12 8. Gotab and M. Kucharzewski
for the above function the point p(0, 0). Let us describe a circle round
this point with a radius e Then
o(scosh, esinf) = —eV1+}e cos®d
attains the maximum value for § = =, viz.
o(—e&,0) = -—rl/r--%.;

Hence the gradient direction exists, whereas

—1 < 0.

J = lim a(m)—a(p) — lim —eV1—}e—0 .
£

m—p "’L_P 0

Remark 1. The generalized gradient indicates the direction of
the maximum inerease (or of the minimum decrease) of the function.
Similarly the direction of the minimum inerease (or that of the maximum
decrease) could be introduced. If a gradient exists in the classical sense,
then these two directions arve in opposition. In general, it is not neces-
sarily thus, and consequently there is some reason to speak about fwo
gradient directions.

Remark 2. The above theorem holds true, as has been remarked
by T. Wazewski, if the assumption 1 “the funetion is continuous in the
neighbourhood of the point p”* is replaced by a weaker one: “the funetion
is defined in the neighbourhood of the point p. Then, evidently, the
function ¢ need not attain its maximum in §,, but it has an upper limit
in it, since the said funetion is bounded in the neighbourhood of the point
p, owing to its possessing a differential at the point p. Then again, u, would
denote the upper limit of o in S,, whilst by y, we should mean any of
the points of 8, with the following property:

There exists a sequence of points

GeS (A=1,2,..)
convergent to y,, i. e, limg, =y, such as
00

l]{lmo‘(ql,) =y
==»00
The further statement of the theorem remains unchanged. The above
change of the theorem would involve gome, almost formal, changes in
the argument.
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On the notion of gradient
III. Gradient as a limit value of a surface integral

by 8. GoxaB and A. Pri$ (Krakéw)

§ 1. Let a scalar field ¢ be given. If the function o has at a definite
point p a total differential, then at that point a gradient can be formed

(1) v = gradc
as a vector with components (see [1])
do .
(2) v,t:a% (i=1,2,...,n).

We know the integral theorem which, under certain assumptions both
about the field o and about the closed hypersurface S bounding a finite
and regular region D of space, expresses the integral of gradient over
the region D by a surface integral. This theorem, containing in its vector
form the so-called Green theorem, is stated thus:

(3) [erado = [N-o,
D s

where N denotes the unit normal vector to 8 with an outside orienta-

tion.
To the above theorem corresponds the ‘“differential” form, viz.

(4) grado(p) = lim ——;— N-o.
Sesp §
V denotes here the volume (n-dimensional measure) of the region D.
Now the said formula is not precigely stated(*). We are concerned
on one hand with assumptions with respect to the field ¢ and on the other
with those referring to 8, and finally with the limiting convergence

(*) It will suffice to see what W. Rubinowicz has written on this s.u'bjeot in hig
book [2], p. 67-70, in order to realize that the corresponding theorem is not stated
in a satisfactorily striot way.
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“8 > p", i e. with the question how to formulate clearly the manner in
which the hypersurface 8 should “converge” to the point p.

The aim of this note is to formulate and prove, in'a general and pre-
cise way, the theorem referring to formula (4), the weakest possible assump-
tions being made.

§ 2. If we wanted, in proving formula (4), to apply the integral theo-
rem (3), we should make a much stronger assumption with respect to
the field o. Then we could weaken the hypothesis in connection with
the manner of the convergence “S - p”. Thus, assuming the regularity
of the class € for the hypersurface § (which involves the existence of
the continuous gradient o in the neighbourhood of p); we can apply, for
thie left side of formula (3), the mean value theorem for integrals and
hence we obtain the equalities

(8) - m(Dy )y = [Nio
8

where m (D) denotes the measure of the region D, ¢ (1 =1,...,n) de
notes a point of the region D, N, stands for the i-th component of the
vector N. Hence, by virtue of the continuity of the field g, we obtain
formula (4), valid independently of the manner of the convergence ‘S — p”,
provided the diameter of D tends to zero, so that the hypersurface be-
comes ‘“‘slender” or of flat form (as a pancake).

Our concern, however, is to establish formula (4) with minimum
assumptions with respect to the field o, and then, as will be seen, the
manner of the convergence “S — p* ix essential.

§ 3. TueorEM 1, Suppose that the fidld ¢ has a gradient at the poini
p (or else o has at the point p a differential in the Stole-Fréchet sense ) and
18 continuous in the neighbourhood of p, and that the sequence S, of closed
hypersurfaces satisfies the. following conditions:

1. The hypersurfaces S, contain the point P tn their interior.

2. The hypersurfaces S, are measurable. Let m(8,) denote the (n—1)-
-dimensional measure of the surface 8,; lot further m(D,) denote the n-di-
mensional measure of the region D, bounded by 8§,.

