Viy(w;t,1) = 0; Viy(w) = Varlw; @, b) will always
denote the variation in the fundamental interval {a, b)>. Morcover, we
denote by <)y the class of all functions » = w(¢), w(a) = 0, of bounded
M-th variation, i. e. Vy(2) < oo, and by )%}, the class of all functions
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z = 2(¢) such that for a certain k > 0 (depending on 2), kxe®)y . Ob-
viously, Wy C V3. We have

1.01. If M(u) satisfies (A;), then V3 = V.

This statement immediately follows from the boundedness of func-
tions of class 9’3, and from the following lemma concerning the condi-
tion (A,):

1.02. (A,) is equivalent to the following condition: For every a' > 0
there exists a x(a’) =1 such that M (2u) < x(a’)M(u) for 0 <u < a'.

This follows from the inequalities

1 1 M M
—_— M(u) = —- (a) __.ﬂ_
»M (a[2) x M(2u) M(a/2)

1 M(a)
% HM(2a)
valid for o <u < a'.

1.03. If M(u) satisfies (c), then the M-th variation of a monotonic
Function x(t) in {a, b) is equal to M[|z(b)—x(a)]].

The inequality M[|z(b)—=(a)|] < V() being obvious, we prove
the reverse inequality. Since M (u) satisties (e), M (u)/u is non-decreasing
and we have, for an arbitrary partition ¢ =t, <t <... <l =1 of
the interval <{a, b such that x(f;_;) # = (%),

Mu) = M(a) M (2u)

M(2u),

- N0 M) — o)l ,
2 )=o) = 2y g )

T Me®) =@
j2(5)—a(al]

=

{S’ (2 (t) — o ()| = M [l2(b)—a(a)]].

Consequently, Vi (2) < M[jw(b)—=(a)ll

1.1. Linearity. We now prove some theorems on the linearity of the
spaces )7, and 3;. First, we give some auxiliary inequalities.

1.41. Let us assume that M(u) satisfies (A,), and |z;(t)] < K for
i=1,2,..., % Further, let m denote the least non-negative integer satis-
fying the inequality |¢| < 2™ Then

Var(ty 4 4o+ 1) < (0= DE) [ Vag (@) + Var(@) +- .+ Var(@)]

and
Varlom) < 22" K) Varl@n),

the function =(a’) being defined in 1.02.
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The former inequality follows from the inequality
Mg+ sy e ) < (0 —L)a") [ M () o M () Ao+ M (0,)]

valid for 0 < u; < ¢’ and the latter is obtained by induction.
1.12. If M (u) satisfies (c) then

1 o . .
V(@ F- o+ &) < W [V ar (g ) - Vg (np) A= o - Vg (nwn) 1.

Now we proceed to the problem of the lincarity of the classes )7y
and YV}. Obviously, applying 1.11 and 1.12, we obtain the following
result:

143, (¢) implies the linearity of )ye, and (A,) that of Vg

Tt will also be proved that if 97, is linear, condition (A,) holds. The
proof of this statement requires two auxiliary lemmas.

1.14. The comvergence of the series Y M (u,) implies the convergence
of 3 M,(u,) for every sequence of non-negative numbers u, if and only if
there exist numbers a > 0 and b > 0 such that My(w) < DM, (u) for 0 <%
< a.

This lemma is proved in [1] (Theorem la, p. 5). For completeness,
the proof will also be given here. Since the sufficiency is obvious, we only
prove the necessity. Let us suppose that for each a > 0 and b > 0 there
exists a number % such that 0 < w << a and M,(w) > bM,(u). We put
M,(a) = 1/n?, b == and denote the corresponding numbers w by Uy
Moreover, we denote by %, the least positive integer such that 1/n?
< kM, (u,) < 2/n?. Then, if we write u, = by, 0T Tyt ..+ Tpey < <y
4.4 by, where m =1,2,..., k =0, we have Y M,(u,) < co and
M, (up) = oo.

145, Vyp CVyy,, if and only if there exist a > 0 and b = 0 such that
My(u) <M (u) for 0 < u < @

Sufficiency. First let us remark that, for every o’ = 0, our condition
implies the existence of a b(a’) > 0 such that M,(u) < b(a’).M () for
0 < u < a'. The proof of this iy similar to that of 1.02. Let us assume that
@ = x(t) belongs to V. The function «(¢) being bounded, |x(#)]| = K,
we have M,[le(t)—as(t")|] < b2E)M,[|o(t)—o(t")]]. Then, V(e
< B(2E) V oy, ().

Necessity. Suppose that Vyy, C )7y, and that for every a > 0 and
b > 0 there exists a number » such that M,(u) > d.M, (%) and 0 < u < @.
Then 114 implies the existence of a sequence u, > 0 such that
S M, (u,) < oo and Y M,(u,) = co. Let w, denote a fixed increasing se-
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quence of points of the open interval (a, b). We put

u, for t=w,,
0 for ¢ 2w, n=20,1,...

Then, if we choose an arbitrary partition o =1, <t < ... <t, =b
of the interval (a, b>, we have

m mn m (=]
D) Mt =2 ()1 <2 3 My(ui)+ 3 My (lur,—uiy_,|) < 4 3 M, ().
=l T=1 i=1 =0

Hence, Vy, (2) < co. On the other hand, for the partition o =i, < ¢,
< .oo <ty =b, where fy,, =w;, t=0,1,...,m—2, and t,=
= Hw;_,+w), i=1,2,...,m—1, we have

2m—1 m-—2
D) Mallw(t)—z ()12 2 > My(ui),
i=1 1=0

whence V(%) = oo.

Remark, It follows from 1.15 that there exists a function M,(u)
such that Vy = “)7y, and M,(u)/u - co as 4 — co. Moreover, if there

exists M (u) ju > 0, then 77, = )%, where )% is the class of all functions
U—>04-

of bounded variation in the usual sense, equal to zero at the point a.
Hence, the assumptions of the existence of IimM (u)/u and LmM (u)/w

U—>00 U—0
(implied for instance by (¢)) are not essential generalizations 0f+the as-
sumptions (oo) or (o). - ‘

1.16. The class )7y, is linear if and only if (A,) is satisfied.

The sufficiency having been proved in 1.13, we now prove the ne-
cessity. Suppose that ©)7,, is linear. Then we“)?,, implies 2z, If we
put M;(u) = M(w), My(u) = M(2w), we obtain 7y, CVyy, and 1.15
implies condition (As).

We now give three theorems on the connection between the va-
riation of a function () in the whole interval <a, b) and the sum of
variations in disjoint subintervals of {a,b)> the sum of which is equal
to <a, b). :

117, If o < ¢ < b, then the inequality
Va(@; @, 0)+Va(w; e, b) < Varlw; a, b)
holds. Moreover, if M (w) satisfies (A,) and |x(t)| < K, then
Valw; @, b) < #(2K)[Va(®; @, ¢)+Vul; e, b)],
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the function x(a’) having been defined in 1.02, and if M(u) satisfies (c),
then
V(s 0, b) < [ V(225 @, 0) Vi (25 ¢, b)].

The proofs of these inequalities will be omitted.

