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Determinant systems

by
R. SIKORSKI (Warszawa)

The purpose of this paper is to explain the algebraical structure of
the theory of determinants in Banach spaces. This theory was developed
recently in papers [1-10]. s

In the determinant theory of the linear equation

Ax =z,

(in a space X) and the adjoint equation (in a conjugate space Z), written
here in the form

EA = &,
some identities betweén the determinant and subdeterminants
Dy, Dy, Dy, ...

play an especially important part. These identities are assumed here
as the basis of an axiomatic definition of {D,} in the case where X and &
are arbitrary linear spaces conjugate in a sense explained in §1. The
sequence {D,} is called a deferminant system for A. The main problem
investigated here is under what conditions A has a determinant system
{D,} and what is the connection between 4 and {D,}.

The answer is given by the main theorem (Corollary on p. 201)
gtating that A has a determinant system {D,} if and only if A is
Fredholm, and then {D,} is determined by A uniquely up to a constant
factor s 0. A formula for {D,} is given which explains the connection
between {D,} and solutions of the equations under examination. In the
case where 4 is inversible, this formula was earlier applied by Ruston [7]
(in another formulation and in a special case).

Lezanski’s method of interpreting D, as a 2n-linear functional on
F"x X" is used in this paper instead of the more complicated interpre-
tation of Grothendieck and Ruston. .

The spaces £ and X play everywhere a completely symmetric role.
In order to preserve and to underline this symmetry, the endomorphism
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162 R. Sikorski

A in X and its adjoint in 5 are here considered as & bilinear funectional
on E x X. '

The first few sections of this paper are only a recapitulation of known
tacts from Linear Algebra in a form convenient for the further invegti-
gation. The definition of determinant systems is given in § 5, the main
theorems — in § 6. The last section, § 7, contains a formula for determi-
nant systems in Cartesian products.

No topology is supposed in linear spaces under consideration.

The dimension of linear subspaces of linear spaces is always under-
stood in the algebraic sense.’

§ 1. Bilinear functionals. We shall consider & fixed commutative
algebraic field F whose elements will be called scalars and denoted by
a,b,¢,a, with indices if necessary. Every mapping into F will be called
functional.

We shall also consider two fixed linear spaces & and X (infinitely
dimensional, in general) over the field F'. The letters &, 7, { (with indices
if necessary) will always denote elements of &, and the letters #,y,2 —
elements of X.

We suppose that & and X are conjugate, i.e. with every pair
(&, 5)e X X there is associated a scalar denoted by &, in such a way
that:

(¢,) the product £z is a bilinear functional on

(e€)z = ¢~ (&m) = &(cw),
E(@1+3,) = Ewy+ §s, (b1t &) = &y o

(c,) if &z = 0 for every £e &, then o = 0;

(e) if &x = 0 for every zeX, then £ = 0.

If &z =0, then &,  are said to be orthogonal.

Two subspaces X,, X, of X (&,, 5, of &) are said to be comple-
mentary if every element zeX (&¢ &) can be uniquely represented in the
form # = x, -+, where #,¢X, and x,¢X, (in the form & = &, &, where
£1e8, and &,e 8)).

If A is a bilinear functional on Zx X, the value of A at the point
(§,2)e Ex X will be denoted by &dz.

2 will denote the clags of all bilinear funemona‘ls on
that the following two conditions are satisfied:

(b) for every fixed zeX there exists a yeX such that fdw = &y
for every £e X,

(b") for every fixed £ 5, there exists an ne 5 such that £z =
for every xeX.

Ex X, i.e.

Ax X guch
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On the other hand, it follows from (c,) that there exists at most
one y satisfying (b). The unique element y satisfying (b) for a given z

will be denoted by Ax. By definition
§(Aw) = EAx EeH.

It follows from (e,) that there exists at most one 5 satisfying (b’).
The unique element 7 satisfying (b’) for a given & will be denoted
by &4. By definition

((d)z = £z

It immediately follows from the definition that 2 is a linear space
(over F) with the natural definition of addition and multiplication by
scalar. For every A ¥,

Al(ox) = ¢(da),

for every

for every xeX.

Az +3,) = Awy+ Az,

and
(Of).A = 0(£A), (51‘5‘ Ez)A = §1A+ 52-‘4

i. e. the mapping ¥ = Az is an endomorphism of X, and the mapping
n = £4 is an endomorphism of Z.
For instance, if

(1) Elx = &z for every (&,z)e&XX,

then Ie2 and Iz = ¢ for every zeX and &I = £ for every £e 5.
Another example of an element K in 2 is given by the following

formula:

; ERy = &xy- &
(i. e., €Kz is the product of the scalars &z, and £,#) where z,¢X and
&y 5 are fixed. This bilinear functional will be denoted by x,- &, and called
one-dimensional because the endomorphisms

EK = &y &

map X and & onto their at most one-dimensional subspaces spanned
by #, and &, respectively.
The bilinear functional

Ky = 24 & and

r
K=Z“’i'5ia

=1

i. e. the bilinear functional K defined by the formula

ERw = ) fwy &y,

=1
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also belongs to 2 and is called finitely dimensional since the endomor-
phisms

Kg = jwi'fim and (K = 2 £y &y
=

map X and Z onto their finitely dimensional subspaces spanned by
@y, ..., 3 80d &, ..., & respectively.
If 4,, A,¢%, then
EA (Adym) = (EA)Am for every £eF and zeX,
and the left (or: right) side of this identity is a bilinear functional in 21,
We shall denote it by 4,4,. By definition
(A Ao = EA,(A,m) = (E4,) Ay,

It immediately follows from the definition that the endomorphism
y = (4, 4,)z is the guperposition of the endomorphisms y = A,z and
2= A,m, ie.
(A,4,)0 = 4;(4,2).

Analogously, the endomorphism # = £(4,4,) is the superposition
of the endomorphisms n = (4, and ¢ = £4,, i.e.

§(4,4,) = (§4,)4,.
Notice that if K = 3 u;-§&; is finitely dimensional and A4 ¥, then
i=1

r r
K4 = 2 z A and AR = ZAax,V &.
i=1 e

=1
Thus K4 and AK are finitely dimensional.
,,
In particular, if ' = Yu;- &}, then
F=1

r o oo

4 \ | ropt ’ !

