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On certain estimations of coefficients
of univalent analytic functions

by J. MIoDUSZEWSKI (Wroctaw)

In this paper I occupy myself with the estimation of the coeffi-
cients of univalent analytic functions essuming cerfain hypotheses con-
cerning the preceding coefficients. The first part of the paper will be

o«
devoted to the functions whose Laurent expansion is 24> bz ¥ in || > 1.
k=1

Making certain assumptions concerning the cocfficients preceding bn,
I will prove that |b,| < 2/(n-+1). The second part of the paper will be

devoted to the functions whose Laurent expansion is z+ 3 az7* in |2| < 1.
k=2

As before, making certain assumptions concerning the coefficients pre-
ceding a,, I will prove that |a,| < 2/(n—1). The first theorems of this
kind were obtained by W. Wolibner [1]. The theorems given in this
paper are the generalizations of his results.

1. TesoreM 1. Lef f(2) be an analytic wnivalent fumction in |z| > 1
whose Laurent ewpansion is

0

8
) f&) = ot D bma b D) b
k=1 k=ny+1

Let ng = n. If
(2) fz) #0
or
(3) n is odd
and if for every system oy, agy..., dg_y, Where og; Gy, ..., Ogoy OTE MON-
-negative integers, we have

81
4) n+1# D almet1),

k=1

then
|bal < 2/(n-+1).
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Proof. Because (2) or (3) holds, the function (f(2)/®*™" is regular
in [#| > 1. The Laurent expansion for (f(z))* is

)a = 24 S‘Dﬁkza_Mk'}‘ Z C’;ca)z“—k.'

f=1 k=n+2

(8) (i(=)

The exponents M, have the form

8
(6) My = D ag(ni+1),

izl

where o; are non-negative integers and

8
(M Do # 0.
4=1
The coetticients Dﬁ,‘?k in (5) can be expressed by the formula
8
o 2 ot
®) DSM) 2 ay ! ay! ... ag! CLER b""y’
where the summation is extended to all systems of integers ay, ay, ..., ug
for which
s
&) D axlmt1) = My
4=1
Hence

el o
(10)  (f(m) ™00 = glot0rz g Z’ Dgz;l‘l)lﬁ)z("+1)/2'Mlc_|, 2 ¢t kD) ak
Tl w42

The greatest exponent in the last sum of (10) is (n+1)/2 —n--2
= '—(n+3)/2., The greatest positive exponent, except (n--1)/2, in
(10), has the form ]

81
-1
(1) B = 2= = M (net ),
fwa)
where
(12 D af(m+1) 0.

fm]
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Let K, denote the coefficient at #™. Now let ug 'consider the Laurent
expansion of (f(2))®, which has the form of (5). In the first sum of these
expansion the exponents have the following form (because (9) and (11)):

')H—l

T y O (g4 1) — Z%'%"‘l

1=1

(13)

They are of the same form as the coefficients of the first saum of (10).
The greater exponent in the last sum in the expansion of (f(2))™ is less
than or equal to —(n-3)/2.

Let us consider the function

WaVi(e)) = (f() 0 —

In the Laurent expansion of this function the greatest exponent, except
(n+1)/2 is less than the corresponding exponent in (10).

Applying this operation, which we will denote by R, to the function
W, and to the next functions obtained in this way, we shall get, after
a finite number of steps (at most ¢ = [(n-+1)/2]), the function

K, (f(2))™.

(14) Wq(l/f(z) — z(n+l)/2_|_ ;‘D* (n+1)/2—M,,_1_ Z P * (n+1)2—k
k=1 Te=n-2
for which the only positive exponent in its Laurent expansion is (n-+1)/2.
In the third summand of (14), the greatest exponent is —(n-43)/2,
as in (10). Hence, the coefficient at ¢+ iy D}
‘We shall show that

(15) D}y = DI

Tt is sufficient to prove that the coefficient at #~"*+Y" remains unchanged
by operation R. Suppose, on the contrary, that there exists an exponent
of the expansion of (f(2))™ which is equal to 7(n—l—1 /2 Because of

(12), we have in (13) ag = 0. Hence, by (13), n+1 = Z’ a;(ng+1), con-
A=l
trary to (4).
By (4) and (6), the system of a;, ay, ..., ag corresponding to M =
=n+11is g =0, for k < §, and ag = 1. Hence, by (8), we have

n+1
(16) DI = —= by

Function (14) is a polynomial of the square root of a univalent
function. Applying the generalized Bieberbach area theorem (G. M.
Goluzin [2]; M. Biernacki [3], p. 5) to function (14) we obtain, by (16),
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nt+1. |
— (1) (1) | ==y <O,
that is

Ibal < 2/(n-+1).

REMARK 1. The hypotheses of theorem 1 hold if my = pk—1,k =1, 2,
..y R—1, where p is an integer and if p is not a divisor of m--1.

REMARK 2. The hypotheses of theorem 1 also hold if 1° ny = phk—1,
where p is an integer and ny < (n—1)[2, where & =1,2,...,8—1, 2° p is
not a divisor of n—mny for ng > (n—1)/2, 3° p is not & divisor of n--1.