1.18. Let us consider a ﬂme(l partition @ ==ty <1 < ... <y =0
of the interval {a,b). Suppose z(l;) = 0 for i =1,2,...,m—1.
a) If M(w) satisfies (A,) and @€V, @ (t)| < K, th{'n,

m
Varl@; 4, 8) < (K) D Var (@5 tiys 1)

i=1

(by If M (u) satisfies (c) and ke )y, where k> 0, then

m

V(3 @, b) 2ZVM(7GJG ti1, 1)

We give the proof for case (b) only. Case (a) is proved similarly.
Denoting the given partition a =1, <t <... <ty =b by. Iy, let us
choose an arbitrary partition IT: & = 7, <7y < ... < 7Ty = b of the
interval {a, b>. We define two finite sequences of indices ¢, and pu, as
follows: The positive integer ¢ belongs to the increasing sequence i,
y=1,2,..., 4, if and only if in the interval (z;_;, 7;) there exist points
of the partition I7,. By u,+1 we denote the number of points of the
partition T, belonging to the interval (;_,, ;). Thus, we have

T <l <ty < < by, < T

Moreover, we denote by j,, » =1, 2, ..., m —pu, the sequence of positive
integers 1,2, ..., m’ not belonging to the sequence ¢,. Thus, we have

D Mk laln,) —(r, )] < 3 M {Fkolr,-)|+ o))
p=1 pem]

1 I
<3 9 Z{MUGM T1)| 1= M [Fe | () 1}

1 &
<5 ) (M Ikl (h)—o(m, )1+

vty

+ D) Mklo(t) — vt 1+

o=v+1

+J‘I [k |m(117,,) — "D(tv»(—uv)l]} .
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Hence

My

1
D M kle(w) —a(z_)|] < Z{M[Mx( D—alt, )+

=1 v=v+”‘"
+ D Mkle(t) — o))+
o=v+1
+ M [k o (7) — @4y, )11+
M —p

+ 2 M3k | (z)— oy, )]

Oy
,,_)_, ar (ks i1y &)

1=1

The partition I7 being arbitrary, we obtain the required inequality.

119, If o=t <t <...<tp=0 and Vy(x;t,, ) <oco for
t=1,2,...,m, then Vy(z;a,b) << co.

1.2. Convergence in variation. We now introduce in V3, the concept
of convergence in variation. The sequence , %73 will be termed conver-
gent in variation to vy if there exists a & > 0 (not depending on n)
such that Vi [k(z,—x)] — 0 for n -> co. Moreover, we shall say that
a sequence m, <)y, satisfies the Cauchy condition in variation if there exists

k> 0 such that for every &> 0 there exists a K with the follow-
ing property: for every p, q > K, Vy[k(z,—2,)] < e Finally, we shall
say that @,y is bownded in variation, if Vi (kx,) is\ bounded for =
=1,2,..., with a ¥ > 0 not depending on ». Firgt we remark that

1.21. (a) If o sequence w,<V5, is bounded in variation, then it is uni-
formly bounded, 1. e. |@,(1)] < K in <a, b,

) If o sequence m, )%y, satisfies the Cauchy condition in variation
or is conwergemt n variation to zeVyr, thew it is uniformly convergent
(to x(t)) in <{a,b).

The proof of this theorem will be left to the reader, as involving
no difficulties.

1.22. If M(u) satisfies (Ap) or (c), then the class V3 is complete in
variation, i.e. every sequence <)y satisfying the Cauchy condition is
comvergent n variation to an xeyy. Conversely, convergence in variation
implies the Cauchy condition tn variation.

To prove this theorem, we remark that for a given ¢ > 0 and an ar-
bitrary partition a = t, << #; < ... < I, = b of the interval <@, b) we have

m

D M| [ (1) — g (1)1 — [ (1) — 2 (1) 11}
i=
< Vylkle,—a)] <e for p,¢> K.

Studia Mathematica XVIII. 2
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The sequence &, (¢) being uniformly convergent to #(f) in {a, b (see 1.21),

we obtain
3

D Mk, () —a

i=1

41— [ep(ty) —a ()]} <& for  px= K

and the definition of variation yields
Vulkle,—2)]<e for p> K.

The converse theorem follows from 1.11 and 1.12.

1.23. Let us assume that M (u) satisfies (A;). Then @, eV 18 convergent

in variation to z<Vy if and only if Vy(@,— )0 for n-—oco. Moreover,
the class Uy is @ non-separable L2"-space (for terminology, see [2], p. 83
and 88) complete in variation.

To prove this theorem, we assume Vy[k(z,—x)]—> 0. This engures
k|2, (t)—=»(t)| < K uniformly in <{a, b). If we put 1/k < 2™, where m
is a positive integer, we obtain

@) < A2 K Vg [ (0 — )]

(se:e 1.11) and Vy(x,—a)— 0. This implies that the class 97, iy an
£*-gpace. Non-separability of 4, follows from the fact that for the
step-functions

VM(wn—

0 for
1 for

at

]
0 (1) = { >
fh<t<b,

we have Vi (@, —ay) = 2M (1) for &, #14;’, the set of such functions being
nf)]ft-enumerable. The details of the proof of non-separability using con-
dition (4A,) will be omitted. Completeness follows from 1.22.

124, If @,(t) = a(t) in <a, b>, then

V() <Hm V().
B N—>00
Assuming ¢ =E{T_1VM(%) < oo we choose a sequence @, (¢) such

N—»00
that Vp(w,,) - ¢g. Given e > 0, we obtain, for an arbitrary partition
=1 <t <..<t,=> of the interval <a, b},

glM[lmnk(

and the convergence @, (i) —>

O (L)1 < Vi (any) < gk for ko K,

z(t) yields V() < g-+e.

1.3. Helly’s extracting theorem. Buery sequence , ey bounded in
variation (i. e. there ewist constants % > 0 and K > 0 such that Vi (ho,) < K

icm

On generalized variations (I) 19 -

for mo=1,2,...) includes a subsequence convergent to & function x = m(f)
of the class V3 poimtwise in {a, b).

To prove this theorem we write v, () = V(kzy; a, t) for a <t << b.
The functions v,(t) are non-decreasing and bounded by K in {a, b}.
Thus, we conclude from the well-known Helly extracting theorem for
sequences of monotonic functions that the sequence v, (i) includes a subse-
quence v,,(¢) convergent te a non-decreasing function v(f) at every point ¢
of the interval {w, b>. Using the diagonal method we exfract from the
sequence of indices #; a subsequence 7 such that m,% (t) is convergent
at every ra’ﬁlonal point of the interval {a, b) and at the pomts @, b. Writing
xm-,(t) = (f) and U, (t) = »;(¢), we obtain

vi(t) —~o(t) for every tela, b}

and
w; (1) — »(t) for every rational te(a,b) and for it =a, t =0.