(@) EE = 3 Yo by & = D) Y] (&a)ar €.
i=1f=1 i1 7=1

The linear space 2 with the multiplication 4,4, defined above
iy a linear (non-commutative) ring. The functional I (see (1)) is the unit
of ¥, i.e. I4d = Al = 4 for every Ae? Therefore I will be called the
unit on ExX.

The following three conditions are equivalent for every 4 in A:

(;) A has an inverse 47! in 2 (i. e. there exists an element A~
such that AA™ = A7'4 =1I);

(i,) the endomorphism y = Aw is a one-to-one mapping of X onto X,
and the endomorphism 7 = £4 is a one-to-one mapping of & onto 5;
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(i,) the endomorphism ¥ = Az maps X onto X, and the endomorphism
n = 4 maps E onto Z.

A bilinear functional P2 is said to be a projection if PP =P, i. e,
if the endomorphisms y = Px and 7 = &P are projections in the ordingry
sense. We recall that y = Pz is then the projection onto the subgpace
X, =[Pz:2<X] along the subspace X, = [g:Px =0], and X, X,
are complementary. Analogously, = £P is the projection onfo the sub-
space F; = [EP: < Z] along the subspace 5, = [£: £P = 0], and £, &,
are complementary.

For instance, if x;,...,#, and &,..., £ are normed biorthogonal,
i.e. £m; = Oy where ; is the Kronecker symbol, then the bilinear
functional Pe2A defined by the formula

P=1I— Zf' ;- &
i=1
is a projection, called an r-dimensional projection. In fact, we then have:
Pz = g it z is orthogonal to &, ..., &,
P = 0 if x is a linear combination of oy, ..., z,,

i. e. the endomorphism y = Pz is a projection of X onto the subspace
orthogonal to &, ...,&, and along the r-dimensional subspace spanned
by @, ..., 2,. Analogously,

EP = £if &is orthogonal to @4, ..., &y,
EP = 0 if & is a linear combination of &,,..., &,

i. e. the endomorphism » = &P is a projection of Z onto the subspace
orthogonal to @, ..., x, and along the r-dimensional subspace spanned
by 51’ e Er'

The functional I<2 is the only 0-dimensional projection.

§ 2. Quasi-inverse. Let 2 be any algebraic ring (non-commutative,
in general). An element Be?l is said to be a quasi-inverse of an element
Ae¥ if

(3) ABA=A and BAB =B.

It immediately follows from the definition that if B is a quasi-inverse
of 4, then A4 is also a quasi-inverse of B.

We shall consider only the case where 20 has a unit element denoted
by I.
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~ Observe that if A4 has a right (left) inverse B, then B is a quasi-inverse
of 4, and then every quasi-inverse of A4 is a right (left) inverse of 4.
_Consequently, if 4 has the inverse A~', then A~ is the only quasi-in-
verse of A.

If
A H L’
(4) B,E
are elements in 2 such that
(5) AL =0=FA, BL=0=LB,
(6) AB+LL =1, BA+EL=1I,

then B is a quasi-inverse of 4, £ is a quasi-inverse of L, and
(M (A+L)(B+L) = I = (B+E)(4d+1),

i.e. B+E = (A+D)™.

In fact, (%) follows immediately from (5) and (6). Equalities (3) can
be obtained from (6) by the right or left multiplication by 4 or B, on
account of (5). In the same way we obtain the analogues of (3) for L, L.

Observe that hypotheses (5), (6) remain unchanged if we commute
rows or columns in the matrix (4).

Suppose now that A, L,Z are elements in 2 such that

(8) AL =0 =1I4,

and that & is a quasi inverse of I, i. e.

(9 LEL =L, ZLLL =1F.

Then the elements

(10) Ady=A+L, P=I-LL @ =I—-FEL
satisfy the equations

(11) A =PA4,= 4,9,

(12) PP =P, QQ=2¢.

Moreover, if the inverse 4;' exists, then the element
(13) B=A7'-F

is a quasi-inverse of 4. More exactly, elements (4) then satisfy conditions
(5) and (6).
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The proof can be obtained by a simple caleulation. Only the proof
of the second part of (5) is a little more difficult and will be quoted here.
We have

BL = A7'L—LL = A7\ (L—AEL) = A7 (L—(A+L)EL) =0

on account of (8), (9). By the same method we prove LB = 0.

In the sequel of this paper, 2 will always be the ring defined in §1
with the unit I defined by (1).

Let 4, B be any bilinear functionals in 2. Let

X, = [dae:weX], & = [E4:&e5],
X, = [Br:xeX], &,=1{&B:&eE].

Then the following three conditions are equivalent:

(qe) B is a quasi-inverse of A (i. e. (3) hold);

(q) ABy =y for every yeX, and Bdx = for every weXo;

(q') 7 = nBA for every ne=; and & = £4B for every £e<&,.

The condifion (q) can also be formulated as follows: the mapping
# = By, considered as a mapping defined only on X, is the inverse of
the mapping y = Az, considered as & mapping defined only on X,.
Similarly, (q') ean be formulated in the form: the mapping ¢ = 7B,
considered as a mapping defined only on Z, is the inverse of the mapping
n = &4, considered as & mapping defined only on 5,.

Suppose now that (4) are bilinear functionals in 2 such that condi-
tions (5), (6) are satisfied. To formulate their fundamental property
it will be convenient to denote them as follows:

Ao,oa AD,I’
Al,(” A1,1-

Conditions (5), (6) can be now written in the form:
(14) Al s15=0,
(18) A ditA g =1, Ay A+ Ay gy Ay =1
where 4,5 = 0,1. Let
by =1[m: 4;;8 = 0], Xi; = [dy0: veX],
5 =[&: 84,;, = 0], iy = [84;; §eB]

for i,j =0, 1.
Suppose that (14), (15) hold. Then the following equalities express
the fundamental property of 4;;: '

(16) XizF=XF, ; and E7*=5;; fori,j,k=01.
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By symmetry, it suffices to prove only that
Xg,i = X%—i,l—i'

Suppose @eXy;, i.e. Ay @ = 0. Then, multiplying the second
equality (15) by @, we obtain » = 4, ;; ;(4; ;;®), which implies
weXl_;y ;. Suppose now that weXy_ i1y Lo @ =A1414Y (yeX)
Then, multiplying (14) by y, we infer that 4,; =0, i.¢c. » <X},

The following theorem immediately results from the above con-
sideration (see (7), (do), (), (4') and (16)):

TeEOREM I. Suppose that (4) are bilinear fumctionals in 2 satisfying
conditions (8) and (6). Then B is a quasi-inverse of A and:

(eo) @ satisfies the equation

Az =0

if and only if x is of the form m = Ly where yeX;
(eg) & satisfies the equation

E4 =0
if and only if £ is of the form & = nd where ne 5

(e) the equation

mn Ar =z,

has a solution » if and only if Fw, = 0; then © = B, is the only solution
of (17) such that Lz = 0;
(e') the equation

17 t4 =&,

has a solution & if and only if &L = 0; then & = £,B is the only solution
of (17’) such that &L = 0.

