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The cyclotomic numbers of order twelve*
by

A. L. WHITEMAN (Princeton, N. J.)

1. Introduction. Let p be an odd prime and g a fixed primitive
root of p. Let ¢ be a divisor of p—1 and put p—1 = ¢f. The cyclotomic
number (¢, j) = (¢, j), is the number of values of ¥, 1 <y <p—2, for
which

(1.1) y=¢°" 14+y=¢"" (modp),

where the values of s and ¢ are each selected from the integers 0,1, ...,
f—1. A central problem in the theory of cyclotomy is to find exact for-
mulas for the constants (¢, j). Until now complete solutions have been
obtained only in the cases ¢ = 2,3,4,5,6,8,10 and 16. References
to these solutions are given in R. H. Bruck’s report [2] on the computa-
tional aspects of the problem. Since the publication of [2] two more ar-
ticles [11], [12] relevant to the subject have appeared.

This paper is concerned with the case ¢ = 12. The systematic study
of this case was initiated by L. E. Dickson [4]. The foundation for his
work is the following theorem ([4], Theorem 12): when e = 12, the 144
cyclotomic constants (2, j) depend solely upon the decompositions p = a?
+4y? and p = A2+3B2 of the prime p = 12f-+1, where © = 1(mod4)
and A = 1(mod6). In a number of instances Dickson obtained explicit
formulas to illustrate this theorem. Two examples are as follows. If 2 is
a cubic residue of p and 3 is a biguadratic residue of p, then

(1.2)
(1.3)

144(0,0);; = p— 35— 324 — 305+ 24 (4 + 1)
144(0,2);, = p+1— 24+ 24B— 120

(f even),
(f odd).

The conditions of the theorem determine # and A uniquely and deter-
mine ¥ and B uniquely except for sign. The ambiguous sign in (1.2) is

* Research done in part under Contract NSF GB5877 between the National
Science Foundation and the University of Southern California, and in part with
support from the Institute for Advanced Study.
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fixed by the condition that the symbol (0,0),, is an integer. It is clear
that the value of (0,0),, does not depend on the choice of the primitive
root g. On the other hand the value of (0,2),, is indeterminate. Formula
(1.3) means that for some choice of B there is some choice of ¢ such that
(1.3) holds. .

Dickson’s analysis depends upon elaborate computations and is
not entirely definitive. In the present investigation a different method
is devised, and the first complete solution of the cyclotomic problem in
the case ¢ = 12 ig obtained. The presentation is virtually self-contained.
It is proved that the primes have to be divided into twelve clagses with
different formulas holding for different classes. Moreover, all possible
formulas are derived (§ 5) and tabulated (§ 6). The principal new tools
are Theorems 1 to 5 in §§ 3 and 4.

Three important applications of the tables in § 6 may now be
indicated. .

The so-called f-nomial periods 74, %1y..., %, are given by

-1
7 = D) exp(2mig™+*|p)

t=0

(k=0,1,...,e—1).

These 7’s satisfy an irreducible equation of degree ¢ with integral coeffi-
cients known as the period equation. In the.determinantal form of the
period equation (see e. g. [4], p. 398) the entries are cyclotomic numbers
of the eth order. Consequently the formulas in § 6 enable one to express
the coefficients of the period equation of degree 12 in terms of p, z,y, A
B. However, this matter will not be pursued in the present paper.

For integers a, b, ¢ the problem of determining the number of so-
lutions N,(a, b, ¢) of the congruence

(1.4)

?

ar’+by® = o(modp)  (sy == 0 (modp))

can be reduced to the problem of determining the number of solutions
of (1.1). Hence the tables for (¢, j);; may be used to compute correspond-
ing tables for Ni,(a, b, ¢). An example of this kind is given at the end
of §6. .

In (1.4) it is natural to take @ = 1, b = —1 and ask for what values
of p is it true that the number of solutions of (1.4) is the same for overy
¢5= 0(modp). This is the problem of residue difference sets and it is
solved in § 7 in the case ¢ = 12.

2. Cyclotomy. In this section some results from the theory of cyclo-
tomy are presented for convenient reference.

It should be kept in mind that the eyclotomie numbers (4 , §) defined
in the introduction are functions of g as well as p. For if g is replaced by
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another primitive root ¢’, then the correspondence between the numbhers
(i, 1) for ¢’ and the numbérs (4, j) for g is given by the equation (4, j)’ =
(ri, rf), where r is some integer relatively prime to p—1 such that ¢’ =
g (mod p). '

Clearly (i,4) = (i’,§") if i=i'(mode) and j ==j'(mode). Further-
more, the following identities are well-known ([1], p. 202-203):

@.1) G, 9) = (e—i,7—i);
s ino| G0 (f even),
2.2) D=1+ 1e,i+40)  (f odd).

Let B = exp(2nife) be a primitive eth root of unity. For an integer &
not divisible by p let inda be defined by means of the congruence g4* =
= a(modp). In the theory of cyclotomy the so-called Jacobi sum ([1],
p. 122) plays a fundamental role. For each pair of integers m, n this sum -
is defined by

(2.3) ﬁminﬂa+nind b’

(™, " =

a+b=1(modp)

where a,b run over all pairs of integers in the range 1< a,b <p-—1
satisfying the summation condition. It follows without difficulty from
(2.3) (compare [5], (9)) that

p(B™, ) = (", ™) = (=1 p(F7" ", B)-

Putting' n = 0 in (2.3) we get also

(2.4)

p—2 (m =0),

m 0y __
(2.8) w(f*, B) = 1. A< m<e—1).

The most important property of (2.3) is the formula ([1], p. 123)

(2.6) v(B™ B w(BT BT =P,

provided no one of the integers m,n, m+n is divisible by e.

In (2.3) replace m by v, where v is an integer. Collecting the expo-
nents of § which are in the same residue class modulo ¢ we obtain the fol-
lowing expansion of p(f™, ") into a finite Fourier series (compare [1o1,
Theorem 3):

e—1
2.7) w(B™, B") = (—1™ D) B(i, v)p™.
=0
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The coefficients B(i, ») are Dickson-Hurwitz sums ([10], (6.2)) defined
by '

1

(h, i—oh).

1

3

(2.8) Bi,v) =

=
[
e

Using (2.1) and (2.2) we may easily prove the following two properties
of B(i,v): '
(2.9)

and ([1], p. 201)

B(i,v) = B({,e—v—1),

=1 (i=0),

(2.10) foa<i<o).

B(i, 0) =

Putting n = 0 in (2.7) and using (2.5) we obtain

e—1

D' B(i,v) =p—2.

i=0

(2.11)

Let now « demote a root of the equation o® ! =1 and put
{ = exp(2ni/p). Closely related to the Jacobi sum (8™, %) is tho
resolvent of Lagrange ([1], p. 83):

-1

7(a) = Z aindag-a'

==

Indeed we have the formula ([1], p. 86)

p(B™, B") = T(B™) (") [x (™)

when m--n is not divisible by e. We also have the formula ([1], p. 87)
T(f")T(f™") = (—1)"p

if n is not divisible by e.

Jacobi ([7], p. 167) stated without proof the following two deeper
properties of (2.12). (i) If p is an odd prime, then

(2.15)

(2.12)

-

(2.13)

(2.14)

(~1)7(d") = ™ v(a)T(—a) ("= 2(mod p)).