Now, let us assume that #, is a non-rational point of continuity of
the function »(¢) in (@, b). We shall prove that the numerical sequence
@} () is convergent. We take an arbitrary &> 0 and choose a rational
number we(a, b), w > t,, such that

0 < v(w)—o(t) < IM(3ek),
and a J such that for j > J
) (w)— ()| < 3M(hek) and o] () —v(t)| < $M(dek).
Since, according to 1.17,
M Kol () — o (0)]] <
< foj (w)— v(w)| + [v(w)

for § > J, we obtain

Vo (b 5 1, w) < 05 (w)— 25 (t)
) — v (to) 1+ [0 () — 7 (to)| < M (}ek)

|} (8) — o7 (w)] < 3¢ for §>J.
We now choose a number P such that for p, ¢ > P,
|2y (w)— g (w)] < }e

and put J’ = max(J, P). We then obtain, for p, ¢ > J’,

{ap (o) — g ()] < e.

Thus, the sequence @ (%) is convergent. The set of points of discontinuity
of the function »(f) being at most enumerable, the diagonal method enables
us o extract from the sequence #; (f) a subsequence convergent to a fune-
tion x(f) at every point of the interval <a, b). Bvidently, Vi (kr) < K.
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2, Absolutely continuous functions. A complex-valued function =(1),
defined ‘in & finite closed interval (e, b, will be termed absolutely con-
tinuous with respect to the function. M (w) if the following condition is
satistied: for every s> 0 there exists a 0 > 0 such thab

m

D) Mlla(Bo—

=1

a)|] < &

for all finite sets of non-oveflzmpping intervals (o, B;) C (o, b,> 4 == 1,2,
..y M, such that

M

5’ M(p

We denote by «{Cy the class of all functions x(¢) absolutely continuous
with respect to the function M(u) and such that @(a) = 0. Moreover,
we denote by {Cj, the class of all functions # = #(¢) such that fora k>0
(depending on @), kwe AL, . It is easily seen that the functions of the class
@}, are continuous. Bvidently, i€y C o(Cy. The following theorem iy
verified similarly to 1.01:

2.01. If M(u) satisfies (B,), then ACy = HACy

)<< 4.

2.1. Several equivalent definitions of absolute coutinmuity. We
now introduce the following conditions:

1. Given an arbitrary & > 0, there ewists & 6 > 0 such that for every
pariition ¢ = t, <t < ... <ty = b of the interval {a, by with #,—1t;_; <« 0
for i =1,2,...,m, the inequality

m

X M la(t)—

i=1

()] <e

holds.
1*. There exisis a &k > 0 such that ka satisfies condition 1.
2'. For every &> 0 there exists a partition o ==, <<t < ...
of the interval {a,b) such that the inequality

< l’}n =

}_7 Va5 6y, 8) < &
q=1
holds.
2", There ewisis a k > 0 such that kw sotisfies condition 2'.
In the following theorem the notation AS B will indieate that,
assuming property C, condition A implies condition B.

icm
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211, If w(a) = 0, the following implications hold:
(0B, Vs ciey, s0591Y, 17 wel,
vz, 2@ ge, 1t e, 2t Y e

We note that other characterizations of 7@,
2.22 and 2.41.

We prove the implications given in 2.11 successively.

and ¢{C3; are given in

gzeui"i 1'. Given an &> 0, we choose a number § > 0 such that for
each finite set of non-overlapping subintervals (a;, B;) of the interval
{@, D> the inequality

‘7"» ‘J‘I’L‘

D M(Bi—a) <6 implies DMl —o(@)] < e

f=1 z=1
Now we take a number & > 0 such that for 0 < u < &, M(u)ju<
< 6/(b—a). Then, if we take a partition o =1f <t <...< tw =b

of the interval <a, b) satisfying the condition #;—i;,_, < & for i =1,2,
.., M, we obtain

n m m
N o —t,_ ) = ‘jMi—l) t—t, _5_, Nty =
{é{ (1. 1—1) ,LL:'IJ ti_ti_l (1, 'L—l) < h—a ;:ll {tz tl—l) =9

Hence

Ll < e.

Z.M[lm

1" = «{@y. We chooge a number 6 >0 such that for every partition
e=1h <t <..<t,=0Db of {a,b) with #,—¢,_, <8 the inequality
m
S Mo (b)—2(t;_1)|] < & holds. Further, we take an arbitrary finite set
1
of non-overlapping subintervals (a;, 8;) of the interval (a, b> such that
m’

%’M (Bi— o) < M(5). .., m'. We

take points f; = 7f) < +f) < ... < 1) = a;,; for f; < @1, 0 =0,1,...
.y m', where f; = a, a,.,, =b, in sueh a way that +{) —2{9 < § for
t==0,1,...,m 3k =1,2,..., p;. Applying condition 1’ to the partition

This implies f;—a; << d for ¢ =1,2,.

s<P << <g<p<i<..< <a<..<Db
we obbain
m’

D Mljw(B,)—

=1

m(al)|] < e,
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The implications gqe;,‘-"i 1* and 1* — #C3; are obtained from those
proved above by putting kx in place of . i

1/ 9 and 1" — 2° being obvious, we now prove 2’ = «(Cy and
9t 2 Hek,. Let us take an arbitrary y = y(t) satistying conditions 2',
y(a) =0 and an arbitrary 7 > 0. We choose a partition a =1, <1
< ...<t,=" of the interval <a, b> such that

m
D Valys tiay ) <7
i=1
and denote & = min(t;—1t,_,) where ¢ =1,2,...,m. Now let (a,,f,)
(where » = 1,2, ..., m’) be a finite set of non-overlapping subintervals
e
of the interval <a,b) such that Y M (8~ a) < M (6). This implies espe-
1
cially #,—a, < 6. There exists no interval (a,, 8,) such that o, <.
<t; <P, for any index 4, since this would imply 6 < —1ti < f—
—a; < 8. We now write 7, = {; if there exists an index 4 such that
o, < t; < Bi, and 7, = o, if none exists. Then we have

m’ m

N M) -y (@] < ) My (B —y (@)l +ly(m) =y (@)

r=1 p=1
Now let us assume that M (u) satisfies (A,), [z(t)] < K, and, for a given
e >0, put u = ¢/x(2K) (see 1.02) and y = . We then obtain

D M{lw(8)—w(a)]

r=1
m’

#x(2K) D (M [1e(B,)—o(x) ]+ M [|2(z,) — 2 (a)]]}

=1

A

m
S w(2E) D Varle; by 1) <o
=
Now we suppose that I (u) satisties (e), and put 7 == 2e, y == fhr.
Then convexity implies

m

S M3kl(B)— o ()] < 3 ) Varllw; toy, 1) < e.
v=1 =1

As an example of the applications of the last theorem we now give
an inclusion-theorem for abgolutely continuous functions.

2.12. Denote by CVyy and CVy the classes of all continwous functions
belonging to Vy, and Vi, respectively.

icm
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(a) If M(u) satisfies (0), then s{Cy C CVy and ACH C CYYy.