§ 3. Fredholm functionals. A subspace X, of X is said to be of
codimenston x if there exist » linearly independent elements Z,,..., {.e&
such that X, is the set of all elements » orthogonal to ¢, ..., &, i c.

Xy=[w: Liw=01fori=1,...,7].

Then there exists an r-dimensional subspace X, complementary to X,.
Every complementary subspace X, is spanned by some elements
Y1y -++y Yy Such that
(18) Luyy = iy

and every element z¢X can then be uniquely represented in the form

T =a+aYy+...+ay, where g'eX,.

icm®

Determinant systems 169

The whole space X is of codimension 0.

By symmetry, a subspace &, of 5 is said to be of codimension r if
there exist 7 linearly independent elements z;,...,%.X such that =
is the set of all elements £ orthogonal to 2z,...,%, i e.

HE=[& by =0fri=1,..., 7]

Then there exists an r-dimensional subspace £, complementary to Z,.
Every complementary subspace &, is spanned by some elements
N1y .-y Yy SUch that ’
(18)

Ni% == Oi g,

and every element &e 5 can then be uniguely represented in the form

E=&+an+...+an where EeZ.

The whole space & is of codimension 0.

A Dilinear functional 4«2 is said to be Fredholm of order r if

(f) the subspace X, = [Az: xeX] is of codimension r,
and

(f') the subspace &, = [£A: &e¢X] is of codimension 7.

In other words, A2l is Fredholm of order r if:

(f,) the equation Ax =0 has exactly r linearly independent
solutions 2y, ..., 2,;

(£,) the equation £4 = 0 has exactly r linearly independent solutions
Tayoes Gy

(£,) the equation Az = x, has a solution » if and only if fw, =0
fori=1,...,7;

(f;) the equation £4 = &, has a solution ¢ if and only if &2, =0
fori=1,...,n ‘

In particular, 4 is Fredholm of order 0 if and only if y= Aw is
a one-to-one mapping of X onto itself and # = £4 is a one-to-one mapping
of F onto itself, i. e. if A has an inverse A~! in the ring 2 (see (ip), (i1)).
For instance, I is Fredholm of order 0.

If the spaces X and & are finitely dimensional, then they have the
same dimension. and, by a known theorem of Linear Algebra, every
bilinear functional on Zx X is Fredholm.

If X = X'XX" and & = &' X 5", where 5/, X' are conjugate and
E", X'" are conjugate, then so are 5, X. If X’, X" are bilinear functionals
on E'xX, 5'xX" respectively, then

(19) €dw — EA'w' + E"A"z" for & = (&, &")eE and o = (¢, 0'")eX
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is a Dilinear functional on Sx X. We shall denote the functional 4 by
(4',A”). If A" and A" are ¥redholm of orders r" and " respectively,
then 4 = (A’ A”) is Fredholm of order y = ¢'+7".

Let E, X be some conjugate spaces. Hvery bilinear functional X
of the form A = I—K where K is finitely dimensional, is Fredholm.
In fact, X and F can then be represented in the form X = X'x X",
E', X' are conjugate, X', &'

= =3 e

5 = 5'X B where &', X' are conjugate, &
are finitely dlmensmnal and A = (4,1'), I"” belng the unit on 5", X",

If 4, has the inverse 47" and 4, is Fredholm, then 4,4, and A,,Al
are Fredholm (of the same order as A,).

Consequently, every bilinear functional of the form
(I—-K)4, or Ay I-K),

where 4, has the inverse and K is finitely dimensional, is Fredholm.
Conversely, if 4 is Fredholm, then 4 can be represented in the form
(20) A =(I-K)4y = A(I-E;)

where 4, has the inverse 4;', and K,, K, are finitely dimensional.
Moreover, we can always assume that

P=I-K, and @Q=I-K,

are r-dimensional projections (r = the order of A4).
In fact, let #,...,2, and ..., {, satisfy (f;) and (1), and let
y ooy Yy and 7y, ..., 7, satisfy (18) and (18'). Let

r
L= Zzi‘iia
=

K, =EL = Yz .
i=1

L= 2.7/«;'77@'9
i=1

r
K, =LL = D&,
i=1

8), (18"). Then A4, L,L satisfy (8) and (9). Consequently (see
2)), P and @ are projections and the bilincar functional

(see (2), (1
(10), (11), (1
Ay = A+L

sat.isfies (20). 4, has the inverse A;' since (see (iy), (i,)) the endomor-

Phlsm y = Ayr maps X onto itself, and » = £4, maps 5 onto

itself. In fact, if y= o'+ ay,+...+ e, where o' X, i.o. o = Aw
ty

for some we X, then y = 4,((I—K,)w+ 3 a;2). The proof of an analogous
. =1

statement for 5 = £4, is similar.
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Every Fredholm functional 42 has a quasi-inverse, viz.
B=A;'—

is a quasi-inverse of A (see (13)).

If A,, A, are Fredholm, so is 4, 4,. In fact, 4, = B;(I—K,),
A, = B,(I—K,), where B;, B, have inverses and K,, K, are finitely
dimensional. Hence 4,4, = B,(I—K;)Bs(I—K,). However, (I—K,)B,
is Fredholm, i.e. (I—K,;)B, = By(I—K;), where B; has an inverse
and K, is finitely dimensional. Hence 4,4, = A,(I —K) where 4, = B.B;
has an inverse and K = K,+K,;—K K, is finitely dimensional.

