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1. Introduction. Let f(z,y) be an indefinite binary quadratic form
with real coefficients and diseriminant D = D(f), and write 4 = A4(f)
=V(D(f)). If P = (a',y’) is any real point, let M(f; P) = M(f; ', y')
= inf[|f(@+ 2, y+9')|; ¢,y integrall; the inhomogencous menimum, M (f),
of { is now defined by

M(f) = Sup M(f; P),

where the supremum is taken over all real points P. Davenport [4] showed
that there exists a constant % such that, for all f,
M(f) > kA(f)

(and that the statement is true for k = 1/128 [5]). We may therefore
define an absolute constant K by

K = suplk; M(f) > kA (7],

where the supremum is taken over all forms f.
Ennola [6] improved on previous lower bounds for K by showing
that

K >1/(16-+6/6) — 1/30-69...
In the opposite direction, I had shown [7] thab
K <1/12,

and it had already been conjectured that the value of K might be 1/12.
However, as a result’ of computations on EDSAC 2 at the Cambridge
Mathematical Laboratory, I have found several forms f for whieh M (f)[4 (f)
is less than 1/12, and one form F for which

M(F)A(f) = } X -309564... = -07739L... = 1/12-921...
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Hence we now have

K < -077391... = 1/12-921...

The results which form the theoretical basis for the computation
of M(f) are outlined in § 2; some further ideas which underlie the method
of computation are given in §3; and the organization of the computa-
tions for EDSAC 2 is deseribed in § 4. Finally, in § 5, I discuss some of
the forms with low minima (in particular, the form F), and the way in
which these forms were found.

Mr H. P. F. Swinnerton-Dyer wrote the programs for the compu-
tations on EDSAC 2 and helped with the deseription of them in this
paper; I wish to thank him very much for this and for all his help. I am
also grateful to Professor H. Davenport and Dr. J. W. 8. Cassels for
reading the manuseript. I am indebted to the Director of the Oambridge
Mathematical Laboratory for the opportunity of using BDSAC 2 for
these computations. I am grateful for an 1851 Overseas Scholarship
which enabled me to carry out this work in Cambridge.

2. Theoretical basis. The computations were based on the “divided
cell method’ for obtaining the inhomogeneous minimum of a given form,
which was devised by Barnes and Swinnerton-Dyer [2] and extended
by Barnes [3]; a brief account of the method is given in [7], § 2, and further
results related to it are given in [7], § 3. Here, I shall briefly outline the
results needed in the computations.

Let f = (a, b, ¢) dencte an indefinite binary quadratic form whieh
hag real coefficients and does not represent zero:

i@, y) = aw?+boy+cy?,
and let
4 = A(f) = +V (b*—4dac).

Let f be written in the shape

fl@,9) = & —— (bw-+y) (2+ Py);

4
|6 —1|
then f is called inhomogencously reduced or I-reduced if

1/ >1, [#>1,
and Gauss-reduced if

f<—1, &>1.
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Let

folw,y) = & (Bo+y) (2 + Doy)

Vil
18 Po—1]

be any I-reduced form equivalent to a given form f. Let {a,} (—oo < n <
< o) be a chain of integers such that |a,| > 2 for each n and

1 1 11
) B, = to—

-

Gy— GA3—

then {a,) is called an a-chain of the form f from the form f,. (As contin-
ued fraction expansions of the above type are not unique, there will
be many such a-chains from one form f,.) A unique chain of equivalent
I-reduced forms {f,} corresponding to {a,} is then defined by

4
= (0,2 z+ D,
Fnl®, y) = & =Y (Onz+9) (@4 Ppy),
where
1 1 1 1
O, = @p— ——— - D, = Gpyp1— ———
n Apy— Oy~ ! ket Apy2— Opyg—

Any chain of integers {e} (—oo < m < oo) such that, for each Ny &
has the same parity as a,,;, and

len) < |an+l] -2,

is called an e-chain corresponding to {a,}. The pair of chains {a,}, {sn}
is then called a chain-pair (of the form f from the form f).
For a given chain-pair, let