(b) If My(w)/My(u)—~0 for w—>0 and My{u) satisfies (o), then
CVy, C sACy, and Gﬁ)ﬂ}‘.,l C 5—’18342-

(¢) If M, (u) satisfies (0) and My(u)/M (u) =0 for u—0, then
ACyyy C #Cyy, and ACxy, C ACy,-

Tt is easily seen that the inclusions for non-starred classes imply the
same inclusions for starred classes. First, we prove (a) and (b) for non-
-starred clagses. Assumption (0) implies the following condition: for every
&' > 0 there exists an L(a’) such that M(u) < L(a')u for 0 <u < a'.
‘We denote L(b—a) = L' and choose a number § > 0 such that for every
finite set of non-overlapping subintervals (o, f;), ¢ =1,2,...,m’, of

m’ m

the interval <a, b, the inequality Y M (f;— ;) < 6 implies DM [|z(B;)—
1 1

—w(e)|]] < 1. Now, we fix a partition @ = <# <... <1, =0b of the
interval <a, b) such that t;—t;_, < 6/L' for i =1,2,...,m and take an
arbitrary partition t;_, =7, < 7 < ... <7 = ; of {fiy, 1) We have

» »
S ME—1) KLY (B=7) = I'(li—t) <.
n=1 y=1
Hence
b4
D Mija(n)—o(na)] <1
p=1
and

Varlows By ) < 1.

Applying 1.19 we obtain Vy(z;a,b) < oo, i.e. 2eVy.

Now let us assume the condition M,(u)/M,(u) — 0 for u — 0 to be
satisfied. Assume xeCVy, . On fixing an ¢ > 0 we choose a number §’ > 0
such that M, (u)/M,(u) < &V (@) for 0 < w < 6. We now take a num-
ber % > 0 such that for |h| <7, [@(E+h)—2(t)| < 8 and pubt & = My(n).
Then for each set of non-overlapping subintervals (o, £), ¢ =1, 2,...,m,

m

- of the interval (&, b> such that > M,(f;—a;) < 4, we have Bi—a; <m
1

and, consequently, |#(f;)— (o) < 6" Hence

mn

S Wyl —a(@l] 4o
N fia(g—atell = Y 3ty —aay “nle6) =@

m

¢ Zﬂluﬂm)—w(ai)u@

<
=

=

Vo, (%) r—

for #(o;) # 1(8;). Thus, the function w(f) belongs to ACpyy-
Property (¢) follows from (a) and (b).

s

i=1 i=1
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2.2, Approximation by step-functions. We now give three theorems
on approximation in variation of absolute continuous funetions by step-
-functions.

2.21. We assume that M (u) satisfies conditions (0) and (Az) or (o)
and (¢) and weslCy. Then the following property holds:
(+) for every &> 0 there exists a 6 > O such that for every partition
4 =1 <t <..<ty=2>0 of the interval {a,b>, satisfying the condition
—t_ <0 for i=1,2,...,m and for every i, <v; <1, the step-
-function
x(7;) for oy St <y,

s = for t=0b

#(Tm) or 2(b)

satisfies the inequality V,[k'(x—3)] < &, where &' > 0 depends on x only.

We restrict the proof to the case of conditions (o) and (¢). As follows

from 2.11, there exists a & > 0 such that for each partition o = t) < {
< .o <ty = b such that t;—1t_, < 8 for ¢ =1,2,..., w,

;M [kl (8) — & (3:_y)|T < 2e.

We choose an arbitrary partition e =1t <t <... <ty =25 of
the interval {a, by, sueh that #,—t,_, < 36 for 4 = 1,2,...,m, and
ta;ke. .t,-_l <7y <Y, where ¢=1,2,...,m We then congider the
partition 4 =7 KUK B < KT KTy =0 of (a,d). Since
=T < 6 fori=1,2,...,m+1, it follows that

m-+1
;: Var(ko; 71, 7) < 26
L=
Bvidently, Var(ks;rioy, m) < Var(ka; 7oy, w) for
Applying 1.18 to the function }(r—s), we obtain
m--1

Valdh(@—)] < § D) Valdh(o—s); vy, 1]
%=1

i=1,9,..., m+1.

M1

[Varkws wimyy 7)+ Vag (ks vy, w)]

Nk

<i

.
-

1
<1 ) Vaylhos vy, w) < e

3
i

X
-

. 2.22. Let us assume that M(u) satisfies (0) and (c). A function w(t)
defined in {a, b), x(a) = 0, belongs to the class ACH if and only if the pro-
1.9erty (+) given in 2.21 holds. The same statement is true if we assume (A,)
instead of (¢), and put ACy in place of ACY (cf. also [57)
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The necessity follows from 2.21. To prove the sufficiency we choose
two partitions of the interval {a,d), II: o =t <t < ...<tp =20
and II': @ =ty <1 < ... < I, = b, both satistying (+) with a given & > 0
and such that ¢ #¢ for 4=1,2,...,m—1; j=1,2,...,k—1 and
7 = b. Moreover, we denote by s;(t) and sp.(f) certain step-functions
corresponding, according to (+), to the partitions ZI and II', respecti-
vely. If we take numbers o, < f; such that <a;, B> C (f_1, 1) and
b=+ pB) for i=1,2,...,m—1 and {am, fmd C (thy, b with
Bm =Db, B, = a, We obtain, aceording to 1.17,

m m

DVl a; i, ) = 3 VW (@—57); a1, il < VaelW (2 —5)] < &

i=1 i=1

i=1

m m
D V(@5 Bioy @) =X Vau[F (@55 Biorso] < Vir[K (@—s2)] < 2,
=1

the functions s;(f) and s;(!) being constants within the intervals
{az, B> and {B;_,, a;), respectively. Hence

m

D UV aelB' w5 Biyy o)+ Var(W @5 sy B)] < 26

i=1

and our theorem follows from 2.11.

2.23. Assuming (0) and (Ag) or (0) and (c), the set O of all step-functions
with rational complex values having in (a, b) rational points of discontinuily
only is dense in variation in ACyy, 4. e. for each z eACyy there emists a k'* >0
such that for every &> 0 there ewists a function s eW such that
Vulk' (#—s] <e.

To prove this theorem, it is sufficient to choose, for a given zeACHy
and a given & > 0, a function ¢ as in 2.21 with rational ¢, and z; = ¢; and
to take such rational complex numbers w;, ¢ = 0,1,...,m, that

€

m—i—i

MK |8 (8)—wil] < for 4, <E<U,

BT |5 (B) — o] < ——

m-+1
and
, wy for o <t <,
§'(1) =
{w, for t=0.
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. ope ’ ’ - -
Indeed, given an arbitrary partition ¢ =1, < 71 < .00 < Ty = b, we

have
S ls(e)— (1) (i) 8 ()]
i=1
<2 4,?1: MK |8 () — ¢ (8] < 2e,
L e.

Vaul ¥ (@—s')] < 26.
Applying 1.11 or 1.12, we easily obbain the required inequality.

2.3, Completeness and separability in variation. Now we shall
consider the problems of linearity, completeness and separability in
variation of the classes o(Cy and «Cj.. The following theorem may be
proved similarly to 1.13:

2.31. (c) implies the limearity of siCx and (Ay) the linearity of dCy.

We now proceed to theorems dealing with eompleteness and separa-
bility in variation of spaces @, and ACj.