(i) It p is a prime = 1(mod 3), then

(2.16) 7(a)r(wa)r(0?e) = ™ pr(a®) (™ = 3(modp)),

where o is an imaginary cube root of unity. Formulag (2.15) and (2.16)
are special cases of & remarkable identity ([3], (0.9)) first proved by Dav-
enport and Hasse.
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In the rest of this section we assume that e is even and write e = 25.
For later applications we now derive from (2.15) two properties of the
Jacobi sum. In (2.15) replace a by #°, where 1 < v < ¢—1. Then multiply
both members of the resulting equation by +( BB [2 (67 E) 1 (BF). In
view of (2.13) we obtain

V(B B7) = (8, B7F) (v ~ B2, 3E)2),
P(B”, BTE) = B (8, ) (v = B).

We shall require an extension of (2.11). Put » = H in (2.7). Then by

(2.4) and (2.5) the value of (—1)"®y (g%, g%) iy —1, Making use of (2.11)
we deduce

(2.17)
(2.18)

(¢ even).

B—-1 p__3
(219) > B(2i, v) =5
=0

BE-1 _1
N BEi+1,v) = p—z—

i=0

We next define the functions
(2.20)  s(i,5) = (3, 9)— (i, §+B), 103, ) = (3, §)— (i+ B, j).
Then it follows from (2.2) that

. 8(f,4) -
t(% j) = . .
s(j+EB,i-+E)
In §5 we shall make use of the following lemma.
LeMMA 1. If ¢ is even and B — 2, then

(f even),
(f odd).

(2.21)

(2.22) 40, f)e = (4 flm+s(3, §)+s(6+B, §)+24(i, ).

Proof. This lemma is an easy consequence of the formula
(4 9)s = (6, et (i+B, ot (i, j+H)o+ i+ B, j+E),.

The purpose of the lemma is to provide a transition from the value
of (¢, f)g to the value of (s, §),.

3. Cyclotomy when ¢ is four times an odd prime. The results in
this section will enable us in § 5 to express the numbers (4, f)12 in terms
of p,#,y, A and B. Our procedure is an extension of the method used
in another paper [12] to treat the case ¢ = 10. We assume, to begin with,
that e is divisible by 4, and we put E = ef2, g =ef4.

Returning to Lemma 1 we see that (2.22) expresses (4, 4), in terms
of (i, j)z and numbers of the form s(¢, ). The evaluation of s(i, 7) will
be accomplished with the aid of the following theorem.
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TasorEM 1. Let ¢ = 4q, where g is an odd prime. If © and j are arbi-
irary integers, then

e—1
(31)  esti, i) = S0, TG, i)+ Y (Blitiv, ) —Bli+B+iv, o),
=0

where S(i,§) and T(i, ) are sums defined as follows:

-1
(3.2) 8, ) =4 Z((i,i+4n)—(i,i+4n+2)),
N=0
g—1 g-1
(3.3) T(i,j) =4 Z’ (GG 4m, j+4~n+2)—('b‘+4.m,j-\—élu)}.
m=0 n=0

Proof. The starting point of the proof is the relation
e—1

B(j+iv,0) = (i, )+ Y (h+1,j—vh),

h=1

(3.4)

which follows from (2.8). In (3.4) sum over v = 0,1, , e—l and then
replace j by j+H. BEmploying (2.20) we get after subtraction

é6—1
35)  esliyf) = N(i, i)+ Y (Bli+iv,0)—B(j+B+iv, ),
=0

where we have put
e—1 e—1

N i) = 3 Y ((hti, j+ BE—oh)— (i, j—vh).

h=1 v=0

(3.6)

A comparison of (3.1) and (3.5) shows that the remainder of the proof
consists in establishing that ¥ (¢,§) = 8(, ))+T (4, 7). In several portions
of the following argument we shall tacitly employ the hypothesis that ¢
is an odd prime. Consider first a fixed value of » in the outer sum in (3.6).
For b odd, h # ¢, b # 3¢, the numbers vh run over & complete regidue
system modulo ¢ whenever v does. For h = ¢, the consecutive terms of
the sequence vh{mode) are 0,q, 2q, 3¢, 0, q, 2¢, 3¢, .-, 0, ¢ 2¢, 3¢.
For h = 3¢, the consecutive terms are 0, 3¢, 2q, ¢, 0, 3¢, 2¢, @, ...y 0,
3¢, 2, ¢- In any event, when h is odd the corresponding contribution
of the inner sum in (3.8) to the value of N(i,4) is zero. Suppose next
that h = 2(mod4), 7 # 2¢. Then the least positive remainders of the
numbers vh(mode) run twice. over the even integers from 0 to ¢—2 in
some order. But if h = 2¢, then the terms in the sequence vh(mode) aro
alternately 0 and E. Thus when h = 2(mod4) we conclude again that
the corresponding contribution of the inner sum in (3.6) fo the value
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of N(¢,4) is zero. Pinally, su
N . . , Suppose that h = 0(mod4). Then th
pqmtlve resudu'es of the numsbers vh(mode) run four tirzws in som: ;;3;811
over the mult1p!e§ of four between 0 and e¢—4. Since H = 2(mod4) ‘:
follows that N(4,4) may now be written in the form ’
g-1 g-1

N i) =4 3 3 {(i+dm, j+4n-+2)— (i+dm, j+ 4n)).

; | m=1n=1
This ¢ompletes the proof.
In the statement of Lemma 1 there appears the combination s(; §)
7

+8(i+F, ). In § 5 we shall requi i
+ . quire & technique for evaluating thi
Accordingly we derive the following corollary of Theorem 1g s

COROLLARY. If the hypotheses of Theorem 1 are satisfied, then
efs(é,§)+s(i+E, j)

=8N+, 5)+2

(3.7)
P

1

[\

(B(j+2iv, 20)— B(j+ B+ 2iv, 20)),

v

]
o

where

(38) i, f) = 8, i)+ 8G+E,j), T'(,j) =710, N+TE+E, j).

Proof. To_ establish the Corollary we consider the sum in (3.1) and
the correspondmg sum with ¢ replaced by 7-+K. For a fixed vah;e ofnv
Eorrespoyd‘mg surfuma,n(%s ditfer by the factor (—1)%. It is therefore clea,l"
hat es(i, j)+es(i+F, §) reduces to the right member of (3.7).

We next concern ourselves with th . . o
For this purpose we put e evaluation of S(lb, i) and 8’ (4, §).

(3.9) b(t,v) = B(i, v) - B(i+ E, v),
and define the functions (s, g), D(s, ¢) by means of

(3.10) CO(i, ¢) = b, O+5b(,39), D(i,q) = b(i+q, 0)—0b(i+gq, 39).

We shall express 8(7,{), 8'(¢, ) in terms of C(i, q), D4, g). Our results
;11.1 e:na,ble usz Yvh'en. we specialize to the case ¢ = 12 in § 4, to evaluate

(4,9) and T (?, 7) in terms of p, w, y, 4, B. Finally, in § 5 we shall
also express b(i, v) in terms of p, z, ¥, A, B. )

It is convenient to i ; L s
theorem. congider first S'(4,45). We state the following

THEOREM 2. Let ¢ = ¢/4 = E[2 be a ; e
fined by (3.8), then f2 b an odd integer. 1f 8, ) is de-

. =D . . .

80 ) = ( 1)(i_j+lif(~z,4) (¢ = j(mod2)),
(=1)%¥9P2D(—4,9) (6 =j+1(mod2)),

where C(i, q) and D (i, q) are defined in (3.10).