En—r— _ &arr
Op = &n1 § (— 1 6 )
Op—10n_s- —r
.
S
Entr
’“=8"+2 Byer Doy
—~ n+1 n42. 4

and, for each n, let

@) =
4 108t 00) (14 Bt 7}l [(—10nt- an)(1—¢n+rn)l,]
T 0 Ba—1 | (bt o)L= Buta)], (LB ou)(— 14 Pt |
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Then we define
(234) JW({“n}y {sn}) = lnfinn
3

It can be shown that M ({a,}, {e}) has the same value if we transform
the chains {a@y,.}, {&.} by reversing them both about the same point,
or by changing the signs of all the a, and of alternate &,, or by chang-
ing the signs of all the &,. We shall therefore regard two chain-pairs
as completely distinct only when one cannot be obtained from the other
by one of these transformations.

The following two theorems give the results needed for computing
M.

TeEOREM 1 ([2] and [7], §2). We have

M(f) = sup M ({a,}, {&}),

where the supremum is taken over all completely distinct chain-pairs {a,},
{en} of f for which {e,} satisfies certain conditions (B) (which are given
n [7], §2, and are not needed ewplicitly here).

THEOREM 2 ([7], §3). If ¢ = (4, B,0) is a Gauss-reduced form
equivalent to f, then all the completely distinct a-chains of f are included in
the sets of a-chains from the triad of forms:

g =(4,B,0),

g, = (4,24+B, A+ B+0),

g» = (4—B+0, B—20C, 0).
If, further, f has integral coefficients, then the chain of forms {f,} correspond-
ing to any a-chain of f contains infinitely many “copies” of forms of the
triad, and the distance between successive “‘copies” (which may or may not
be of the same form) is bounded.

(The last statement is not given explicitly in [7], but it follows imme-
diately from § 3 of [7] and the existence of the fundamental automorph
of f and the fact that the number of I-reduced forms equivalent to f is
finite.)

For any form f = (a, b, ¢) we define

¢ A(f) = minja£b+of;

it can be shown that, if {f,} is the chain of forms corresponding to {t},
then, for each n,

(4) o K A(fn);
and that the following theorem holds.
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TuroreM 3 ([3] and [7], § 2). If the a, are all even and not constantly
equal to 2 or to —2, and if the &, are all zero, then the conditions (B) are
satisfied, and, for each n,

Ty, = A{fn)-

As the even continued fraction expansion of the type (1) of any number
with modulus greater than 1 is unique, it follows from Theorem 2 that
there are at most three completely distinet even a-chains of the form 7,
given by the unique even a-chains from the friad g, g, ¢,; the minima
obtained by taking zero e-chains with these three even chains are, respec-
tively,

Mig; 4, %), Mig;0,4%), M(g;4%,0).

(We note this because the inhomogeneous minima of some of the forms
which we shall consider in § 5 correspond to chain-pairs of this type.)

The following results ([3] and [7], § 2) are needed for the domputa,~
tion of o, and 7, or of bounds for them, and hold for all n:

(5) en = lp— ] @n = lpypy— ’
Oy 41
Ty .. T,
(6) On = &p1—— “E:‘:ll" Tn = &p— @71111 H
(7) lon] < |Ou]—1, |7n| < [Pul—1.

Also, as Mr Swinnerton-Dyer pointed out, =, is less than or equal to the
smaller of

‘I 2 _ — 1y
A min[(en+1)(<.q>n1> %) (Oub{(—1) rf,)],
(.en@n_l) Q)'n.+1 @.n—l
(9) n [(gpn_’_l)((en"l_l)ﬁ—afz) (Q)n—'l)((an—'l)z“ JEL)]
(6, Dn—1) ,+1 ’ 6,—1 )

This follows from (2) by using (7) and the fact that, if , y, 2, t are real
and y,t have the same sign, then