232, If M (u) satisfies (A,) or (c), then the class “lCy s complete in
variation, i. e. every sequence m,es(Cy satisfying the Cauchy condition in
variation s convergent in variation to an welCly.

The proof of this theorem is analogous to that of 1.22.

2.33. If M (u) satisfies the conditions (0) and (A,) or (0) and (c), then
the class <lCyy is separable in variation.

To prove the geparability, let us take the set W: sy(t), & (t), ...
defined in 2.23. Now, on fixing two positive integers m and » and a posi-
tive rational number %, we choose a function @i, es{C3 such that

(s — gt )] <
T/_M[k (8n mn,m)] < " ?

if such a function exists. Denoting by 1% the set of all such functions
a2, (t), we shall prove that, given an element @ ¢ <{Cy;, there exists a sub-
sequence of the sequence x},’f,)n(t) convergent to x in variation. Put, in
2.23, ¢ = 1/m and choose the positive number %'’ rational. There exisls
an n such that V[t (#—s,)] < L/m. It follows from the definition of
the set ), that there exists a function i, (f) such that Va[k'' (s,
—2$9.)1 < 1/m. Supposing (¢), we obtain from 1.12

1

Varl b (@— )] < HV s K (0 )1+ Var K (81— 2]} < —

In the case of (A,) we apply 1.11 instead of 1.12.
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2.4. Absolute continuity and the variation of the translated
function; approximation by Steklov functions. Here we shall assume
the function & = x(t) to be periodic with period b—a. This assumption
will be made in order to simplify the calculations; our theorems hold
also for non-periodic functions. Further, we write x,(f) = @({4-h), and
term a; the translated function to x. We shall prove the following
theorem: ;

2.41. Let us assume that M (u) satisfies (o) and (c), and let @ = (1),
x(a) = 0, be a measurable and periodic function with period b—a. Then
2edChy if and only if the translated functions @, converge to x in variation
as h— 0, i €. if there ewists a &' > 0 (depending on x) such that V [k’ (24—
—2)]—0 for h— 04.

The necessity follows from the following theorem:

2.42. If M (u) satisfies (0) and (A,) or (0) and (¢) and ze{Cy is perio-
dic with period b— a, then Vy [k (2p— )] = 0 for h— 04, where &' is a
positive constant depending on x only.

To prove 2.42 in the case of conditions (o) and (c), we fix a number
¢ >0 and choose a step-function s(¢) as in 2.21 with 7; =%, ;:

x(t;_,) for
x(b) for

i <t<ty, i=1,2,...,m,

t=15

m
such that Vi l[k(z—s)]<e with a k>0 and X Vy(kw;ti 1, t) <e
1

(see 2.11, «(Ch D 1%). If we pub m(i+ h) = @,(f) and s(t-+h) = s,(t) (with
a periodical continuation of s(¢) for ¢ not belonging to <a, b), we have,
according to 1.17,

Var[3k(ap—82)] < Vylk(z—s)] <e.

Now let us take a number h such that 0 < h < 8 == min(¢;—1%;_;), Where
i=1,2,...,m Then s(t;+h)—s(t;) =0 for ¢=1,2,...,m—1, and
1.18 implies

Var[dk(sn—8)] < 3 3 Varll 2 (sa— 85 L, 1)1

T

ibAs

i
I

”

<4 3 [Var(bosns iy 1)+ Vg (388 iy, )]

=1

m

m
< ZVMUCS; tigs ) < 2 Vi (ks t;_q, 8) < e
=

=1
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Hence 1.12 implies
Vsl (n—2)1 < 3 (Varl¥o(@n—s)1+ Var (g blsn—9) 1+ Val k(s —o) ]} <e

for 0 < b < 8. The proof in the cage of conditions (o) and (A,) will be
left to the reader.

To prove the sufficiency of 2.41 we need the following lemmas;
to formulate them we must introduce the following definitions:

() The fumction x(t) defined in {a,b) satisfios condition ( if 7}0 'is
measurable, periodic with period b—a and if there exists o wnsl(r/nt k-
depending only on © such that V& (@p—a)] - O for h-=0-}, wlrm'
oy (1) = w(t+ k).

243, If M(u)—~ oo as u-» oo, then every fundtion w(t) satisfying
condition (%) 48 bounded.

Condition (#) yields Vy[k'(z,—2)] < K for certain k' > 0, I = 0
and 0 < h < 2. We choose a positive number » such that I (k'n) => K.
First, we prove the function @(t) to be bounded in a neighbourhood of
the point a. Let us assume gmlw(t)l = co. Choose a function (i), con-

a:

+
tinuous in (@, -+ 2¢> and such that »(t) = ¢(t) in a set ¥ C {a, a2
of measure m& > i-a, p(a) = @(a). There exists a & = 0 such that, for
[ =" < 6, lp(t')—p(#)] < e. We choose a number #ye<a, a--min(s, e))
such that |z(2,)—x(a)] > n-+e We now apply the following well-known
lemma:

If we denote by B; the set of all numbers b such that -4 h ¢ B, where
EC <{a, a+2sy, mE > %s, then m(B;~E)> 0 for 0 <t < %s. Henee
there exists a positive number h < 2&— (fy—a), a+h e By_ L, such
that both equalities x(t,+h) = @(f,-+h) and z{a-h) = @(¢+h) hold
simultaneously. Then we obtain |o(¢+h)—x (e k)| = |p(ty+ h)—
—@(a+h)| < s and

K 2 Valk' (wy—a)] = MK |2+ h)—a(a+ h)— o)+ 2 (a)]]
= M[E e (t)—2(a)|— le(ty+ h)—o(a-+h)||] 2= M(k'n),

which contradicts our assumption; hence therc exist numbers &, - 0
and K, > 0 such that |z(2)] < K, for o <t < a0y,
Now, it follows from our assumptions that |z (¢ h)-— @ ()~ @ (a-|- h) -
()] < K, for 0 <& < ¢ and for a constant K, not depending on ¢;
hence |o(t+4-b)| < |o(t)|+ |o(a)| +E;+K, for 0 < h < min(d,,es). Wo
choose a partxtwn 6 =1 <t <{... <ty ="~ of the interval <{a, b)> such
that t;—#;_; << min(é,, e) for ¢ = 1, 2, ..., mand write ' == mzxx}w(tﬁ[-lw

+iw(a) + By +-K,. Then for iell, 4,0, |2(t)| = o[+ i-*lfz I =5 K

icm®

On generalized variations (1) 29

Remark. It is easily seen that under the assumptions of 2.43 x(¢)
is continuous. The proof is analogous to that of the boundedness of x(f)
given above.

2.44. Let us assume that M(u) satisfies (¢), and x(t) satisfies con-
dition (x). Then the Steklov functions wn(t) of the function (1), defined
by the formula

i+1/n

a5 (t) =n f

i

z(v)dz

are convergent in variation to x(t).