(3.11)
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Proof. We shall prove only the first half of (3.11); the second half
may be established similarly. Tt follows easily from (2.2) and (2.8) that
for an odd integer v we have

e—1
B(i,0) = ) (i—oh, k) (v 0dd).

h=0

(3.12)

Taking o = ¢ in (3.12) and collecting the values of h which are in the
same residue class modulo 4, we get

g—1 q-1 a-1
(818)  Bli,q) = 3 (i, 4m)+ Y (i+3g,4n+1)+ D) (i+2g, dn+2)-+
Na= N= N=0
0 0 ot
+ (t4q, 4n--3).
N=0

In an analogous manner we may Wwrite down formulag for B(4,3q),
B(i4-2q,q), B(i+2q,39) corresponding to (3.13). Substituting tho
results into b(—4i, ¢)+b(—4, 3¢) and applying (2.1) we obtain

q-1

20(—i,q) =4 3 (6, i+4n)— (3, i+dnt2)+

a-1
4 3 ((i+2g, 420+ 4t 2) — (i+ 2, i+2¢+ 4n)).
n=0
Tn view of (3.2) and (3.8) the result stated in the first half of (3.11) now

follows at once.
By means of Theorem 2 we next deduce the following theorem for

computing S(i, 7).
' TeRoREM 3. Let 8(i, ) be defined by (3.2), and lot ¢ = /4 be an odd
integer. If j = 0(mod4), then

3.14 i iy o | O OHZEO(=6 0 (i evem),
(3.14) (¢, §) = oG, q)_‘_(_l)(i-pl)ﬁl)(_,';’ Q) (i odd).
If j = 1(mod4), then

[ DG @+ (=1)PD(—1, 9) (i even),
(315) S("/, 7) - ‘D(’Iz, q)+(_])(z~1)/20(_q/, q) ('b O(Z(l).

Proof. Sinee §(i,j+2) =—~8(4,), the cases in which j==2 or 3
(mod 4) reduce to the cases in which j = 0 or 1(mod4). By (2.1) and (3.2)
we have
(—1)"8(—1, 1)
(=12 (—1,j+1)
Theorem 3 follows from (3.8), (3.11) and (3.16).

(¢ even),

(8:16) (i odd).

S(i,i)=\
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4. The case ¢ = 12. Throughout this section we shall assume that
¢ =12, § =6, ¢ = 3. The number B is thus a primitive twelfth root of
unity. In (2.7) put w = 3,» =l and » = 9, v = 1;put also n = 2, v = 2
and »n = 10, v = 2. Then it is clear that ¢ (8%, 87°) and (8%, g72) are the
complex conjugates of (B3, f2) and (B, f2) respectively. Following
Dickson (compare [4], (50), (83)) we now put :

(1) w(f ) = —a+2yp°, (B, ) = —A+B(2p2-1).
It follows from (2.6) that
(4.2) p = x2+4-4y? = A2 3B
We next make three applications of (2.7) with n =3 and v=1,2, 5.
We get

(+3) v(B, 69 = (=1 3 B(i,0)f* (v =1,2 or 5).

Equating real and imaginary parts in (4.1) and (4.3) we obtain for v =1, 2
or 5

(44) (—1)*'@ = (B(0,7)+B(4, 0)+ B(8, 1)) —
—~(B(2, v)+B(6, v)4+ B(10, 'v)),
(45)  (—1)2y = (B(L,2)+B(5, v)+B(9, v))—

—(B(3,2)+B(7, v)+ B(11, v)).

Again, putting n = 2, v = 2 in (2.7) and noting that p* = 2—1 we
derive in a similar manner that 4 = —a-3b, B = 4b, where

(4.6) @ =(B(0,2)—B(3,2)+B(6,2)—B(9,3))—
—(B(2,2)—B(5,2)+B(8,2)— B(11,2)),
(47) b= (B(1,2)—B(4,2)+B(1,2)—B(10,2))+

+(B(2,2)—B(5,2)+B(8,2)—B(11,2)).

Dickson ([4], p. 400) proved that » = 6f-++1—8(1,2), or 6f—1—
—8(1,0), according as f is even or odd. He ([4], p. 409) also showed
that 4 = 6(0,3);— 6(1,2);+1. Hence the values of x» and A4 are
uniquely determined by (4.2) and the conditions

(4.8) 2z = 1(mod4), A = 1(mod6).
On the other hand y and B are uniquely determined by (4.2) except for
sign. For a fixed primitive root ¢ the precise determinations of y and 2B
are given by (4.5) and (4.7) respectively.
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There are additional formulas related to (4.4) and (4.5). Make two
applications of (2.7) with n = 3 and v = 3,4. By (2.4) and (2.5) we have

11
(4.9) 4,3,3“—2‘31 HpF = 1.

1=0

Separating real and ima.gina,ry parts in (4.9) and then combining the re-
sults with (2.19), we find

(410)  B(0,0)+B(4,0) +B(8,v) = }(p—5) (v =3 or 4),
(4.11)  B(L,v)+B(5,v)+B(9,v) = B(2,v)+ B(6, )+ B(10, v)

= B(3,v)+B(7,v)+B(11,v) = {(p— (v =3 or 4).

With the results of this section we can compute the sums 7'(¢, §) and
T'(i, §) defined in (3.3) and (3.8) respectively. The formulas depend on
the residue classes of 4 and § modulo four. It is convenient to distinguish
seven cases as follows.

Casel: ¢ = 0(mod4),j = 0(mod4). Case2: i = 0(mod4),j = L(mod 4).

Case 3: ¢=2(mod4). Case 4: 7= 1(mod4), j= 0(mod4). Case 5:
i = 1(mod4), j = L(mod4). Case 6: 7 = 3(mod4), j = 0(mod4). Case 7:
4 = 3(mod4), j = 3(mod4). We now state

TuEoREM 4. When ¢ = 12 the value of the sum T'(Z, j) defined én (3.3)
is given by

24 (—1) 20 (Case 1),
(—1)*14y (Case 2),
(4.12) T(4,9) = 0 Case 3),

(
14 (=1 (z4+2y)  (Cases 4, 7),
(

14+ (1Yt (@—2y) (Cases 5, 6),

where x and y are determined by (4.4) and (4.5) respectively.

Proof. Sinece I'(¢,j+2) =—1T(4,§), all remaining cases can be ro-
duced to cases covered by the theorem. Let us return to the functions
0(i, q), D(i, q) defined in (3.10). Formulas (4.4), (4.5) and (4.10), (4.11)
transform into

(413)  0(0,3)40C(4,3)+0(8,3)

= —0(2,3)—0(6,3)—0(10,3) = —1+(—1)" g,
(£14) C(1,3)+C(5,3)+C(9,3)

= —0(3,3)—0(7,3)—0(11,3) = (—1)2y.
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(415)  D(0,3)+D(4,3)+D(8,3)

= —D(2,3)—D(6,3)—D(10,3) = (—1)'2y,
(416) D(1,3)+D(5,3)+D(9,3)

= —D(3,3)—D(7,3)—D(11,3) = —1+(—1)=.
By (3.2) and (3.3) we have
T(i,§) =

We now apply Theorem 3 to (4.17) in each of the seven separate cases
under consideration. The five assertions of Theorem 4 are consequences
of relations (4.13) to (4.16).

The funection 1”(¢, ) defined in (3.8) may now easily be evaluated.
‘We have the following theorem.

THEOREM 5. If e = 12 the value of T'(3, 7) is given by

(4.17) — 84, §)—8(i+4,§)—8(+8, 7).

2+(—U*ew (=

0
4.18 .
v (—1)**4y  (j = 1(mod4)).