Example. Let X' = &' = (¢) = the space of all convergent se-
quences and X'’ = & = (I) = the space of all absolutely convergent
series. Then 5, X’ and =", X'’ are conjugate and, consequently, so are

(21)

E= FxE&, X = X'x X’". The bilinear functional
[=<]
EAD = Yay0, for & =(e)eZ and z=(g)X
=1

is not Fredholm on &'x X', and the bilinear functional

0
EA g = Z/‘a.na,,wrl for &' = (a,)e & and &' = (@,)e X"
=1
is not Fredholm on &"'xX’; however, the bilinear functional

= (4', A") (see (19)) is Fredholm on EZxX. The bilinear functionals

A, = (A, 1"y and A, = (I', A") (where I’ and I" are units on & XX’
and 5’ xX'" respectively) are not Fredholm but 4,4, = (4, 4"') is

Fredholm. The order of 4 =
(n times) is .

(A’, A"y is 1. The order of A" = AA4...4

§ 4. Relativization to a subring. It is sometimes convenient to
consider only a special subring B instead of the whole ring 2. We shall
always assume that B satisties the following conditions:

(x,) I belongs to B; every finite dimensional K U also belongs to B;

(r,) if 4¢B has an inverse A~ in 2, then A~ also belongs to 3.

Thus the notions of inverses in 2 and B coincide, and, for every
AeB, each of the conditions (i,), (i), (i) is equivalent to the existence
of the inverse of 4 in B.

Observe that if 4¢B is Fredholm and B is a quasi-inverse of 4,
then BeDB also. This immediately follows from (21). Observe that Be3
also in the case where B is only an algebraical subring (non-linear, in
general) satisfying (r,) and the following condition:

(r,) I belongs to B; if K< is finitely dimensional and 4« B, then
A+KeB.


GUEST


172 R. Sikorski

§ 5. Determinant systems. Let B satisfy the conditions (r,), (r,)
mentioned in § 4, and let A <B. By a determinant system for 4 in B we
shall understand every infinite sequence

(22) Dyy Dy Dy, -

such that:
(d,) D, is 2n-linear functional on EXEX..X EXXXXX..xX

ntimes 7 times
, ) of this Cartesian product

7

the value of D, at a point (&1, ..., &,y @1,y -..
- én

being denoted by D, (""' . ); in particular D, is a scalar;
2 en,

(d,) for n = 2,3, ...,Dn(§1""’€") is skew symmetric in &, ..., &,

L1y osdip

and in @y, ..., 2,, i. €. for every permutation p = (p,, ..., p,) of numbers
1,...,n
D,,,(""”l’ spn) sgnp-D (fl, fn) _p [ Gt
Ly eeey By PNDLy oy By mpl, .y D,
where sgnp = 1 if the permutation p is even, and sgnp = —1 if p is odd;
(dg) for n=1,2,...,D, (ii ’i"), interpreted as a function
s s Wy,

of & and z; only, belongs to B;
(dg) there exists an integer r >
identically;
(d5) the following identities hold for » =0,1,2,...:

0, Dy (27 B0 )

Loy Byy oeey By

0 such that D, does mnot vanish

n

:2( )5090 D(F“ ...... e 7En)’

=0

, E Y AN ;
O Dot 2 ) = ) W3

7=0

It follows immediately from (d,) that

517 trt E!’b
=0

if either & =& or o, = a; for 4 s 7j.

The least integer # such that D, does not vanish identically is called
the order of the determinant system (22). ‘

If X and E are m-dimensional spaces over F with the usual defin-
ition of the product &z, then every A <%[ hag a determinant system. Viz, flx
a coordinate system in X and the corresponding coordinate system in =

icm®
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Then, in the summation notation from the Tensor Caleulus, if «

= (a%,...,a™) and & = (a;, ..., ay), then &z = o;a', and there exists
a scalar square matrix {c,} such that &4x = a;c; a’r Let D, be the alge-
braical determinant of {¢ } Ho<n<mt,. . are different positive
integers < m and f,...,, are different posmlve integers < m, let
bl ';" denote the corresponding algebraical minor of the matrix {cf}
(1 e. the determinant obtained from {c}} by omititing the rows with indexes
§1y.++y o ond the columns with indexes ¢y, ..., 1, and multlphed respecti-
vely by -1); otherwise let b’l' ‘ﬂ = 0. For n=1,2,... let

3 & ooy )
1y =+ 2n) 1.1 71
Dﬂ( )—“7'1"'“7nb "a Laan

71 I n

k k

where £, = (a, ..., an) and @, = (a', ..., a™). The sequence (22) so
k E

defined is a determinant system for A.

An example of a determmant system (under some hypotheses on A4)
in the case where X and & are Banach spaces was given by Lezaniski [3]
(see also Sikorski [9]) and (under more restrictive hypotheses on 4) by
Ruston [6] and Grothendieck [1].

Observe that if (22) is a determinant system for 4, and ¢ # 0, then

¢Dy, eD,, ¢D,, ...

is algo a determinant system for 4.
If (22) is a determinant system for A, and ¢ 0, then

1 1

Dy, — Dy = Dy .

Pt

is a determinant system for ¢4.
If (22) is a determinant system for A, and B has the inverse B,

then

(51 7' -7EnB-l
. ml" '7mn

is a determinant system for 4B, and

Sy bn
D, (B“a;l, ..., B g,

) (n=0,1,2,..)

is a determinant system for BA.
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The unit I always has a determinant system. In fact, let

for m =1,2,...
Dy eeey Ty

6=1 and en(&’ fn) S

Then 6y, 0,, 05, ... is a determinant system for I.
It follows immediately from the last two remarks that if 4 has the
inverse A7, then the formulas

Dy =1 < (61, ...,5%)= 0 (EIA'l’_.., Enjl'l)
’ n n

DLy eoey By By ooy By

(23)

J— 517"';§n R B R B . o .
‘GW(A-lwl,...,A*xn = for m=1,2,..

define a determinant system Dy, Dy, D,, ... for A.