We take an arbitrary partition a =t <¥ <... <t,=1"0 of the
interval <a,by. Writing D({, 7) = #({+7)—x (), we apply the Jessen
inequality for integrals

'fFumwle

] JﬂﬂwwMM)&
NME

< S
1 = 1
l.{ _Dfp(-r)(lr Jp( T)dv

with

n for 0L T<1/n,

p(7) =
0 for 7>1fn,
D@, 1)—D(tiy,7)|  for 0 <7< 1l/n,
F(z) =
0 for 7>1/n,

obtaining

yn 1/n
M[nk'f |D(ti,r)-D(ti_1,r)|dr] <o MK (D, ) =D, o)l1dr.
0 0
Since
1jn

() —a(l) =n [ D, )dr,
0

it follows that
m
MR Yl (1) — @ () —

i=1

n(r. 1)+ﬂ( )H
iyn

= \’M{nk'u (D, 7)— D(ii_l,r)]dr'}

1[7!: m
<o N MF D7) =Dk, 7)l1de.

0 d=1
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However,
mn

NM D, 7) D (i
=1
for sufficiently small 7. Thus, Vo [% (5, —2)] < ¢ for sufficiently large n.
Now we are able to prove the sufficiency of 2.41.

2.45. If M(u)
then weACYy.

Since the Steklov functions z (f) of a bounded function (1) md,m[y
the Lipschitz condition, 2.43 implies that o (1) — oy (@) belongs to s0C%,
Further, since the sequence x, converges in variation to @, 1.22 im])liaﬁ
that 28 (1) — 25 (a) satisfies the Cauchy condition in variation and it follows
from 2.32 that zeACy.

Theorem. 2.41 and lemma 2.44 imply the following approximation
theorem for Steklov functions:

2.46. If M(u) satisfies (0) and (c), then for every periodic function
2 e ACY with period b— a the Steklov functions of @ converge in M-variation
to x.

1 DN < Valk (@~ 2)] < o

satisfies (c), w(t) satisfies condition (x), and x(a) == 0,

2.5. Approximation by singular integrals. Now we shall consider
the problem of approximation in variation of periodic functions we. A€y
by singular integrals of the form

L) = f K, (v)w(t-+7)d
251, If K,(t) =0 and fKn 0t = 9,, M(u) satisfies (c) and w(t)
is periodic with period b— a, then
Var(In) <V (20,3).

To prove this theorem we apply the Jessen inequality (see the proof
of 2.44), obtaining for a given partition & =, <, <. + b of
the interval <a, b):

D) ML, (1)
=1

o I
e 'm i

m

b
~Inlte)] < M| f ottt )= 0l - 0) () e
£ |

b
< -—T)J MLy ot )= oty 1) Jde

< Vu(29,2),

whenee Vir(Ln) < Vi (205).
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252, If K,(t) =0, fK ()t —1 as n— oo and fK
afo

n - oo for each 0 << d<< l(b a), M(u) satisfies (0) and (6) and meolCly
is periodic with period b—a, then I, (t) converges to z(t) in M-variation.
We have

L —a() = (1———) j

a

Ydt — 0 as

[,c t+1)—ax(t)]dr,

b
where 9, = [K,(t)dt. Moreover, 2.51 implies
a

k 1
Vi l:; (1—'1,)—‘) In] < Vulb(dn—1)a] < [90—1] V (k)
“ n
for |9,—1| < 1.
Let us choose & number 0 < 6 < $(b—a). As in the proof of 2.51,
we have

S’M{

(7)

(240 — 2 (l)]dr—

-

@

t_1)]dv } Jo(a, b),

where

Tl b) = f La(7) Z_M[a}klm bk 1) —

t=1

(b)) — (b + 7)o (ty) Jdv.

We write J,(a,d)=dJ,
lowing inequality holds:

(@, a+8)+Jn(a+8, b—8)+Jn(b—3, b). The fol-

Iula+46, b—208) < §V p(hw) —

Moreover,
In(w, a-+8) < sup V[ 1k(w,—2)],
o<l
and similarty
I (b—0,0) < sup V[ $k(x,—x)].
0<Tgd
Hence
b—8

1
Tala, 1) <2 sup Vig[4h(@n—a))+ 55— Varlka) [ Ko(e)dr
0<rd "

a8
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Applying 2.42, let us now fix a 6> 0 such that
sup V(4% (2, —2)] < ¢

0<T<d
and a number N such that, for » > N,
bde Y 290y
(v)dv
a6 V (h’”)
and
19, —1| cminl % 11.
" By

Then Ju(a, D) < Ie and
j K, (t)

'IL

3
VM{ ——[& (t—l—r)——w(t)]dr} 58,

Thus 1.12 implies
ulth(I,—®)] <& for =n>N.
Theorem 2.52 may be applied to singular integrals of Iejér, de la
Vallée Poussin, etec.

3. The norm for functions of bounded variation. Iere we shall
always be assuming that the function M () satisfies condition (¢). We
introduce in Y3, the norm |j@|5 (or shortly |n]]) as the infimum of the set
of numbers & > 0 such that Vy(z/k) < 1. It is easily seen that

3.01. If M(u) = u®? for p =1, then

o] = [sup _5] ARETONN i
3.02. If |jw|| 7 0, then ¥V ( w/HmH ) < 1. Moreover, V g (%) < ||| for )] <% L.

3.03. The norm ||zl satisfies the wusual pmpcrtws of the B-norm:
a) llo]| = 0 if and only if #(1) =0, b) o+ gl < llall+-llyll, ¢) luzll = |allz.
The triangle-inequality b) follows from the inequalitics:

5 T () Y () — @ () — ¥ (t-y)|
FM,[ ‘ 41 ]

2 EEe
ol N7t
<o Ny
< ol -1yl £ [y tetto--ati] +
gl v 1 (
il 22 ] e —vtel] <1,

whence V[ (2+)/(lell+lyl)]1 <1 and o4yl < Jlol|+|lyll. The propexr-
ties a) and ¢) are trivial.
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31. Norm-convergence and convergence in variation. We have
the following connections between norm-convergence and convergence
in variation.

341, If M(u) satisfies (c), then 71orm-omwergefnoe implies convergence
i variation to the same lmmt m V. When M (u) satisfies (c) and (A 2)s
norm-convergence and, comvergence in variation are equivalent in 3.

The first part of this theorem follows from 3.02, and the second
from 1.11.

3.2, Completeness and separability. The following theorem holds:

3.24. If (c) is assumed, the class V3 with norm |zl and the usual defi-
nitions of addition and scalar-multiplication of elements is a complete and
non-separable Banach space. Moreover, if we assume (0) and (e), s1Cyy is
a complete subspace of V3. If we assume (0), (c) and (A,), <(Ch; is
separable.

First we prove the completeness of ©)73;. We fix a number ¢ > 0 and
choose n, such that for m, n > ny, |Zn—a,)] < e, i.e.

m
Vael@n—a)[e] <1 and Y M|wp () — () — T (i) + @ (1)) fe] < 1
ia
for an arbitrary partition a =i, <t, <...<t, =b of the interval
{a, b). It follows that «,(?) is uniformly convergent to a funetion x(f)
in <{a,b) and that Vpy[(z,—w)/e] <1 for # > n,. Hence |jw,—a| <&
for m > m,, where ze)y,, V3 being linear.

The non-separability of 9%, follows from the inequality [l — 2]
> min[M(1),1], holding for & < i, <1, < b, where w, is defined as
in the proof of 1.23.