@, i) =

Proof. Since I"(i,j+2) = —T'(i,j) the cases in which j =2 or
3(mod4) reduee to the cases in which j = 0 or 1 (mod4). The theorem
follows immediately from (3.8) and (4.12).

5. Evaluation of the numbers 5(i, v). We now turn to the question
of computing es(7, §) by means of Theorem 1 in the particular case ¢ = 12.
For this purpose we require the values of the successive terms b(j -+ iv, v)
in the sum in (3.1). We shall derive formulas which express the values of
b(i,v), i,v=0,1,...,11 in terms of z, y, 4, B.

By (2.9) and (3.9) we have at once

(5.1) b(i,v) = b(4,11—v) = —b(i+6,0).

It therefore suffices to compute b(:,v) for ¢7,v =0,1,2,3,4,5.
To begin with, we note that (2.10) implies

b oy — | =0
' =
’ 0 (i=1,2,3,4,5).

The results in § 4 yield additional relations. From (4.4) and (4.5)
we get

(5.3)
(5.4)

b(0, v)—
b1, v)—

b(2, v)+ b4, v) = (-1 e
b(3,v)+b(5,v) = (—1)2y

(v =1,2 or 5),

(v =1,2 or 5).
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Again, from (4.10) and (4.11) we obtain
(5.5) b(0,v)—b(2,v)+b(4,v) = —1 (v=23 or 4),
(5.6) b1, v)—b(3,0)+b(B,v) =0 (v =23 or 4).

The basis of further analysis is the following lemma concerning the
Jacobi sums (8™, f*) defined in (2.3).

Levma 2. If ¢ = 12 and the number ¢ is defined by means of the equa-
tion

(5.7) ¢ = (B, B)[w(f, B),

then the Jacobi sums satisfy the relations

(i) B p(8, B) = ™ p(6, B°),

(i) v (8 6) ~( —1Yef™ p (6", §)

(iii) w(8 8) = (-1 ’Oﬂm'w(ﬁsyﬁ“),
{iv) v(B*) B) = ﬁ‘mw(ﬁ ),

(v) v(6°, 8) = (1Y ™ v (8, B,

where ¢™ = 2(modp) end g™ = 3(modp).

Proof. At the end of the proof we shall show that the number ¢ is
actually a fourth root of unity. We first note that (3|p) = 1 since p = 12f
+1 and hence m’is even. Therefore f~*™ = g™, Furthermore, (2|p) = 41
aceording as f is even or odd and hence m = f(mod?2). It is convenient
first to derive (iv). Noting that %™ = (—1)' and using (2.4) we see that
(1) is a special case of (2.17) with v =1, B = 6. We next prove (v).
In (2.16) put o = f* and a = B. Then apply (2.14) with » = 3. By (2.13)
we get (v). To deduce (i) put v =5, B = 6 in (2.18). By (v) and (2.4)
we obtain (i). To prove (ii) and (iii) we employ the formula

(5.8) V(8% B)v (B, B°) = w(B*, B)w (B, BY),

which is an immediate consequence of (2.13). Combining (v) with (5.7)
and (5.8) we derive (ii) and (iii).

‘We now prove that ¢ is a fourth root of unity. In (2.18) take v =
B =6 and compare the result with (iv). We get (8¢, B) = p(p*, ﬂ‘
By (2.4) and (2.13) this equation transforms into

(5.9) p(8%, B) = v(8°, B*).
We also find immediately from (2.13) and (2.14) that
(5.10) VB, B)w(B°, B°) = (B2, By (B, BY).
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Combining (5.7), (5.9) and (5.10) we obtain (83, %) = cp (82, §). Substi-
tuting from (iii) into the last equation we get :

(5.11) _ ¢ = (—1Yp™,

which yields the value of ¢ except for sign.

Lemma 2 serves the purpose of dividing the primes p = 12f+1 into
classes depending on the residue character of 2 modulo p and the residue
character of 3 modulo p. From (5.11) it follows that ¢ = +1 if f is even
and m' = 0(mod.4), or if f is odd and m' = 2(mod4); also ¢ = £ 83 if f
is even and m’ = 2(mod4), or if f is odd and m’ = 0(mod4). Furthermore,
m=0,2 or 4(mod6) if f is even, and m = 1, 3 or 5(mod 6) if f is odd. Alto-
gether there are twenty-four classes of primes (which will be reduced to
twelve essentially different classes in § 6). For each class there is a separate
table of formulas of the cyclotomic constants (see the tables in § 6). The
sign of ¢ is fixed by means of a criterion formulated in the paragraph imme-
diately preceding (5.13).

‘We now describe in general terms the way in which Lemma 2 is used
to calculate the numbers b(z, v). Since f¢ = p2—1, the expansion (2.7)
of y(4°, f) may be transformed into

(3.12)  (—1)"p(8°, B) = (b(0, v)—b(4, v)) +(b(L, )—b(5, v)) B+
+(b(2, v)+b(4, v)) 2+ (b(3, v) +b(5, v)) B*.

On the other hand, in view of (4.1), Lemma 2 expresses y(5°, §) as a power
of g multiplied by —a-+2yp3 or —A-+B(22—1). By equating coefficients
of like powers of # we obtain four linear relations among the six numbers
b(i,v), 4 =0,1,2,3,4,5. Two more relations are given in (5.3), (5.4)
or (5.5), (5.6). These six linear equations in the same number of unknowns
are linearly independent and hence determine the unknowns uniquely.
It turns out that, in all instances, b(7, ») is expressible as a linear combi-
nation with integral coefficients of 1,4, B, =, y.

To illustrate the method let us consider, for example, the specific
case in which v = 2, f is even (and hence m is even), m' = 2(mod4),
¢ = —f3 From equation (ii) of Lemma 2 it is clear that the value of
b(i, 2) does not depend on the residue class of m(mod6). By (4.1) the
right member of (ii) reduces to —2Bp+ (—A +B)p*. Since the numbers
1,8, B2, B° are linearly independent over the field of rational numbers,
we may equate coetficients of like powers of # in both members of (ii).
From (5.12) with v = 2 we get thus the four equations: b(0,2)—b(4,2) = 0,
b(1,2)—b(5,2) = —2B, b(2,2)+b(4,2) =0, b(3,2)+b(5,2) = —A+B.
By (5.3) and (5.4) we have also the two equations: 5(0,2)—b(2, 2)
+b(4,2) = —z, b(1,2)—b(3,2)+b(5,2) = 2y. Solving the last six equa-

Acta Arithmetica VI, 5
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tions for b(i, 2) we obtain the solutions: 3b(0,2) = -, 3b(1,2)‘= ;—‘A
—3B+2y, 3b(2,2) =, 3b(3,2) = —24—2y, 3b(4,2) = —u, 3b(h,2)
= —A4+3B4+2y.

The results obtained by this method may be summarized b'y means
of the following classification of cases. (In order to save s.paJce we ligt u?der
each case the values of 3b(i,»), ¢ =0,1,2,3,4,5 written consecutive-
1y.) ,

I,. wv=1, [ even, m' = 0(mod4), m = 0 (mod 6).