(z+2)yt
y+t

3. Further ideas underlying the method of computation. The
aim was to use the divided cell method to obtain the inhomogeneous
minimum of a form whose coefficients are in rationed ratios; therefore
we assume in the remainder of this discussion that the coefficients of
the given form f are integral. It is conjectured (see [1]) that in this case
the inhomogeneous minimum M (f) is the value of M(f; P) corresponding

min[zy, #t] <
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to a rational point P and so is the minimum corresponding to a periodie
chain-pair {@q,}, {s.}. By Theorem 2, all the periodic a-chaing are inelu-
ded in the periodic a-chains from a triad ¢, gu, ga and it seems possible
that the minimum M(f) corresponds to one of these periodic a-chains
whose period is not too long. This idea underlies the whole approach
to the problem. At least the largest value of M ({ay.}, {¢s}) correspond-
ing to periodic chain-pairs of fairly short period from ¢, g,, g, should
give a good lower bound for M (f). (A program was written to obtain this
lower bound but it turned out to be too slow because of the large number
of e-chains corresponding to a given a-chain.)

Congider a given “block” of length n forwards from the form f, (equi-
valent to f) to the form f,:

tyy @oy - ey Ay

€0y 81y« vy Ep—1-

We have 0y, Dy, 0,, , determined by f,, fu, and we can cormpute 0, D,
for # = 1,...,n—1 by using (5). We can use (6) and (7) to obtain upper
and lower bounds for ¢y, 7, for r = 0,1, ..., n over the set of all chain-
pairs of 7 which contain the given block; we can then use (2), (8), and
(9) to obtain upper and lower bounds for m, for r = 0,1,...,% for all
such chain-pairs. Clearly the bounds for o, will be crude at the left-hand
end, while those for 7, will be erude at the right-hand end; however, as
18) is independent of o,,, and (9) of 7,, we can get fairly good estimatoy
for the upper bound of =,, even at the ends. If we know that some chain-
pair has minimum }u, and we can show that the wupper bound for =,
is less than w for some 7 in a given block, then we can reject all chain-pairy
containing this block, because, for such chain-pairs, M ({a,}, {&,}) must
be less than 1u (by (2a)), and so less than M (f).

Care is needed in the computations leading to the upper and lower
bounds for =, for a given block, because we are working with inequali-
ties, 8o that we must carry upper and lower bounds for most quantities,
and must, at each stage, choose the correct bound and round off multi-
plications and divisions in the correct direction, instead of rounding off
in the ordinary way. (Because of this, computations on EDSAC 2 had
o be carried out in the “fixed point” scale rather than in *“floating point’,)

4. The ' EDSAC 2 programs used for computing M (). The basic idea
in finding M (f) for given / by means of computation on EDSAC 2 iy as
follows. We guess a constant }u slightly Jess than M (f) and pick a triad
of forms given by Theorem 2. Then, for some given N, we find those blocks
of length N forwards from forms of the triad for which the inequalities
for m, (* =0,1,..., ) do not contradict = > u (i. e. we reject those
blocks for which the upper bound for n, is less than or equal to ufor some 7).
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Our main EDSAC 2 program produces these blocks for a given triad
and given N, u. It would be very slow to examine all blocks of length ¥,
and therefore the prograin proceeds step by step, starting with blocks
of length 1; it rejects as it goes any block for which, for some », the upper
bound for =, (computed as described above) is less than or equal to u,
and thereafter it does not examine any block which is a continuation of
a rejected block. Unless the upper bound for =, is good at the ends of
a block, we may waste a great deal of time by failing to reject at the
outset some blocks which are very “bad” at the left-hand end but
“good” elsewhere, and we shall not reject bloeks as soon as possible
because of weakness at the right-hand end; hence the importance of (8)
and (9).

If N iy sufficiently large, the chain of forms {f,} corresponding to
a Dblock of length & from a form of the triad must (by Theorem 2) contain
another copy of a form of the triad. Thus, from the set of blocks leading
forwards from forms of the triad, we get a set of (shorter) blocks leading
forward from one form of this triad to itself or to another form of the
triad, and a set of possible successors to each block. With luck, it is possible,
by fitting these blocks together in every way which avoids rejected blocks,
to obtain a finite set of periodie chain-pairs. By Theorem 2, any chain-
pair for which M({a,}, {ex}) > }x must be one of these, and so by exam-
ining M ({ay}, {,}) for these chain-pairs we should be able to find M (f).