The completeness of (¢} follows from that of %), and from 3.02
and 2.32. The separability of ={Cj, follows from 3.11 and 2.33.

3.3. Second definition of the norm. Here we shall assume that M (u)
satisfies conditions (o), (co) and (¢) and denote by N(u) the function,
complementary to M (u), defined in the introduction. We introduce in
9% a second norm |zliy, (or shortly |zf|°) as the supremum of the set
of numbers

[ (t;) — @ (8:_1)1Bss

s

o
I
-

whenever a =ty <t < ... <tp =2, ZN(!/M) 1 and m=1,2,..

The following theorem establishes ‘ohe equivalence of the norms [ia|
and |lz[l°.
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3.31. Let us assume (0), (c0) and (¢); then the inequalities
llzll < Jlefle << 2]leol
hold for each xe™V};.
This theorem results immediately from the first part of the following
lemma:
332, Let us assume (o), (o) and (¢), and denote by N (u) the function
complementwr y to M (u), and introduce norms the dlass «{,, of all vectors

@ = (thy, .-, Q) (m fized) by the formulas
m

a
@]l = infimum of the set of numbers &> 0 such that Z M(‘ il) 1,

m

lalll; = supremwm of the set of numbers Zaiﬂ@ whenever ZN (16:1) < 1.

Then <fy; is o Banach space under each of these norms,

el < ||“HM 2|alip
m
and F(a) = D a;b; 13 a linear functional over ol such that the norm
1
Il = sup |F{a)|
Nl <
satisfies the imequalities
IWFl < (bl < 208

This lemma being known, we give its proof only for completeness.
The Young inequality  uv < M (u)-+.N(v) implies

m
j Sl
B +2N Bh<z tor D N(A)
IIaHMZ hess ~ llell e t “—
Hence
el = sup >’ aif; < 2llallar,
1

where the supremum is taken over all vectors (fy, ..., fn) such that

m

Z-N 1Bd) <

Now let us choose, for an |[a|]M # 0, numbers Sy, ..

|
nanMZ 2 (H 017 ) FAd)-

.y B sUCh that

icm

It is easily verified that sueh numbers £,
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s B exist (see e.g. [1],
p. 15). We now prove that ZN([ﬂL[) 1. Let us suppose ¢ = Z’N (18:) > 1.
The convexity of N () 1mphes

m

fN('i")g%ZN(;m,

1=1 qe=1
whence
o B
D) 4=t < lally
i=1 e
and
m Iail)
M( to<
g lale) ™ ¢ = ¢

This implies a; = 0 for ¢ =1,2,...,m and |la|}; = 0, which contra-
m m
dicts our assumptions. Thus ZN (18:)) <1 and Zdiﬁtéllalﬁu- This implies

m

}J s (”':”:] )\ me

and lally < |lalf3.
Now we consider the functional ¥(a 2@1 . The definition of
Il yields '
m
aibi 0
T < [bllx
1 llallar
and
D asby < Il lallar < 1Bl [lale

im1
Thelefme F(a) is linear, and HFH
ZM la;)) <1, llaf}; < 2. Hence Z’a@bl<2[|F|| for ZM(I%I )<1 and the
1

definition of ||p|} yields bl < 2]|FH
From 1.24 and the definition of the norm follows the theorem

3.33. If z,(t) = x(t) in {a,b> and @,eVi, M{(u) satisfying (c),
llz|| < lim|j,||. If, moreover, M (u) satisfies (o) and (

n—>c0

6% Now it 1s eagily seen that for

then
o), then ||o)|® < lim|j,||°.

N—0
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Now we give some remarks dealing with weak convergence in )7

Put &(z) = x(t),
Z [ (=

i=1

KL a=t <t <..

— &g, (@)1

with ZN |b4]) < ty=0b, m=1,2,..., and denote

by £, the set of all linear functionals over V3, of the form ().

3.34. If we assume (C), (0) and (c0), then |nl| < 2 for cach neZy and
sup|n(@)| = |z, i. e. the set By of linear /zm(twwals over Yy ©s funda-

78y
mental.

This theorem easily follows from 3.31.

3.35. If M (u) satisfies (¢), (0) and (oo), then every sequence of elements
of V3 bounded with respect io the norm contains a subsequence wealkly con-
vergent with respect to the fumlammml set of linear functionals Ey. More-
over, weak oomergence of a subsequence w, €V with respect to the funda-
mental set 5, implies

ol < lim [l and o]l < L [l

n—m N=r00
Theorbm 3.35 is obtained by applying 1.3 and 3.33.
4. Linear functionals. Here we ghall prove some theorems on
Stieltjes integrals and give the form of the linear functional over ACyy;

the notion of the Stieltjes integral will be used in the sense of Riemann-
-Stieltjes.

4.1. Sequences of Stieltjes integrals. First, we prove the following
theorem:

411, Let us assume that M (u) sat'bsjws
= 0. If | f xdy] <

(t) or for each polygonal fuawmon w( ), where m(a) == 0, then |jy|ly <= 8K,
and thus Vy(y/8K) < 1, N(u) being the funciion oomplemewm y to M ().

¢), (0) and (o), and that y(t)

is continuous in {a, b, y(a K|jw||py for each step-function

4l
to be satisfied for each step-function «(t) vanighing at a. Wc choose an
arbitrary partition o =1, <t < ... <%, =b of the interval {a,bd>
and a step-function x(f) =a; for &, <t<t, 1=1,2,...,m x(a)

= a, = 0. We have
el = Sup Y (= tay_) B < 5D ( D] Il Birt- Y any_, 1)

To prove this theorem we first assume the inequality | f wdy| <

icm
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where the supremum is taken over all Sy, fay...; fm such that

mz;mwii)

where 1, = 0, %y

< 1 and all subsequences #; of the finite sequence 0,1,2, ..., m,

= m. Hence

2sup V a; s

lallar <

where f; are such that ZN 18il) < 1. Since

m

f ady = D) wly(t)—y )],

i=1

we obtain

Kol < Klallhy < 2Ksup 2 ;s

ifai[y(mﬂy(t--nll
=1

where Z (18i) < 1. Now we apply the second part of lemma 3.32 with
b; —y( ) —y(tio,) and F(a Ea@ . We obtain [b]}y < 2(F|| < 4K,
whence n

D aly(t) —ytia)] <AE

i=1

m
for arbitrary o; such that Z.M (Jeg) < 1. This yields [|g/[|9v<4K. Theo-
4K and we obtam Vu(y/dK) <
K|y to be valid for

rem 3.31 implies [lylly <
Now let us assume the inequality ] fmd'y|

each polygonal funetion «(¢). Then 4.11 results from the following lemma:

442, If M (u) satisfies condition (0), y (1) is continuous in {a, B> and

the inequality dey] Ky holds for each polygonal function x(t),
a

x(a) = 0, then the inequalily
b
| [ody| < 2Klo/lar+o(@)]-ly ()~ y(a)]

= z(f)—x(a).