— 3z, 4y, 0, 2y, 0, 4y.
I,. o =1, f even, m' = 2(mod4), m = 0(mod6).
@, 0, 20, —6y, —2x, 0. .
= even, m' = 0(mod4), ¢ = 1.
e u—‘)j’——fm, 2y,’ —A+3§3+m, —2y, A+3B—ux, 2y.
. =2, f even, m' = 2(mod4), ¢ = 3.
s qi—w, :4:—3B-112y, @, 24—2y, —x, A—3B-42y.
In Cage IT when ¢ is replaced by —e¢, » and y remain unaltered while
A and B change sign.
III,. v = 3, f even, m' = 0(mod4), ¢ = 1.
—1—22, 2y, 1—a, 4y, —1-+u, 2y.
III,. » = 3, f even, m' = 2(mod4), ¢ = B°.
—1-4-4y, », 142y, 20, —1—2y, 2.
In Case IIL when ¢ is replaced by —e¢, # and y change sign.
IV. ©» =4, f even, m = 0(mod6).
—1—24, 0, 1—A+3B, 0, 1-1+4+43B, 0.
In Cases I and IV when m = 0(mod6) is replaced by m= 2{mod 6),
3b(3, v) is replaced by 3b(i+8,); when m = 0(mod6) is replaced by
m = 4(mod6), 3b(i, v) is replaced by 3b(i+4, v).
V,. v =235, f even, m' = 0(mod4).
—3w, 4y, 0, 2y, 0, 4y.
V.. v =25, f even, m' = 2(mod4).
z, 0, 2z, —6y, —2a, 0.
For f odd the corresponding formulas are obtained as follows.
I Replace m by m+3(mod6), m’ by m'42(mod4), ¢ by i-+46
(mod 12). ‘
II. Replace m' by m'+2(mod4), ¢ by —e¢, ¢ by - 6(mod12).
III. Replace m' by m'+2(mod4), ¢ by —e.
IV. Replace m by m+3(mod6).
- V. Replace m' by m'-+2(mod4), ¢ by ¢4 6 (mod12).
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The formulas for (i, 3) yield the following criterion for determining
the sign of ¢. Let # and y be determined by (4.4) and (4.5). For f even
and m' = 0(mod4), ¢ = 41 according as 3b(1,3) = 42y; for f even and
m’ = 2(mod4), ¢ = 14 aceording as 3b(1,3) = +w; for f odd and
m' = 0(mod4), ¢ = + 43 according as 3b(1,3) = Faz; for 7 odd and
m' = 2(mod4), ¢ = 41 according as 3b(1,3) = F2y.

Lemma 1 provides a technique for finding constants a, By, y, 6, ¢
such that

144(%, )1z = p+ad 4B+ yo+ Oy e

for all the cyclotomic numbers (i, j),,. We now have on hand all the neces-
sary machinery for making the computations. To illustrate the method
we give the derivation of the formula

(5.13) 144(3,1);2 = p+1+44 —~12B-+ 62+ 24y,

which is valid for f odd, m' = 0(mod4), m = 1(mod6), ¢ = —p3. By

(2.21) and (2.22) we have 144(3,1),, = 36(3,1)¢+36s(3,1)+36s(9,1)+

+725(7,9). From Table II in § 6 we obtain 36(3,1)s = p+1—24—6B.

To compute 36s(3,1) 36s(9,1) we use the Corollary of Theorem 1. In (3.7)
5

put i = 3, § = 1. The six consecutive terms in the sum 3 2 b(1+6w, 20)
»=0

are 0, A+3B+2y, 0, 0, , 6y. By Theorem 2, 38'(3,1) = —60C(9,3) =

6b(3,2)+6b(3,3) = (—4A4+4y)-+4z. By Theorem 5, 37"(3,1) = —12y.

Finally, to compute 36s(7,9) we use Theorem 1. In Bl)put i =17,7 = 9.
11

The twelve consecutive terms in the sum 3 > b(94-Tv,v) are 0, —uz,
v=0

A—3B+2y, 1—-4y, 0, 24, 6y, 1+24, «, 2, 6y, 0. By Theorem 3, 38(7,9)
= 3D(7,3)—30(5,3) = 3b(4,2)+ 3b(11,2) + 3b(10,3) + 3b(11,3) — & +
(A—3B+2y)4-(1+2y)—x. By Theorem 4, 37(7,9) = —3—3x— 6y.
Combining the results in this paragraph we get (5.13).

The smallest prime which may be used to check (5.13) is p = 181.
From Jacobi’s Canon Arithmeticus [8] we find that g = 2 (the smallest
primitive root), m = 1, m' = 56. Computing =, y, 4, B by means of (4.4),
(4.5), (4.6), (4.7) we get # =9, y = —5, 4 =13, B=2. We get also
b(1,3) = 3 5o that ¢ = — 3% The value of (3,1),, = 1. Tt is now easy to
verify (5.13).

We remark finally that in the application of Lemma 1 the value
of #(i,§) is sometimes easily obtained. Indeed, by (2.1) (¢, ) is equal
to 0 when f is even and j = &, and also when 7 is odd and j=0.

6. Tables of the cyclotomic constants of order twelve. In the
application of Lemma 1 for ¢ = 12, ' = 6 the value of (i, j)s i8 required.
Tables I and II give the values of the cyclotomic numbers of order six
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for primes p = 12f4-1. Table I expresses the 36 constants (4, ),
i,§ =0,1,...,5 in terms of 10 where (¢, j); is in row ¢ and eolumn j.

TABLE T

LW -O
=3
W

The values of the 10 bagic constants are expressible in terms of p,
A, B and depend on the cubie character of 2 modulo p (compare [4],
p. 408-410). These values are given in Table IL. As usual, the integer m
is selected so that g™ = 2 (modp).

TABLE II
m = 0(mod 3} m = 1(mod 3) m = 2 (mod 3)
36(0,0) p—17—~204 p—17—84+ 6B p—17—84— 6B
36(0,1) p—5-444-18B p— 5+ 44+ 12B p—b+444 6B
36(0,2) p—5+44+6B p—5+44—6B p—5—84
36(0,3) p—5+44. p— 5+ 44— 6B p—b6+44+6B
36(0,4) p—5+44—6B p—5—84 p—5-+44+-68
36(0,5) p—b5+44—18B p—5+44— 6B p—56-+44—12B
36(1,2) p+1—24 p+1—24—6B p+1—24+6B
36(1,3) p+1—24 p+1—24— 6B p+1—24~12B
36(1,4) p+1—24 p+1—24+412B p+1—24+6B
© 36(2,4) p+1—24 p+ 14 104+ 6B p+ 1104 6B

Precise determinations of A and B are given by the formulas

4 =6(0,3)g—6(1,2)¢+1, B = (0,1)4—(0,5)—(1,3)s+ (1,4)s,
which follow from Table IT itself.

. The 144 constants (i, §),, with 4,§ = 0,1,..., 11 have at most 31
different values for a given p. Tables III and IV, which follow, summarize
the relations between the constants. In these tables the entry in row ¢
and column j is equal to (¢, j);,. The number 10 is indicated by the letter
X and the number 11 by the letter Y.
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The author has employed the method described in § 5 to caleculate
all possible formulas for the (i, j);;. These formulas are expressible in
terms of p, %, ¥, 4, B where the signs of # and 4 are such that s = 1(mod4)
and A = 1({mod6). It is convenient to prove at this point that there are
essentially twelve different sets of formulas depending on the parity
of f, the sextic residue character of 2 modulo p, the biquadratic character
of 3 modulo p, and the value of ¢.