In practice there are two ways in which things may go wrong. If we
have picked u too large, we may get no blocks at all, or all the chain-pairs
built of the blocks produced may give M ({a.}, {s,}) < ipu; in either
case we at least deduce that }u is an upper bound for M(f). If we
have picked u too small, we get too many blocks and an infinity
of possible chains. However then we can often pick out a few plausible
chain-pairs, some of which usually give values of M({a,}, {s,}) which
are greater than Lu and can be used as the new value for }u; if this does
not happen, we must have chosen N too small, so that our results have
been vitiated by uncertainty at the ends of the blocks. It is desirable
to take N at least twice the longest distance between successive forms
of the triad in chains from forms of the triad; by working out all the chains
from forms of the triad, this distance can be computed, but in practice
it was more efficient to guess N and increase it if necessary.

It follows from (4) that we cannot have M({a,}, {e,}) > tu for any
chain-pair from a form for which 2 < u. Thus if we pick a triad of forms
given by Theorem 2 for which one or more of the forms has 1 < pu, we
can reject these forms immediately, and need only apply our main prog-
ram to the remaining forms of the triad. In order to take advantage of
this, and to gain some idea of the possible chains, we used:


GUEST


44 Jane Pitman

(1) Program 1, which, for a given form f and given u, oxamines the
possible triads of Theorem 2, picks a triad in which as many forms as
possible have i < p, and gives either all possible ¢-chains from the
forms of the triad which do not lead to forms with A << 4 or all possible
even g-chains with this property. In fact the first alternative was very
slow and was therefore not used, while the second was fagt and usually
gave sufficient indication of the type of chain to be expected.

Ag well as our main program and Program 1, it was convenient to
have:

(2) Program 2, which evaluates M ({6n), {2a}) precisely (recording
the numbers as p/q) for a given periodic chain-pair. Both this and the com-
putations of Program 1 could, of course, be done by hand.

(3) Programs to find, for a given form f, chain-pairs with large val-
wes of M{{a,}, {s,}) Wwhich could be used as initial values of }u in the
main program. As it was so slow to congider all the periodic chain-pairs

" with fairly short periods, we had to use a program which congiders only
some of the possible e-chaing and which sometimes gave a very poor
“gmess’; however there were many forms for which even this guess was
so large that the forms could immediately be rejected as uninteresting.
If the guess was very small we were often able to obtain a better one by
using (1) and (2) to obtain the minima for the even a-chaing with zero
e-chains. Often it was best to work by repeating the main program with
several different values of x4 without first checking that they were valid
guesses.

A proof of the value of M (f) (once known) takes 2-5 minutes of EDSAC
2 time, but of course finding M (f) may take much longer if one is unlueky.
It would be possible to fit all the programs together into one program which
would obtain M (f), but it would be hard to avoid an immenge amount
of unnecessary caleulation in such a program, and so buman interven-
tion at some points is more efficient.

5. Forms with low minima. Let w,, r =0,1,... denote the
Fibonacei numbers (u, = 0, %y = 1, Upyq = Up+Up_y, * 2 1), and o,
r=20,1,... denote the Lucas numbers (v, = 2, v, = 1, Dy == VptVpy,
r>=1), and let

Gul®,y) = U B2+ Vp Y — U Y?;

it iy easily shown that

(10)

A(Gy) = V(o4 duy) =V [0up, + (—1)*4).

The forms &, with # odd are (in a slightly different notation) the syfnmet]iic
Markov forms which I investigated previously [7]. I showed that, for the
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first few (odd) values of # and for all large (odd) =,
(11) M(G,) = tu,, if ns=0(mod3).

Tt follows from (10) and (11) thast, for odd n not divisible by 3, M (&,)/4(6,)
tends down to 1/12 as n tends to infinity, and this implies that K is not
greater than 1/12.

