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A new type of polynomials approximating a continuous
or integrable function

by

L. C. HSU (Changchun)

1. For a continuous function f(z) defined on <0, 1}, the expression

n % ‘
) Botfia) = Di( ) (3 )eFa—ar—

k=0

is known as the Bernstein polynomial of order n of the function f(z).
As is well-known, these elegant polynomials can be employed to
give a simple constructive proof for the Weierstrass approximation
theorem [5].

We shall now introduce a kind of polynomials of the form
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Evidently the polynomial P, (f; ) is just as simple as B, (f; x). Moreover,
it has, in common with B,(f; z), the peculiarity of using only the values
flk/n) (k =0,1,...,n) in its construction. As may be observed, the
structural form of P, (f; z) is actually suggested by the Landau singular
integral [4].

For a function f(z) belonging to the space LP(0,1) with p =1 we
may define .
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This is again a polynomial in @. The similarity between (3) and (2) is
apparently analogous to that between the Kantorovitch polynomial
and (1) (see [2] or [3]).
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2. We shall establish in this note @ pair of theorems as follows:
TaeorEM 1. For @ conlinuous function f(z) defined on (0,13, the
relation

4) lim P, (f; ) = f()

N—>00
holds uniformly on n <@ < 1—n, where n & an arbilrary small fived
number with 0 < n < %.
TaeoREM 2. The relation

1
(5) tim [ [8,(f; @)~ f @) dw = 0

N-00 )
is true for every funetion f(z) belonging to the space LP(0, 1) with p z 1.
The relation (4) clearly implies a new constructive proof of the
Weierstrass theorem. As we shall gee, Theorem 2 can be proved guite
easily by means of a result of W. Orlicz [6].
LevMa. The relation
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holds utniformléj o< <l—y ‘
Let us split the summation o, as follows: o, == >'--3""/, where
the summations Y and 3" are taken for all values & ==0,1,...,n

which satisty the conditions
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respectively. Thus, using the fact that (1—1/a)*4 ¢~ (a-> 00), wo obtain
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For the estimation of ", we notice first that the condition ik — gt
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the factor involved in the estimate O(n~

) being independent of .
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For every # (p<o<1l—n) we see that the condition
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is precigely equivalent to

Hence for n — oo we have
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To see that (8) holds uniformly in # (n < # < 1—#), one needs only
to replace the condition A by the following:
5 —att < [k — e < Mo

Ve

where [«] denotes, as usual, the integral part of the real number g, i. e.
a—1 < [a] < a. An easy calculation gives, for n large enough,

k— na\? [k— nx] 1\ [k— na\2
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Hence the following relation holds uniformly:
(9 lim ._hmZ exp ( ))»——l/n

) 'n.—)-ooZ N—r00 L ( l/n !
where the condition 8 means that » ranges over all those integers for
which —n*® < »[Vn < n'lS.

It is now casy to prove Theorem 1. Let |f()| < M and denote by
wy(8) ag nsual the modulus of continuity of f(w). Clearly we have

Vn £ (%)“f(m) [1—_(%‘_00)2]” _1/17
“w’( ) "”2 +2M L 2

where the right-hand side converges to zero uniformly, in view of (7)
and (9). Hence our theorem is proved by the lemma.
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To prove Theorem 2, it suffices to verify that there is a congtang
M such that
1 1

(10) [Eplw, it < M, [ Koo, de < M,

0 0

where K, (z,t) is a positive kernel defined by K, (x, 0) -

and

<1
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with 2 =1,2,...,%; 0 < a1 Hvidently, by the lemma we have,
for n large,

1 n
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Moreover, for each ¢ or k, making use of Laplace’s asymptotic formula [7]
for an integral containing a large parameter, we easily get the following

estimate:
: _ 0 ! ‘ k 2
f Koz, tydo =1/ 2 f 1= (2 — o) | do
b TCO N i
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Hence, for n large enough, we may always choose M == 2. Finally, by
applying the lemma and using the uniform continuity of f(w), it iy easily
shown that [S,(f; #)—P,(f; #)| tends to zero wuniformly for amny con-
tinuous function f(z). Consequently (5) is valid for all continuous functions
defined on <0,1), which obviously form an overywhere dense set in
I”7(0,1). Hence Theorem 2 is established by a general theorem of Oxliez.