TABLE IIT

f even
o 1 2 38 4 5 6 7 8 9 10 11

ol 00 0L 02 03 04 05 06 07 08 09 0X 0Y
1 01 OY 12 13 14 15 16 17 18 19 1X 12
2| 02 12 0X 1X 24 25 26 27 28 29 24 13
3| 03 13 1X 09 19 29 36 37 38 36 25 14
4| 04 14 24 19 08 18 28 38 48 37 26 15
5| 05 15 25 29 18 07 17 27 37 38 27 16
6| 06 16 26 36 28 17 06 16 26 36 28 17
71 07 17 27 37 38 27 16 05 15 25 29 18
8| 08 18 28 38 48 37 26 15 04 14 24 19
9| 09 19 29 36 37 38 36 25 14 03 13 1X
10| 0X 1X 24 25 26 27 28 29 24 13 02 12
11| 0Y 12 13 14 15 16 17 18 19 1X 12 01
TABLE IV
f odd

0 1 2 3 4 5 6 7 8 9 10 11
0/00 01 02 03 04 05 06 07 08 09 0X 0Y
1110 11 12 13 14 15 07 05 15 19 1X 1Y
2120 21 22 23 24 19 08 15 04 14 24 2Y
330 31 32 30 2Y 1X 09 19 14 03 13 23
4122 32 42 31 20 1Y 0X 1X 24 13 02 12
5111 21 31 32 21 10 0Y 1Y 2Y 23 12 01
6100 10 20 30 22 11 00 10 20 30 22 11
7110 0Y 1Y 2Y 23 12 01 11 21 31 32 21
820 1Y 0X 1X 24 13 02 12 22 32 42 31
9|30 2Y 1X 09 19 14 03 13 23 30 31 32
1022 23 24 19 08 15 04 14 24 2Y 20 21
11|11 12 13 14 15 07 05 15 19 1X 1Y 10

For any ¢, f replace g by a new primitive root g", where (r, p—1) = 1.
By (1.1) (i, §), becomes (v, 7}),. By (2.3) p(B™, ") becomes (™, B,

where »7 = 1(mode).
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‘We now return to the particular case e = 12, where we have r = 7.
For r = 5, we deduce from (4.1) that #, y, 4 are unaltered while B changes
sign. Moreover, by (5.7) and (5.9), ¢ is unaltered. The symbol (2, 9)
becomes (5¢, 57), m is replaced by —m modulo 6, and m' is unaltered mod-
ulo 4. Hence, from tables in which m =1 or 2(mod6) (Tables 1 to 6)
we may deduce corresponding tables in which m = 5 or 4(mod6) respec-
tively.

When 7 =17, #, A, B are unaltered, ¥ changes sign, m is unaltered
modulo 6, m’ is unaltered modulo 4, and (4, §) becomes (74, 7j). By (2.4)
(2.13), (2.14) and (v) of Lemma 2 we may establish the identity

P8, B) (B, B7) = (=LY 8™ p(B°, B)p (8™, B7).

TABLE 1

’

TABLE?2

fodd, m’ = O(tnod;),
6= m = 1(mod6)

feven, m’ = 2(mod 4),
¢ = p° m == 2(mod6)

144(0,0) | p—35—24 4 12B-+48y 144(0,0) | p—23—64—16y

144(0,1) | p—11+24 +12B+12z— 16y 144(0,1) | p+1-+44+24B— 185 — 24y
144(0,2) | p—11—4d +62—16y 144(0,2) | p+1—24—24B_ 12
144(0,3) | p—11+224 4128 144(0,3) | p+1-+184 432y

144(0,4) | p—11+104—12B 12 144(0,4) | p+1—124+6z—16y
144(0,5) | p—11—44—24B+ 6w 48y 144(0,5) | p-+1—24 —24B — 12
144(0,6) | p—11—104—12B— 16y 144(0,8) | p+1—144424B+48y
144(0,7) | p—114104—12B 12 144(0,7) | p+1+124+ 628y
144(0,8) | p—11—204 +6x 144(0,8) | p+1+64+12c—16y
144(0,9) | p—11—104+12B+32y 144(0,9) | p+1—144

144(0,10)) p—11+24412B+120— 16y 144(0,10) p+1+44 62

144(0,11) p—11+44 18— 24y 144(0,11)) p+1+64+122—16y
144(1,2) | p4+1—44 —60+8y 144(1,0) | p—11412B+ 628y
144(1,3) | p+1+24—24B 1 8y 144(L1) | p—11+64 48y —
144(1,4) | p+1—44412B— 632y 144(1,2) | p+1—124+6c—16y
144(1,5) | p+1—84+12B+6x 144(13) | p+1+44—12B+6u—24y
144(1,6) | p+14+24+12B-18y 144(1,4) | p+1+464--36B— 12z — 16y
144(1,7) | p4-14-84—12B+ 628y 144(1,5) | p-+1—12B—6x--8y
144(1,8) | p+1+4-84+12B+6x—16y 144(1,9) | p+1—124+12B+ 648y
144(L9) | p+1—24—12B+12s 144 (1,10)| p+1-—64+8y

144(1,10)| p-+1—44 —12B—6—16y 144 (1,11)| p+1-+44 +6

144(2,4) | p+14-84—12B-+6-+8y 144(2,0) | p—11-+64 -8y

144(2,6) | p+1—104++12B—12w— 16y 144(2,1) | p-+1—12B— 65+ 8y
144(2,8) | p-1—44—6g-+8y 144(2,9) | p—11—124 — 6218y
144(2,7) | p+1—44 — 658y 144(2,8) | p+1—64-8y

144(2,8) | p+1+24412B+8y 144(2,4) | p+14124+6w-+8y
144(2,9) | p+14-84-424B+62--8y 144 (2,11)| p-+1—24B— 62— 16y
144(3,6) | p+1424—16y 144(3,0) | p—11464—12B—1gy
144(3,7) | p+14-24 —24B+ 8y 144(3,1) | p+1—6x-+32y

144(3,8) | p+1—84 65— 24y 144(3,2) | p+1—24+12B 4122
144(4,8) | p+1+164+12B—18w— 24y 144(4,2) | p+1+44424B— 182 — 24y
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Therefore ¢ changes sign when f is even and m' = 2(mod4) or when f
is 0odd and m’ = 0(mod4). Otherwise ¢ is unaltered. Hence, from tables
in which f is even and m’ = 2(mod4) or f is odd and m’ = 0(mod 4) (Tables
1, 2, 7, 8) we may deduce corresponding tables in which ¢ is replaced by
—e.

By compounding the results for » ='5 and ¢ = 7, results for r = 11
may be deduced. We find, for » = 11 that #, A are unaltered, y, B change
sign, m is replaced by —m modulo 6, m' is unaltered modulo 4, (i, §) be-
comes (—4, —j), and ¢ changes sign under the same circumstances as
when # = T7.

It was shown in § 5 that the primes have to be divided into twenty-
four classes with different formulas holding for different classes. In view
of the results in the last three paragraphs it suffices to compile tables for
just twelve of these classes (see Tables 1 to 12).