We quote also the following example of a determinant system
(a slight generalization of a definition in Ruston [7]). Suppose X and &
are complex Banach spaces, 4 is an open set of complex numbers, B is
an algebra of continuous bilinear functionals on ExX. Let A (1) be
a holomorphic function of a complex wvariable AeA with values in B.
Suppose that, for every AeA except an isolated set of points Ay, Ay, ...,
the inverse A4(2)~! exists. Let @,(4) be the 2n-linear functional defined
by (23) where 4 is replaced by A (4). 9, (4) is a holomorphic function of
Aed— (2, Az, ...) with values in the Banach space of all 2n-linear continu-
ous functionals on FX...X ExXX...x X. Suppose that, for every Fk,
there exists an integer #; > 0 such that all @,(4) have at most a pole of
order <, at the point 4, and one of them has a pole exactly of order ry:
Let Dy(4) be a complex-valued holomorphic funetion in A such that
Dy(4) bas a zero of order 7, for A =4, (k=1,2,...) and Dy(A) 5% 0
otherwise. Then all D, (1) = Dy(A)Dy(4) (n =1, 2,...) are holomorphic
in the whole A and, for every AeA, Dy(4), Dy (%), Dy(4), ... is & determinant
system for A(1).

Some criterions for A () = I+ A7 (where 7'« B) to satisty the hypothe-
ses mentioned above (in the case where . is the whole plane) were given
by Ruston [7].

6. Fundamental theorems. Let X and £ be conjugate and let B
satisfy the hypotheses mentioned in § 4. ‘

icm
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TeEROREM II. If @ bilinear functional A<B has in B a determinant
system (8) of order r, then A is Fredholm of order r.
More exactly:

If nyyeeey Nee & and Yy, ..., Yy, X are such that

D,.(Th’ e 772') 75 O,

Dyyoeey By

then there exist elements Cy,..., (e Z and 2y, ...,2,¢X such that

D (771, ....................... ,77,.)
s s Vi1 @y Yigrs -0 Yr

(24) Lo = for every meX
]) (”}17"'?"]1')
"\ Y
and
D (7717 ey M1y E5 Magas ooy 77r)
L 7 9
(24) &= = s for every £ 5.

D (7]17 sevy 771‘)
! y17 ) yr
The elements &y, ..., C, are linearly independent and are solutions of

the equation

(25) EA = 0.

The elements z,,...,2, are linearly independent and are solutions
of the equation

.

Az = 0.

Conversely, every solution £ of (25) is a linear combination of &, ..., ,,
and every solution z of (25") is a linear combination of 2, ..., %.

The equation
has o solution & if and only if &z; =0 for © =1, ...,r. The equation
(26") Ap = g,
has a solution z if and only if l;zy =0 for i =1,...,7.

The bilinear functional B defined by the formula

-Dr+1 (i? 2717 e 779‘)
EBJ‘-—_— 7./17"'7?/—1'_

D, j’]l! '-~:"lr)
!/17 "'7’-’]"
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is a quasi-inverse of A. If & is orthogonal to all 2y, ..., 2., then £ B is
the only solution of (26), orthogonal to Yy, ..., .. Analogously, if x, is
orthogonal to Gy, ..., Ly, then Bz, 18 the only solution of (26'), m‘timgonal
10 N1y eees Npe

In fact, the conditions {;e £ and #;¢X (i =1,...,7) follow dircetly
from (d;). It follows immediately from the definition (24) that {;y; = dise
Thus {y, ..., ¢, are linearly independent, and so are ¥y, ..., ¥,. Similarly,
(24') implies that 7;¢; = 6;;. Thus #, ..., %, are linearly independent,
and S0 are 7y, ..., 7y

Let L and I be defined as in § 3:

r r
5

L=Z?/i'17ia L=2zﬁ'cr-
im1 =

The identity (D,_;) (see p. 190) and the skew symmetry (d,) imply
{; Az =0 for every zeX, i.e. (see (¢y) (A =0 for i=1,...,r. Simi-
larly (D;_,), (d;) and (e,) imply Adz; =0 for i=1,...,r. Hence
AL =0 =ZA.

The skew symmetry (d,) implies that By, = 0 and #B =0 for
i=1,...,7. Hence BL =0 = LB.

Setting in (D,) n =+ and replacing &, &,..., &, @, 2, ..., 2,
by &, %1y ooy My %y Yy, ...y Y, Tespectively, we obtain, on account of the
skew symmetry (d,), 4B =I—LE. Analogously we obtain, from (D))
on aceount of (d,), BA = I—LL.

Sinee (see (2)) LEL =L and LLL =I, all the hypotheses of
Theorem I are satisfied. Theorem IT immediately follows from Theorem I.

THEOREM III. If AeB is Fredholm, then A has a determinant
system in B. This system is determined by A uniquely up to @ scalar
factor # 0.

Let » be the order of 4.

Consider first the case where #» = 0, i. e. A hag the inverse 4~% It
follows from §5 that 4 then has a determinant system, viz. the gystem
Doy Dy Dsy ... defined by (23). Conversely, if D,, D,, D,,... iy any
deerminant system of 4, then it follows from the identities (ID,), (D.)
for {D,} and {2}, by induction on », that (Ruston [7])

D, =Dy, for wn=0,1,2,.,.

This completes the proof of Theorem II in the case » = 0.

Suppose now that » > 0. Let X,, X,, &, 5, ¥, coiy Wpy By ooy By
M1y eoos My &1y -y &, and B have the same meaning ag in § 3, i. o, X,
5y are defined in (f) and (f'); 2, ...,2, and &, ..., ¢, satisty (&), (£),
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({)y (125 %15+, ¥, and my, ..., 5, satisfy (18) and (18'); X, and £, are
subspaces spanned by y,,...,%, and 7,,..., 7, respectively; and B is
a quasi-inverse of A.

Let
(27) : Dp=0 for n=0,..,r-1,
Elzly y Elzr Zlm“ ey Clm,
Elpen &\ e e
(28) (Dr(w“._"mr P N N ?

and for k¥ =1,2,... let

(29) (D”_k(fh sy §r+7c)

DTry evey Lryg,

= ngnp-sgnq- """"""" .(Z)r(g:i’kﬁ-l’ ] 5pk+,)
[X

where X is extended over all permutations p = (p,,...,p,.;) and
P
9= (¢1y-++y Qryr) Of the integers 1,...,7-+k, such that

p1<p2<“-<pky, pk+1<pk+2<'-'<plc+n
Q<< <Gy Qg1 <oz < oo < Gpyr

Of course, if the field # of scalars has the characteristic zero, then
(29) can also be written in the form

@r+k(517 seey §r+k)