For even n, however, (10) implies that }w,/A(&,) tends up to 1/12
as n tends to infinity. Thus, if a result corresponding to (11) held for any
even n, it would mean that K must be less than 1/12, and the smaller
the value of #, the stronger the result would be. Therefore it seemed
natural to investigate the forms &, with n even.

In fact, I found that, for the form @,, = (55, 123, —55),

M(Gy) = B854 = Juyy, M (Gyo)[A(Gyo) = .333309...

By using the main program with x4 = 55 and then with u = 54.9, it was
found that there are no chain-pairs for which M({a,}, {s,}) i3 greater
than 55/4, and that the only chain-pair for which M({a,}, {s,}) might
be greater than 54.9 /4 consists of the even a-chain from G, with the zero
e-chain; for this chain-pair, the minimum is 55/4 and thus we have the
result. ’

The corresponding result holds for &,, = (337,843, —337), but
this is, of course, weaker (as would be corresponding results for higher ),
because %,/ (G,) increases for even n. Therefore, in order t¢ obtain forms
f for which M(f)/4(f) might be smaller, it seemed sensible to examine
forms obtained by slightly varying the continued fraction chain of Gy,.
A complete period of the simplest a-chain of G, is

(12) 3,3,8,3,3,—3,—38, —3, =3, —3;

and a complete period of the (one and only) even a-chain of G,,, which
gave the value of M (@), is:
2,—2,—22,2, -2, —2, —4, —2,2,2, —2, —4, —2, —2,2,
(13) 27 ’“2’ _2,2: "27272y ‘“27 _272’2y 4‘7 21 "‘2y ”‘25 27 451 2;
2,—2,—2,2,2, —2. ‘

By slightly varying (12) and segments of (13), I found a number of forms
with M (f)[4(f) < 1[12. The best of these was

F = (547,1097, —8177),
for which

M(F) = 547/4

and

AM(F)[A(F) = -309564...
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Tn the same way as for G, it was found that the only chain-pair for which
M({ay}, {e,}) might be greater than 546 [4 congists of the even a-chain
from F with the zero e-chain, for which, in fact, M ({a.}, {e.}) is B47/4.
A complete period of the (sole) even e¢-chain of F is:

2, —2, —2,2,2, —2, —4, —2,2,4,2, —2, —2,2,2, —2,2,2,
—92,—2,-2,2,2, -2, —2,2,2,2, —2, —2.
Another form with a very low minimum is
f = (151, 739, 193),

for which
31701 < 4 M (H)[A(f) < .3LTTD.

It should perhaps be noted that for this form, as well as for several others
with slightly higher minima which were computed precisely before F was
found, M (f) does not correspond to an even a-chain.
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On a diophantine equation
by
J. W. 8. Cassers (Cambridge)

The following theorem answers a problem put to me orally by Pro-
fessor Mordell. He tells me that he had known about the problem for
some time and that it had several times been proposed to him (1).

TeEOREM I. The system of equations

(1) r+s+t =18 =1
s insoluble in rationals 7, s, 1.

As Professor Mordell pointed out, this is equivalent to the following
TeroREM II. The only -rational solutions of

2) (r4-s+1)® = rst
have
rst = 0.

The equation of Theorem II represents a curve of genus 1 in homo-
geneous coordinates. It is, in faet, a particular case of an equation consid-
ered by Mordell [4]. He shows that it can be transformed into an appar-
ently quite different shape. Since (2) is homogeneous, we may suppose
without loss of generality that r, s, t are integers without common factor.
It follows from (2) that r, s, ¢ are coprime in pairs, and so, by (2) agé,in,

r=0% g§g=90 {=71°
where g, o, v are integers and
(3) o+ o418 = gov.

This is a special case, as Mordell remarks, of the equation
(3" a0°+bo®+ ¢r®+dgor = 0
considered by Sylvester [10] and Hurwitz [5] (ef. [9], p. 80-81).

(*) I am grateful to Professor Mordell for his comments on my MS.
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