Our results also enable us to condense the fables to a certain extent.
Tables 1, 2 contain the formulas for the 31 basic constants. However,
in tables in which f is even, m’ = 0(mod4) or in which f is odd, m" = 2
(mod 4), the formula for (74, 7) is the same as the formula for (4, j) except
that y is replaced by —y. Again, in tables in which m = 0 or 3(mod6)

TABLE 3 TABLE 4

f even, m’ == 0(mod4), feven, m’ = 0{(mod4),

¢ =1, m = 2(mod6) ¢= —1, m = 2(mod6)
144(0,0) | p—35—264 4 12B—36% 144(0,0) | p—385+224412B+12x
144(0,1) | p—11+2A4+412B+8x-48y 144(0,1) | p—114-104—12B
144(0,2) | p—11+4444-24B4 62 144.(0,2) | p—11—124—24B—10x
144(0,3) | p—11+4144+12B—4% 144(0,3) | p—11—24412B+12%
144(0,4) | p—11+104—12B 144(0,4) | p—114104—-12B
144(0,5) | p—11—4A4—24B+ 140424y 144(0,5) | p—11+44 +6x— 24y
144(0,6) | p—11—24—12B+12x 144(0,6) | p—11—184 —12B—4x
144(0,8) | p—11—204—18x 144.(0,8) | p—11—204 —18x
144(0,10)} p—11+4104—12B 144(0,10)! p—11—64 +36B—16x
144(1,2) | p+1—22 144(1,2) | p+1—84-+6x
144(1,3) | p+1—64+4x 144(1,3) | p+1—-24—12B—24y
144(1,4) | p+1—44+12B+25—24y 144(1,4) | p+1—84 46z
144(1,5) | p+1—44+12B+22—24y 144(1,5) | p+1+44+12B—6z—24y
144(1,6) | p+1+64—8x 144 (1,6) | p+1—24+24B
144(1,7) | p+1+124—14% 144(1,7) | p+1+44—24B—6
144(1,9) | p+1+424 —24B—4» 144(1,9) | p+1—-24—12B—24y
144(1,10) p+1—2x 144 (1,10)| p+1-+44 +12B—654-24y
144(2,4) | p+1+44—-12B—6 144 (2,4) | p+1+124—12B 42z
144(2,6) | p+1—84—12B+{6x2 144(2,6) | p+1+12B4-14%
144(2,8) | p+1—24+4-24B 144(2,8) | p+1+4644-8x
144(3,6) | p+1—64+4w 144(3,6) | p+1+104—12%
144(4,8) | p-+1+284+12B+18x 144 (4,8) | p+1+44+12B—6%
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TABLE 5

TABLE 6

fodd, m' = 2(mod4),

fodd, m” = 2(mod4),

¢=1, m = 1(mod6) ¢= —1, m = 1(mod6)

144(0,0) | p—28—144+12x 144(0,0) | p—23+24—4w
144(0,1) | p+14124 4140 —24y 144(0,1) | p+1-+44+24B 462+ 24y
144(0,2) | p+1—24—24B 144(0,2) | p+1—-24—24B
144(0,3) | p+1—64—4o 144(0,3) | p41-+104+12%
144(0,4) | p+1—204+24B+ 62 144 (0,4) | p+1—44—24B—10z
144(0,5) | p--14-64+8s—48y 144(0,8) | p+1—24—24B
144(0,8) | p+1-+104+24B—36% 144(0,6) | p+-1—3844-24B+12z
144(0,8) | p+1—24—24B 144(0,8) | p+1+4144 4248 —16z
144(0,10)] p+1-+44—18x 144(0,10)) p+1+44—18x
144(1,0) | p—11—44 +424B— 14z 144(1,0) | p—11+4-44—6x
144(1,1) | p—11+4+24—12B—8z 144(1L,1) | p—114+104 4128
144(1,2) | p+1-+20-+24y 144(1,2) | p+1—84 —6w24y
144(1,3) | p+1-4-20--24y 144(L,3) | p+1+444—12B+ 60
144(1,4) | p+1-+24+24B+4n 144 (L,4) | p+1—-24+12B+24y
144(1,5) | p+1—44—12B—2x 144 (1,6) | p-+1+44—12B+6x
144(1,9) | p+1—44—12B—2x 144(1,9) | p+1—84—6x—24y
144(1,10) p-+1—64 —4a 144(1,10) p-+1—24+12B424y
144(2,0) | p—114+104+12B 144(2,0) | p—114+24—12B+ 8%
144(2,2) | p—11—84—12B+6x 144(2,2) | p—11—164+12B+ 140
144(2,4) | p+1+164—6z 144(2,4) | p-+14+84 420
144(3,0) | p—114 144 —12B 4z 144(3,0) | p—11—24—12B—12%
144(4,2) | p+1—84+24B+18z 144(4,2) | p+1-+164-+24B—63

TABLE 7 TABLE 8

feva;x, m = g;mogg;, f odg, m’ = 0(mod4),

¢ = B3 m = 0(mo ¢ = f*, m = 3(mod6)
144(0,0) | p—385—32.4 418548y 144(0,0) | p—23—244 — 65— 16y
144(0,1) | p—11+24+36B+120—16y 144(0,1) | p+1—24+424B— 19
144(0,2) | p—11+244+12B 412016y 144(0,2) | p+1—244+24B—19
144(0,3) | p—114164 —62— 24y 144(0,3) | p-+1-+244 —6x+56y
144(0,4) | p—1141044+12B— 19 144(0,4) | p+1+464-+125—16y
144(0,6) | p—11—164 —6s—16y 144(0,6) | p+1—84+18x-+48y
144(0,7) | p—11-4-104+12B— 122 144(0,7) | p+1+4+64--125— 16y
144(0,9) | p—11—164 —6x+56y 144.(0,9) | p+1—84—6x—24y
144(1,2) | p+1-24+8y 144(1,0) | p—11+464-+24B8y
144(L,3) | p+1+24—24B 8y 144(1,2) | p+1—64+8y
344 (1,4) | p+1-4+24+8y 144(1,3) | p+1—24—12B+12
144 (1,8) | p+1—144 —24y 144(1,4) | p+1464-+12B—125— 16y
144(1,6) | p+1+244+13B+8y 144(1,5) | p+1—64+8y
144(1,8) | p+1-+24 48y 144(1,9) | p+1—64 42488y
144(1,9) | p+1—24+12B+122 144(1,10)| p+1—64 48y
144(1,10)| p+1—104—12B—12z—16y 144(1,11)| p+1+104 —24y
144(2,4) | p+1+2448y 144(2,0) | p—11+64 48y
144(2,6) | p+1+4-24412B+8y 144(2,4) | p+1—6448y
144(3,6) | p+14-84 - 60—16y 144(3,0) | p—11+46x—16y
144(4,8) | p+1—144 —24y 144(4,2) | p+1-+104 —24y
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the formula for (54, 55) is the same as the formula for (7, §) except that B
is replaced by —B. Consequently, it suffices to list 22 of the 31 basic
constants in Tables 3 to 6, 20 of the constants in Tables 7, 8 and 15 of
the constants in Tables 9 to 12.