L1y evey Trok

=23gnp-sgnq e e e e e e e ‘(D,.(Epk’“"“’ Ez'k+r)
< (k!)z(r!)z C e e e d e e e s qu+], ey wﬂk-}-r
&p By -y &p, Bug,

where X is extended over all permutations p = (p,,...,p, +x) and

5.4
q=(41y-..y @ryx) Of the integers 1,...,7+%.
We shall prove that the sequence

(30) @0} @11@2,---

Studia Mathematica XVIII, . 12
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defined by (27), (28) and (29) is a determinant system for A. It ig It follows from (31) that
evident that (30) satisfies conditions (dy), (ds), (dg). It follows from (28)
and (18), (18") that (Dr+k+1(E°A’ Eyyuiny Enps
Loy Tyy «vey Lpyg
IS Ny eoey M} _ 1
‘7)1' - 7
?/17 ety yr

&ABg,,...,& ABz,
i.e. (d,) is also satisfied. ) _ , &, Ba, ..., E,Bo, | 3 o

It follows immediately from (27) that identities (D,) and (Dy) hold = 2 sgnp’-sgng-| CPTTTT =R ‘-(D,( Prp1? "2 ﬂk+r)
for m =0,...,n—2. They also hold for n =r—1. In fact, the right I £ B : z |
side is then equal to zero by (27) and so is the left side on account of (28). | SopBPs- -5 5y D |

Papqrr 01 Tgpyy

More exactly, if either one of the points &,,..., 52 belongs to & (i. e. is k
of the form &4) or one of the points w,...,, belongs to X, (i.e. is of = y(*1)7'Sgnb'8gnq-£oABwqj-
the form Aw), then ’ i~ =
(31) iDr (ily seny ir) = () Epleqn""7§1’1‘Bm0j_17 fpleQj,;.]_V"!Eﬂlegk
B el 1 T T T
BRI .o, Eprs oo by,
gince points in Z, are orthogonal to all #y,...,%, and points in X, are Tttt e e T By Dy,
orthogonal to all {,, ..., {,. Ep Bgy ey b By, £ By yeee s £, By,

Since the £s and the #'s play a symmetric role everywhere, in order

; R r+k
to prove (d;) it suffices to prove only (D,) for n =r+%, &k > 0. I
We havse " ’ - = L\J ("‘1){’ &y A Bz, ngnp'sgnqi'
i=0 B
&gy b1y ey €
o ) 512 Y Sr+k
Drikiy (m“, Byyoees w,+k) by Brgyyseee s by By,
............ ' Epears oo Empy
| & Bgy, ..., & By, B R A r (m‘li,lrﬂ’ ey mqi'k_:r
- ¥ sgnp’-sgng- £y Bligg s+ -+ s $p BBy |, D, (51%“7 coor gy + Ep By y 1o Ep, By,
. Bgprrr 1 Vg
¥ B Bu ! ” where P = (py, ..., Pryr) 18 any permutation of the integers 1, ..., k-7
£p, Blgyy vy £, Bg | I _
.such that Y2 < e < pln. Prt1 <...< Z_’k+r1 _a‘nd G = (Qi,ly ey Q«i,k+r)
' £, By, -+ 1 £y By, is any permutation of the integers 0,...,7—1,¢+1, . .k—i,—'r such that
£ Ba £ By be ok P Gig <ooo < Gipy Qi1 < v < Gipps The factor (—1) is now replaced
+ 2 sgnp”’-sgnq-| M7 a0 S m P P .(])r( O SPp2? T Py ) by (—1)¢ sinee if ¢; = 1, P is the permutation obtained from p’ by omitting
& R Zagir? Papgar o1 Tappy the integer 0, and g, is the permutation obtained from q-by omitting
Ep Bgyy - Epy By, ' the integer 4, then the corresponding -1 - coefficients satisfy the equality
where P, p”’, q denote arbitrary permutations (of the integers (—1y-sgnp’-sgnq = (—1)¢-sgnp-sgng;.

0,1,...,r+k) of the form:
The sum X being equal to

y =(Oapl:'-'7pk’pk+17-“7pk+r)7 D<o <Py Prgr < oov < Pigrd LX)
p,r—-_=(po;ply-'-ypkio:pk+2a-"7pk+r)s Do <.or < Py Pryz < oo < Phri Dour R Eprk
q :(QO;QH""Qkyq}cH’~-"Qk-(-r)7 G <.ooo <y Trpr <o < Gigr- T+ Boyeovy L1y Tigry oo oy Drgk, !
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we obtain
9)) k. £0A751""7§r+k)
AL By Byy ee s Trgn
rik
= (_1)1'50A397¢'Dr+k( 17 7§r+7c .
i_/jo; Doy oooy Lige1s Bigay »ovy Lrgke

Thus, in order to complete the proof of (D,,z) we have to prove
that
S ¢ ¢
32 2 1y £ ABu, D ( Ly weeee e , ,+k)
( ) = ( ) ’ T wu’“-’mi—limﬂ-l:"'1wr+k
r+k
=2(——1)”'-Eowm--®r+k(5“"""""“"""’"&”"“).

pyr Loy --'7mi——11m't+1: -'-7mr+k

Every point zeX can be represented in the form
o =a +uh+...+ ey,

where ' ¢ X, (see § 2). The left and the right sides of (32) are linear in each
of the variables #,,,..., % ;. Therefore, in order.to prove (32) it
suffices to show that this equality holds if each of points @y, @, ..., Tpyx
is eithér equal to one of the points ¥, ..., ¥, or belongs to X,. The proof
is based on the following remark, which follows directly from (29) and (31):

. £y &
- (38 D, 1 ) r-|-k) =0
(59) b B
whenever more thun % points among ,,..., ®,,, belong to X,.

Consider first the case where each of points y,,..., ¥, dppears at
most once in the sequence w,, %, ..., #,.;. Then at leagt k--1 points
aMONE Ty, £y, ..., Lpyp belOng to X,.