II. Now let us consider the univalent analytic functions ¢(z) which

are regular in the unit cirele |¢| < 1 and have the following Laurent expan-
sion:

L 0
@amn 9(8) =2+ D a4+ D' ad.
i=1 dmny,+1
Let us denote ngz by n. Suppose that a, = 0. '
THEEOREM 2. If for every system a;, ag, ..., 0z._1, where a;, ¢ = 1,2, ...

ey I—1, are mon-negative inlegers,

L-1
(18) n—1% > an—1)

1=l
then

laa] < 2/(n—1).
Proof. The function g(2) may be written in the form
1 ‘ 2
TIAR T 1y S, e
kel

19) 9(2)

where f(2) is a regular univalent function and f(2) # 0 for |2| > 1. The
exponents of the Taylor expansion of ¢(z)/» have the form 3 a,(my-+-1),
where ¢ are non-negative integers. This follows from (19). Hence, for
every i =1,2,...,,n, there existy a system of mon-negative integers
0y, ay, ..., Such that

(20) ny—1 = Zak(m,,—{— 1).

By (18) and (19), we have for every system of non-negative inte-
gers ay, dgy ...

(21) - .n—laéZak(mk—{—l), where mp+1<n—1.
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Because a, 5= 0, the coefficient at z"!in the Laurent of 2f(1fz) can-
not be equal to 0. We define the integer mg by the formula

(22) mg+1 =n—1.

Because f(z) 7 0 for || > 1, and by (20), the theorem 1 holds for mg
and f(z). Hence

(23) [bmgl < 2/(mg+1).

By (20) and (22), we have

8 8-1
n—1= > aylm+1) = 3 ap(m+1)+ag(ms+1).

k=1 k=1

From (18) it follows that ag 7 0, and from (22) that ag =1 and a; = 0
if ¥ < 8. Hence, from (19) it follows that a, = bmg. Then formula (23)
may be written as

an] < 2/(n—1).
REMARK 3. The hypotheses of theorem 2 hold if n; = pi+1,4i=1,2,...

.oy iy where p is an integer, r is a non-negative integer and

(24) r>—p+l, 1<L<(pt+r—1)d

where d is the greatest common divisor of p and 1—1.
This is analogous to the theorem of W. Wolibner ([1], p. 126).
Proof. We shall show that (18) holds. Suppose, on the contrary,
1

L—
that n—1 = 3 ay(n;—1), that is
dm]l .

(25) ILp+r—1 = Apta(r—1),
where

L—-1 L-1
(26) 4 = >ia and a= > o

t=] {=l
Formula (25) may be written as <
(27 (L—4)p = (a—1)(r—1),

whence p/d is & divisor of a—1. Fo1 ¢ > 1 it is not possible; in this case
we obtain a >14-p/d and A > a and finally, by (27),

L>(p+r—1)/a
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contrary to (24). If @ = 1, then by (27) we obtain L = A, contrary
to (26).

REMARK 4. The hypotheses of theorem 2 hold if mg = pi-+1l, i =1,
9,...,L—1, where p is an integer and p is not @ divisor of m—1.

The function which possesses this property has, up to (n-1)-th
term, the same Taylor expansion as & p-symetric tunetion.

REMARK 5. The hypotheses of theorem 2 hold if 1° my = ip-+1, where
p is an integer and n; < (n—1)[2, 2° p is not @ divisor of m—mny for m; >
> (n—1)/2 and 3° p is not a divisor of n—1.

I The above estimations cannot be improved.

The hypotheses of theorem 1 are satistied by the cooftficient b, of
the funetion f(z) = 2(1-+&~""H¥E+D, because by = 0 if k<n; but b, =
= 2/(n+1).

The hypotheses of theorem 2 are satisfied by the coefficient a, of
the funetion g{z) = 2(142""H¥""Y, because ap =0 if kb <n; bub
a, = 2[(n—1).
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Propriétés des intégrales d’une équation
de I'hydrodynamique d’un fluide visqueux

par J. WOLSKA-BOOHENEK (Warszawa)

1. Introduction. Les équations du mouvement d’un fluide visqueux
incompressible ont la forme

3
(1) F:— +Wxv = —F—vrotW,

ol W =rotv, v désigne la vitesse du fluide, v est le coetficient de visco-
gité cinématique, F le vecteur des forces extérieures.
D’aprés la transformation

) .
rota—;} + 1ot [ WX v] = —rot F—vrot(rot W)

ot d’aprés léquation de continuité dive = 0, nous obtenons les équa-
tions (1) sous la forme
aw
(2) ¥ = (W-F)v+vdW-rot F,
ot 7 désigne lopérateur de Hamilton.

Les équations (2) deviennent plus simples pour le mouvement plan,
puisque dans ce cas v, =0, v, 6t v, ne dépendent pas de la coordonnée z,
ce qui permet d’introduire, grace & la supposition dive = 0, la fonction
du courant y(w,y,t) définie par les égalitiés

A Oy by
(3) Vg == —— Uy = __5;

i
ot de remplacer les équations (2) par une seule équation

_0(dy) _ 9y 9(dy) 0y 0(dy)
) Ay = = e e oy T

ou la fonction @(»,y,t) = rot, F est connue.
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