holds for each step-fumction x(t). Here &' (t)
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Take an arbitrary partition o =14 <} <... <l, =0 and put
x(t) = a; for t;_; <t <t, where ¢ =1,2,...,m, x(a) = ay = 0. Write

1
l . @ for .+ r')";{‘\*iétiﬂ t=1,2,..,m,

. r
(@1 — @) (B—1)-Fa; for & <t <l n! = 0,1,...,m—1,

0 for t=a,
where the integer n is so large that #;—#..; > Lin for 4 = 1,2,..., m.

b
We have |[a,dy < Kl
a

- However, 1.03 yields V(@) == M[|2(b)--
—a(a){] for monotonic #(t). Hence it is easily seen that Vay(x,) < 2V, (x),
b

. Tt

and this yields |w,ls < 2/lnlly. Hence we obtain |fz,dyl < 2K|
b b a

is sufficient to prove [w,dy— [ady. But
a a

b b
fa:ndy— fmdy
a a

m
1 1
= {(ai—“ ®iy1) [fl (trl‘ ’“) "i’l(ti)]'“ (@—ai0)y (t'z“|” ) “+
i=1 n "
bit-1m
+nla—ag.) [ 'det}.
{1
If, for the step-function ®(¢), »(a) # 0, it is sufficient to apply our in-
equality to the function a’(%).
It should be noted that 4.11 implies the following theorem for se-
quences of linear functionals:
413, If M (u) satisfies the conditions (c), (0) and (00), ¥ (t) are con-
) ) . b
tinuous in {a, by, y,(a) =0, &,(z) = Jady, are linear functionals over
. '3
ACy and |&, ()] = O(1) for ewery we SICyy, then [l 48 Downded.
444, Tt wi i we put in 411
| 4 IE will be noted that, it we put in 4.11 %‘(L,L[:I/(tl)-“ Yt 4)]
ingtead of ;z[ zdy, a; being the values of the step-function w(f), the agsum-

ption of the continuity of y(#) is in the first part of 4.11 (in the case of
the step-functions) superfluous.

4.2. The general form of linear functional ov 2 /
A er <1Cuy. > she
need the following two lemmas: #Hae W shall

icm
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4.21. Given a step-function x (1) in {a, by, let us assume that the function
y*(t), having at each point tela, by a left-hand and o right-hand limit,
is comtinuous at all points of discontinuity of x(t). If y(t) = y"(1—0) in

b v

(@, b) and y(a) = y*(a), y(b) = y*(b), then the integrals [xdy and [zdy"
a a
ewist and are equal, and Vi (y) < Vy(y®).

4.22, We assume that the function y (1), given in {a, b), is one-sidely
continuous in (@, d) and that the set B is dense tn {a,b) and a,bel. If
for each sequence of partitions IT,: a =" < {® < ... <) =b of the
interval {a,b> such that max(t™—1{") > 0 when n— oo and ¥ <K,

i

where i =0,1,...,,, #=1,2,..., and for arbitrary v e,
the sums

My,

SUT,) = Y o) [y (67) — y (tf)]

il
are convergent to the same limit, x(1) being o continuous function in {a, b,
b
then the Stieltjes integral [xdy exvists.
: a

The proofs of these two lemmas will be left to the reader.

4.23. Let us assume that M(u) satisfies (¢), (0), (A,) and (oo), and
that &(x) is a linear functional over 2(Cyr. Then there exists one and only
one function ye Wy (N being complementary to M), left-sidely continuous
e (a, d), and such that

b
E(x) = fmzl]/
a
for each xeACy.

The proof of this theorem can be performed by the method of the
extension of £(x) from <7Cp; t0 %7, or by use of Helly’s extraction theorem.
Since the latter method is constructive and gives the form of the approx-
imating functionals, we prefer it here. Moreover, for simplieity we give
the proof in the case of periodic functions #(f) only, i, e. we establish the
form of linear functionals over the subspace of all functions ze.o{C, such
that w(a) = 2(b) = 0, applying approximation by the Fejér means.
Instead of the latter, other means may be applied in the proof. In the
general case the proof would require a generalization of 2.5 to the non-
-periodical case. The proof by the method of extension applying theo-
rems 2.22 and 4.14 will be left to the reader.

We remark first that |&(@)| < ||&]]'|l#laxr for each meolChy. Especia;lly
|£(ob) < ||€ll“llotll, where o,(t) is the x-th Fejér mean of x(t), on(t)
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= an(t)—an(a) However, 2.51 yields Vy(o,) € Var(22). Consequently,
Varlon/2elar) < Varle/llnlla) <1 and llonllar < zl\LHM We obtain & (oy)]
<2|[§|| {|m|[M Choose such continuous functions w,(t), ¥,(a)=0, that

= f 2dy,. Then
a
b
0 | [ oy, <206l ol tor wesiCy.
o

Now let us assume that @ (t) belongs to «(Cpr. 2.52 yields V(o ~-a) - 0.
Then |jo,, — #llar ~ 0, accmdmg to 3.11. This yields &(oy)-» &(w) and

fa:dJﬂ» Ew) for @medCy.

Now we have to prove that there exist a sequence of indices n,; and
b
a funetion y <)%y such that the integral [ady cxists for cach @e.c(ty and
a
b

b
) f wdyM — fwdy for  weslCyy.
a a

To prove this fact, let us first note that, according to 4.11 and (),
Vy(y,/16]|&)) <1 for » =1,2,... The extraction theorem 1.% implies
the existence of a sequence of mdlcos m and of a function 4*() with
Vy(y*/16]|€l) <1 such that y,(t) - y" (1) for cach tela,b)>. Denoting
by s(t) a step-function in <{a, b} “with points of dlﬂconmmutv being points

of continuity of y*(#), it is easily seen that f sdyy, j sdy". Temma 4.21
implies fsd’tni—>fsdy with y(t) = y" (4— 0) for a,< t< b, yla) =0,
y0) =9"0), Vy(uas)e) <1 and thus, Jyly < 162
ding to (-) and 4.12, HSll’l/n < A& N8 e+ 18 (@

Sinece, acceor-

Yny (D)], we obtain

Now let us take a sequence of partitions Il,: «

™
<) =1 of the interval <a, b} such that nmx(f(”)
i

W™, -+ 0 when,

n-> oo and ", where ¢ =1,2,...,m,~1 are points of continuity of
(1), and choose a.1;b1tmri1y o ety 1™, Then the Riemann sums of the

Stieltjes integral [aody are equal to
a
My b

() = 3 a(ef™) [y () —y ()] = [ sudy,

= a

icm
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where
® {m(rs")) for M <t <t
U ey for t=10.
Thus

b
18 (1) — (L) = | [ (sn— ) dy] < 41611-In—illae-+ | [50(@)— 5 (@)]y (D)),

according to (...). However, 2.22 and 3.11 iinply 18— ]| 5z — 0. Moreover,
8, (@) — 0. Then the sequence S(I1,) is convergent and lemma 4.22 implies
b

the exigtence of [xdy.
a

b b
The easy proof of the convergence | Yy, —~ [wdy will be omitted.
a a

b
It will be noted that our proof also implies the convergence [zdy,, —
a

b
- [wdy = &(w).
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