If x;eX,, then ABz; = x; (see (q)) and consequently

(34) (_1)1-.5“,43%.@%(5,,...,...............,gw)

Doy ooy Bicyy Bigrg oony Tryp

= (__.1)1'.50501_‘(2)"'%(51, .................. y 51._'.,5)‘

Loy vy By Bigay ooy Dpgke
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If @; = y;, then equality (34) also holds since then

(35) Dyt (51, .................. y §,+k) -0
Ly oeny Bpgs Tigyy ooey Bppe
on account of (33).
Suppose now that an element y; appears in the sequence zg, Ly, -.-s Tyy
at least twice, L. e. @; = y; = @y, (4 # 1%,). Then, by the skew symmetry
of (Dr+k7

(1 &y B Do (; ................... , §,+,,) N

1
Doy ovvy Big—1y Bip g1y o-vy Tpgke
4 (—1Y4-& ABa, D, By et s s Erate -0
2 T g, By _qy T . ’
03 <0y Big—1s Ligy1y ooy Prak

and analogously

(=1 £y Do (w“ .................. y & +k) n

09 ve s Tiyy Bigyy ooy Dpyke

+(_1)i2'£owiz'®r+k (El’ .................... y §r+k) —0.

Dgy oery Digo1y Ligy1s » oo s-Trik

If i, 1 1, then (34) holds. In fact, (35) is then satistied by the -
skew symmetry, since %; appears twice in the sequence g, ..., %1,
@1y ---y @. This proves (32).

Suppose now that Dy, Dy, Dy, ... is any determinant system for 4.
We shall prove that there exists a scalar ¢ =0 such that

(36) D, =cD, for m=0,1,2,...

where {7,} is defined by (27), (28), (29).
It follows from Theorem II that r is the order of {D,}, i.e.

(37) D,=0 for n=0,..,7—1

and D, % 0. It follows from (ds), (Dj_y), (D,_,) and from (37) that

' 68) R

Ty oery By

it either one of the points @, ..., z, belongs to X, (i. e. is of the form
Az) or one of the points &, ..., & belongs to &, (i. e. is of the form £A4).
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Eve,ry point ;< X can be uniquely represented in the form z; = 44
Wh'ere zeX, and a7 eX, and, analogously, every point &;¢5 ca;a b:;
uniquely represented in the form & = &+ & where e, and &'c S

Rt X

Property (38) implies that for arbitrary ;X and e =E (4 =1, 7),
ey

¥

(39) D,(f” . 5')= D (fi', c 5;’)
r 17 bl

17
Byyerey By AR

i.e. D, is completely determined by its values on subspaces &
ACOS &
The same is true for ,, i.e. ' 2ot

/1 s
(40) @,(5“"" 5*) =, (204
Byy ooy &y By y ooy Ly
imce Hy fnd X, are r-dimensional, all 2r-linear functionals defined
on ZX...x ZxX,X...xX, and skew symmetric in & & ek
1)eeeySp€ =y
r time: rtimes

8
and @7, ...,2, <X, differ only by a scalar factor. I i
: . . In particular, t
exists a scalar ¢ = 0 (since D, 5 0 # D,) such that P ) there

(5 ) = o [ )

rr
1900y &y 19 eeey @y

for &,..., ¢ &, and »,..., s, «X,. This proves, by (39) and (40),

that
D,(E” o 5’) = 0.@,_(515 ey 57-)

Dry coey @y Lyyeney By

for arbitrary &,,...,&,¢5 and o i
: E «ouy &,eX. Thi i
that (36) is true for ’;b: 0,...,;'.’ . e (20, G7) ey
; We shall prove, by induction with respect to k, that (36) is true
or nS: 7+ k,tﬁ t=(l‘)3, 1,2,... The case &k = 0 was just proved.

ppose that (36) is true for n = r-k. bhat it i
rue for T et o o +%. We shall prove that it is

(41) Dn“(fo: TR fn) - C_L.DM-I(:EO, Evony En).

Loy Byy « vy By Loy Byyovey By

) ?)1;]111% jﬁ% ?;.111 and D,,,, are linear in all variables, it suffices to prove
{ y e case where each of the points w,, @, ..., cither be-
ongslfto X, or is equal to one of the points Y1, ...,y,.’ "

e bef(},ls iﬁfqien(; Doy 1y ...y B, containg one point of the form Az
b o belo ging to X,), t.hen .(41) holds. This follows from the induction
ypothesis and from the identity (D;) for D, ., and for @, (see also (d,)).
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If the sequence @y, @y, ..., &, contains exclusively points ¥y, -5 Yrs
one of them appears at least twice. Hence, by the skew symmetry (d,),
both sides of (41) are equal to 0.

COROLLARY. A ¢DB has a determinant system in B if and only if A
is Fredholm. The determinant system (22) of A is determined by A wnigquely
up to a constant factor ¢ # 0, viz. if the order of A is zero, then

(42,) D,=D;D, for n=0,1,2,..
where D,, are given by (23), and if the order of A is positive, then
(42) D,=0¢®, for n=0,1,2,...

where ¢ % 0 and D, are defined by (27), (28), (29).

If Ac? has a determinant system in 2 and AeB, then A has also
o determinant system in B (viz. the same determinant system has this
property).

§ 7. Determinant systems in product spaces. Suppose that the
spaces =', X' are conjugate, and 5", X" are conjugate. Let 5 = g% &'
and X = X'xX". For every point zeX, o’ and z" always denote such
points in X’ and X" respectively that & = («', 2"). Analogously, if &e 5,
then £ and & always denote such points in E' and &' respectively that
&= (&,8").

TrEOREM IV. If

(43) Dy, Dy, Dy e
is a determinant system for a bilinear functional A’ on E'XX', and
(44) Dy, D{sDys .
is @ determinant systém for a bilinear functional A" on B'xX'", then the
s formulas
(45) D, (5" o 5") ]
Ty oy Doy,
g ’ 7" "
D Epyy e u (& ceey £
—_ 2 Z'Sgnp.sgnq.pn (511717 ! Ei’s).Dﬂ_s( 37,34-1’ ’ ’Zl’-n
& <~ Bgys -1 g By qr s Vg,
(where 3 is estended over oll the permutations p = (Py, ..., p,)  and

ba
G = (Gyy -~y qu) Of the integers 1,..., %, such that

pl<p2<"'<p57 P.g+1<pg+2<...<pﬁ,
QI<QZ<“'<qs’ Q3+1<q5+2<...<qn)
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define a determinant system (in )

(46) Dy, Dy, Dy, ...

for the bilincar functional A = (A’, A") on ExX (see definition (19)).

It is evident that (46) has the properties (d4), (d,) and (dy). It also hag

the property (d,) since if +* and "’ are orders of (43) and (44) respectively,

and points @y, ..., sy X', @y gy ooy e Xy £, ..., EleE, Evtityenns Epr e
- are such that .