TABLE 9 TABLE 10
f even, m' = 0(mod4), f even, m' = 0(mod4),
¢ =1, m = 0(mod6) ¢= —1, m = 0(mod6)
144(0,0) | p—35—564— 540 144 (0,0) | p—35—84 —6xz
144(0,1) | p—11+2A4+436B+ 8z 48y 144(0,1) | p—11+104+12B8
144(0,2) | p—114-104 4368 144(0,2) | p—11—64—12B—16%
144(0,3) | p—11+84+25+24y 144(0,3) | p—11—8A4 4 18x-24y
144(0,4) | p—11-+104412B 144 (0,4) | p—11+1044-12B
144(0,6) | p—11—84+18z 144(0,6) | p—11—244 422
144(1,2) | p+1+64—8z 144(1,2) | p+1—24
144(1,3) | p+1—64+4x 144(1,3) | p+1—24—12B—24y
144(1,4) | p+1+24—4x 144(1,4) | p+1—24—12B+24y
144(1,5) | p+1—104 +8x 144(1,5) | p+1—24
144(1,6) | p+1+464—8x 144(1,6) | p+1—24-124B
144(2,4) | p+1-24 144(2,4) | p+14+64+8z
144(2,6) | p+1—24 144(2,6) | p+1+64+24B+8x
144(3,6) | p+1—2= 144(3,6) | p+14+164—182
144(4,8) | p+1—24 144(4,8) | p+1—264—24w
TABLE 11 TABLE 12
fodd, m = 2(mod4), fodd, m’ = 2(mod4),
¢ =1, m = 3(mod6) ¢ = —1, m = 8(mod8)
144(0,0) | p—23—324-18x 144(0,0) | p—23—164 422
144(0,1) | p+1464+8x—48y 144(0,1) | p+1—24424B
144(0,2) | p+1—-24+24B 144(0,2) | p+1—24+24B
144(0,3) | p+1+22—24y 144(0,3) | p+1+164+180—24y
144(0,4) | p+1—24+24B 144(0,4) | p+1+144—24B—16x
144(0,6) | p+1416.4— 540 144(0,6) | p+1—324—6x
144(1,0) | p—11+4+244+36B—85 144(1,0) | p—114+104+12B
144(1,2) | p+1+64 48z 144(1,2) | p+1—-24
144(1,3) | p+1—64 —4x 144(1,8) | p-+1-—24—12B—24y
144(1,4) | p+1424 44z 144(1,4) | p+1—24—12B+24y
144(1,6) | p+1—104—8z 144(1,5) | p+1—24
144(2,0) | p—11+4+104412B 144(2,0) | p—11+24—~12B4-8%
144(2,4) | p+1—24 144(2,4) | p+1—104 482
144(3,0) | p—11484—22 ©144(3,0) | p—11—84—18%
144(4,2) | p+1-24 144(4,2) | p+1+224—24%

The following application of the tables is of interest. For integers
a,b the number N,(a,d) of solutions of the congruence az®+by®=1
(modp) may be expressed in terms of the cyclotomic numbers (4, 4),
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(see e.g. [4], p. 396-399). Hence tables for the numbers N, (a, b) may
be deduced from the corresponding tables for the numbers (i, 4),. We
confine ourselves to a single illustrative example. In the special case ¢ = 1,
b =1 a theorem of Dickson ([4], Theorem 2) states that the number of
solutions prime to p = ef+1 is €2(0,0), and the number of all solutions
is 2¢-+62(0,0). It follows from Table 7 that if 2 is a cubic residue of p
and 3 is a quadratic residue (but not a biquadratic regidue) of p, then the
congruence

#2442 = 1(modp = 12f+1) (f even)

has p—35—324 +18x+ 48y solutions prime to p and p—11—324 18z
+ 48y solutions in all. Here the coefficient of yis 448 according as ¢ = + 3.

7. Application to residue difference sets. By a difference set hav-
ing modwus v, order ¥ and multiplicity A is meant a set of & distinet
residues 7y, 7y, ..., 7 (modv) such that the congruence 7;—r; = d(modv)
hasg exactly A solutions for each d 5= 0(modv). In [6] there is given a survey
of all known difference sets. Residue difference sets are difference sets
composed of eth power regidues modulo a prime p. Let p == ef +1. It is
known [9] that there exists no residue difference set for ¢ odd, or for e
even and f even. In the remaining case the following criterion ([9], Theo-
rem 3) is applicable: If ¢ is even and f = (p—1)/e is odd, then a necessary
and sufficient condition for the set of eth power residues modulo p to form
a difference seti is that (i, 0) = (f—1)/¢, ¢ = 0,1, ..., ¢ —1, where (f—1)/e
= A is the multiplicity of the set.

The tables in § 6 provide data for applying the criterion stated in
the previous paragraph. We shall prove the following theorem.

THEOREM 6. The set of twelfth power residues modulo a prime p = 12f+1
cannot form a differénce set.

Proof. To apply the criterion when ¢ = 12 and f is odd we have to
consider twelve possible cases. In each of the six cases covered by the
tables we first sketch a proof that no difference set exists.

Table 2. (2,0) = (4,0) implies # = —34. 144(0,0) = 144(5,0) = p—13
implies 4 = 1,y = —1. Hence # = — 3 and p = 13. This is a degenerate
example since the only twelfth power residue modulo 13 is » = 1 so that
A=0.

Table 5. (3,0) = (4,0) = (5,0) implies 4 = 0.

Table 6. (2,0) = (3,0) = (4,0) = (5,0) implies & = 0.

Table 8. (1,0) = (5,0) implies B = 0.

Tables 11, 12. (2,0) = (4,0) implies B = 0.

To prove the theorem in the remaining six cases we proceed as follows.

icm
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The argument in a case where f is odd and m = 5(mod6) is the same as
the argument in the corresponding case where f is odd and m = 1(mod 6)
except that (4, 0) is replaced by (5¢, 0) and B is replaced by —B. In a case
where f is odd and m' = 0(mod 4) the argument for ¢ — — p3 ig the same
as the corresponding argument for ¢ = f* except that y is replaced by
—y. This completes the proof.

A modified residue difference set is one in which zero is counted as
a regidue. It is known [9] that such difference sets eannot exist for e odd
or for ¢ even and f even. Emma Lehmer [9] has proved that if ¢ is even
and f = (p—1)/e is odd, then a necessary and sufficient condition for
the set of ¢th power residues and zero to be a difference set is that 14 (0, 0)
=(¢,0) = (f+1)fe, i =1,2,..., }¢—1, where (f+1)/e = A iz the multi-
plicity of the set. With the aid of this criterion we now prove

THEOREM 7. The set of twelfth power residues and zero modulo & prime
p = 12f+1 caonnot form a difference set.

Proof. As in the proof of Theorem 6 we consider twelve possible
cases. Except for the analysis of Table 2 the discussion is the same in all
of these cases. Turning to table 2 we find that (2,0) = (4,0) implies # =
—34. The condition 1444144 (0,0) = 144(5,0) = p+11implies 4 = —11,
y = 11. Hence # = 33. This leads to the absurd conclusion that p is di-
visible by 11. The proof is thus complete.
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Remarks on number theory III

On addition chains
by
P. Erpis (Budapest)

Consider a sequence @, =1 < a; < @, <... <az =7 of integers
such that every a; (1>>1) can be written as the sum a;+a; of two pre-
ceding elements of the sequence. Such a sequence has been called by
A. Scholz (2) an addition chain. He defines 1(n) as the smallest k for which
there exists an addition chain 1 =a, < a; < ... <@ =N

Clearly 1(n) >logn/log2, the equality occurring only if » = 2%
Scholz conjectured that

: log2

@ lim I(n) 22 — 1
n—00 logn

and A. Brauer (2) proved (1). In fact Brauer proved that
. 1\ logn }

2 n) < = or—

@ (n) 121;{(1+ 'r) log2 + 2

1
log ogn] it

where 2™ < n < 2™*., From (2) by choosing 7 = [(1——8) Tog2

follows that

logn logn ( logn )
3 1t — .
® (m) < log2 + loglogn loglogn,

In the present note I am going to prove that (3) is the best possible.
In fact I shall prove the following
THEOREM. For almost all n (3. e. for all n except a sequence of density 0)

_ logn logn ( logn )
" log2 ' loglogm loglogmn, '

1(n)

1

() Jahresbericht der Deutschen Math. Vercinigung 47 (1937), p. 41
() Bull. Amer. Math. Soe. 45 (1939), p. 736-739.
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