3. It is known that Chlodovsky [1] had generalized the Bornstein
polynomials to the case of the unbounded interval (0, ov), #0 Ghat the
modified polynomials can be used to approximate a continuous funetion
defined on (0, o). In fact, the same idea doos also apply to the polyno-
mials P, (f; #). For instance, we may define

1 - 2\
gt = g )= (- ) T
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and it can be shown that the relation
(12) mT,(f;2) = f(z) (0 <@ < o)
N~>00

is true for any continuous function f(z) defined and bounded on (0, o).

The proof of (12) consists in splitting the summation on the right-
-hand side of (11) as 3"+ 3", where the summations 2 and " are
taken for all values » satisfying the conditions

v [ 1\ » 1\1/6
— — il e — | > =
nil l < (n ) ’ n¥ 1 = (n)

respectively. The whole procedure of the proof is quite similar to
that of proving (6) and (4). We therefore omit its details here.

As is easily seen, Chlodovsky’s generalization of Bernstein polyno-
mials cannot be modified in order to be capable of approximating bounded
continuous functions defined on the whole interval (—o0, co0). However,
if we modify T,(f; x) to the form '

n
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we can in fact establish the following

THEOREM 3. For any continuous function f(w) defined and bounded
on the interval (—oo, co) we have
(14) Um Ty (f; @) = f(#)  (—o0 <@ < o).

N=r00

This theorem can be proved by considering the cases z > 0, 2z <0
and ¢ = 0 separately. The case x = 0 can be verified independently,
and the case < 0 can be transformed to that of # > 0 by a substitution

¢ = —y. For the case # > 0 we may express
] le n 1 -1
zifin = = S+ 3) = 2 3 i,
Vam Waln im0 l/vznt ye—n

Assuming that [|f| < M, clearly we have, for n large,
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iy z V' Mn
< Var 24 [1 - (”1/4)] = ]/—n—;(l—n'llﬂwz)n 0.
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Hence we get HmTh(f; @) == im7T,(f; ) = F(z) for = > 0.
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TFinally, it may be worth mentioning that our new polynomials
Pu(f; @), Tu(f; @) ebe. can also be generalized to the cases of a complex
variable and of several variables. Further investigation of these polyno-
mials is being accomplished in a joint paper of the author with L. P. Hsu,
which will appear elsewhere.
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On modular spaces

by
J. MUSIELAK and W. _ORLICZ (Poznan)

In the present paper the authors investigate functionals g(«) defined
in a real linear space X, which are called modulars. An F-norm will be
introduced in certain subspaces of the space X. In the second part of this
paper some examples of modulars are considered.

1. First, the following definition of a modular and a pseudomodular
will be given:

1.01. Given a linear space X, a functional p(x) defined on X with
values —oo < g(2) < co will be called a modular if the following con-
ditions hold:

Al o(®) =0 if and only if ® =0,

A2, o(—m) = o(x),

A3, glaz+fy) < o@)+oly) Jor ewery a,f >0, at+f=1

If o(x) satisfies the condition (0) = 0 instead of A.1, then p(x)
will be called a pseudomodular.

1.02. We now give some simple properties of pseudomodulars.
Let us assume o(x) to be a pseudomodular on X. Then

(a) e(®) =0,

(b) o(az) is a non-decreasing function of a =0 for each zeX,

ki3 k1) n
(c) g(_zlaimi) <\:,210(5'7i) for a; 2 0, ,Z:ai = 1.
A= 1= e

Moreover, if X, denotes the set of weX such that () < oo, the set X,
is comvex and symmetric with respect to 0.

The properties (a) and (b) easily follow from A.3 and A.2; (c) is ob-
tained by induction as follows:

n~1 n—1
n 'n.:jl lél a2 {; a; Lq \aw n
4 (2 aimi)= 4 Z @~y - Py <ol 5|+ o(2y) <Z olw;).
i=1 i=1 > o a; i=1
i=1 =1
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