(Ey s & "
(47) D,,(mb_“’m;' #0, DI

1 1"
(E,,H, ey f,,_H,, £ 0

’" " -A y
Dyt vees Bprggor

then D, . [  frer) ig different from zero for
Ty D1y ooy Byprppr

£ =(&,0)
& =(0,8.,)

z; = (2}, 0), (6 =1,...,1),

@y = (0, w:-i+i)’ (t=1,..,r",
since its value is then equal to the product of scalars (47).

We have to prove that (46) satisfies the identities (Dy) and (D).
Since &'s and #’s play a symmetric role everywhere, it suffices to prove
only (D,,).

By definition (45), we have

507 El’

5 1( 5)
n
Loy Byy eeey Ty

ki 5, E/ 4 E’I r”
’ 7 ’ .o .
= E E sgnp -sgnq-DSH( A AR ’38)~D;[h8( k17"t ﬁn)—i— .
& Bggy Bgy ooy By, b .

Goy1? o1 Pgp

n
. 5/ 4 o ’ , 1 1’ . tr
+ D' Msgup” s -1),’,( b B g S by z;,,)

5=0 prq” 0 Yoy y gy [ wqa“, ceey wq”

where p’, v, ¢, ¢ are any permutations of numbers 0 » 1, oo, n such
that

(48) =(072’1;---1Pn), P <...<pyg D1 < ovr < P,y

p

(49) b”=(pn---,pa,O,p3+1,--7,pn), Pr<.i. < Pgy Payy < .vo < Py
q
q

(50) =(QD"“7gn)’ QO<"'<QE7 q@-}-l<"'<q’lb7

BL) 0" = (- ), B<-e< oy <. < gy

icm

Determinant systems 185
By (D,) and (D,_,),

DW(EOA, by sn)

Loy Ty «ovy By,

7 8
= ZZZ(*l)"',sgnp'-sgnq“ §£A’w;,-'D;(§?’1’ """""""""" ! %’S) .

7 /
5=0 phq’ 7=0 Q07 "7t Maj1? P41t Tt

s <
ey &
'D;Ls(é?ﬁ“’ ' En)

25117+ Pay,

, :
P -
-Ds(ﬂl’ ’ <7 )
1

U
Ty - -

”
e e 3
( Ds+1? ; ! 5oy

’ ’r ’
Bagr ++vs Bggyiyt Bgriqrr -1 Py

n—

n 8
+ ) D) (1) seny” sgnq”- 504
a0 ygr 120

"o

m‘lﬁ—y‘
17
Dy
n n E' E,
= E (_1)1.5811'%;_ § g Sgnpl’)_sgnqg.l);(mlm’ ---7wgﬂs )
1=0 =0 pg0; 210 0 Vs
EII 5”
-p,;;s( ot e )

@ g17 "1 Sayp

+

I\

[}
-

(—1)" & A" o 21?

8=0 vgar

ngn%"sgnq%'-D;(j“’ Yo )

CRTRERT wqm

1 "
" £ o &
) Dn—s( Pet1? 7 >0 )

Zg41? 0 w‘li,n

%

In the last formula, py = (py,..., p,) and 9y = (p,,.., p,) are per-
mutations (of the integers 1,...,n) obtained from p’ and p’’ respectively
(see (48) and (49)) by omitting the number zero; eonsequently

Pr<...<pg, and Py < ... <Py
Similarly  ¢; = (¢, --.) €ia) 804 7 = (¢s1y -++) Gp) ATe permuta-
tions (of numbers O,...,4—1, 4+1,...,7n) obtained respectively

from ¢’ and ¢’ (see (50) and (51) by omitting the number ¢; consequently
Ga <o <Gip 2 Qo < .o < Gy '

The factor (—1)f is now replaced by (—1) since if g = i, then the
corresponding 41-coefficients at &A'wy;, £,4'x; satisty the equality

(—1y-sgnyp’-sgnq’ = (—1)*-sgn p,-sgn q};

analogously, if ¢,,; =4, then the corresponding 4-1-coefficients at
& A"z, & A" 5 satisty the eguality

(—1Y-sgnp”-sgnq”’ = (—1)-sgn py -sgn.q;.
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Consequently we have

Y £0A7517"'7’En
D"“(wo, Byyeens T
n
AT 61, ................ ,fn)
— —1) -D ; __{_
Z( DAL "(wo,...,wi,l,mwl...,mn
i=0
e E e ,5,,)
—1y- &' A" ;- D,
+§( Uedadoo n(wny---;wi—ua’i-{-u~'-:mn

n

; By et , 5“)
= —1)- &y Awy- D,
2,;( 1 Eodas ﬂ(%;--':wi—uwwu

since &4 x4+ &) A"z = £ Am; by the definition (19) of A.
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On Lezanski endomorphisms
by
R. SIKORSKI (Warszawa)

This paper is a supplement to my paper [5](%).
An endomorphism 7T of a complex Banach space X is said to be
a Lesansks endomorphism provided the functional

(1)

is continuous on the space &, of all finitely dimensional endomorphisms
K in X (with respect to the usual norm of K), i. e. if it satisfies the hy-
potheses of Lezanski’s [1], [2] determinant theory of the linear equation

(2)

Fy(K) = trace KT (Ke&,)

o+ ATs = ;.

In [5] I quoted an example of a Lezanski endomorphism T (in the
space L) which was not compact (= completely continuous). However,
the endomorphism T* was compact. The subject of this paper is to prove
that this is true for every Lezariski endomorphism. More precisely:

TeEOREM. If T is a Letanski endomorphism in X, then T (and, conse-
quently, T™ for n = 2,3, ...) is.the limit (in the norm) of & sequence of
finitely dimensional endomorphisms.

Let F be any continuous linear extension of F, (see (1)) over the
space & of all linear continuous endomorphisms (with the usual norm)
in X. Let Dy(A) be the Lezanski determinant of (2), determined by F.
Dy(4) is an entire function of A and, for small 2,

20 2 LR, B LR W
(3) Do) = exp (—il— — 22 ; — ‘; -}~)
where
(4) o, = F(I™" for n=1,2,..

(1) Errata to [5]. In footnote(*) on p. 106 instead of “®* is identical with &,
we should have “K, is identical with the class of all T satisfying (*)”.
Errata to [4]. The lines 18-30 on p. 46 should be omitted.
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