3. The diameters d, of the regions D, tend to zero.

4. If by K, we denote the minimum hypersphere cirowmscribed over
D,, and by F, its (n—1)-dimensional measure, and finally by V, the n-di-
mensional measure of the region bounded by K,, then there ewist two positive
constants a and 8 such that '

5. m(8,)/F, < a and V./m(D,) < B.

icm
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Then we have the formula

. " = lim - . ‘V-
() grado(p) liﬁimwy)éj Nyo,

where N, is a wnity normal vector 1o S, with an outside orientation.

Remark. Assumptions 1, 2, 3 are clear; those of 4 and 5 as can
ecagily be shown, are independent of each other. They put an essential
restraint in the way of the convergence of S, to p. We intend, however,
to show on examples the essentiality of these assumptions for the truth
of formula (6).

Proof. Since

grad (o, + 0,) == grad o, + grado,

and since

fN'(O'1+ 0y) = J~N‘0’1+fN‘Uz-
S S 8
formula (6) will be proved if we prove it for properly chosen components
0 = 0,4 0,.
Let @@ be coordinates of the point p. Let us pusb

(7) o = a(p)+ Zvi(wi—w?), PR-PEPS

in
Since, according to the hypothesis, the function ¢ has at the point p
a differential in the Stolz-Fréchet sense, we may put

(8) o =0¢,
where
S
9) 0 = I/Z (o, —a)?,
iz
whereas

& == &y, ...y Bn)
is a function with the property
(10) lime(wy, ..., #,) = 0.

o0
The function oy, as & linear one, is regular and for it, by virtue of bhe.a.bove
note, formula (6) is satistied. Thus it remains to prove the relation

. 1 "
(11) grad oy(p) = }fgms{ N, 0,.
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But
grado,(p) = 0
and, it being so, the following equalities are still to be proved:

(12) lim ——

lim m(D,) fN,.tg&: =0 (@i=1,...,n),

where N,; are components of the vector N,.
Now we have
Nyl <1 (F=1,...,m)

and therefore, since

[ Naes < jINWIOIS? felel,
Sy

it suffices to prove the formula

13 llm—-—— f g = 0.

(13) g J ¢

Thus let us evaluate the integral Sf elel. Let us take the number > 0
previously given. Let us take an mdex » as great as to make
o By)el,.

It may be attained by virtue of relation (10) as well as by assumption 3.
In that case we shall have

(14) Jeleh<n [o
8, 8,

for sufficiently great ». Now it suffices to show that there exists for »
sufficiently great a constant M such that the following inequality is
satisfied

(15) ;——1——)!@<M.

In order to evaluate the integral J’ ¢ let us denote by r, the ra.dlus of the

hypersphere K,. We have on the hypersurface S,

lel <y for (a,..

0 < 2r,.
Thus

L= [e<2n, [ =2rm(8,)
8y 8y

<2, B a.

iom
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Hence we have further

1 - I, 2r,-F,a 27, F,-a-p
6 =Y = o & < .
U amy ) ) S Temy < T

It is known, however, that between F, and V, exists the relation
(17) ) V, = F,1,/n.

(16) and (17) finally give
(18) ! f < 2naf = M
WDy ] ¢ <2 = M.

which was to be shown. Thus our theorem has been proved.

§ 4. From the above theorem a certain conclusion can be drawn,
namely for the particular case of the hypersurfaces S, being convex.
Let us denote, in this case, by s, the width of the region D,, i. e. the
minimum distance between two hyperplanes parallel and tangent with
respect to 8,. Let the ratio d,[s, be named the coefficient of slenderness
of the region D,. We have the following

THEOREM 2. Under the same assumptions with respect to o as in the
preceding theorem if the sequence S, satisfies conditions 1, 2, 8 of that theorem
and if instead of 4 and B, it satisfies the conditions:

4% 8, are conves,

5*. the coefficients of slenderness of S, are jointly bounded i. e. there
exists a positive constant y such that

dv/ s, <y,
then formula (6) 18 satisfied.
Proof. It suffices to show that the suppositions of this theorem
involve the suppositions of theorem 1.
Now, assumption 4 is already satisfied by virtue of assumption

4* itself. Since §, is a convex hypersurface, the sphere K, circumscribed
over it has a greater measure than that of §,, or equal to it, i. e.

'y = m(S,),

and thus we have inequality 4 with a constant o = 1. We shall prove
that inequality 5 also holds. As a matter of fact, it does. Let % denote
a hypersphere inscribed in 8, with a maximum radius. Then

m(D,p m k),

Annales® Poloniei Mathematici VIIY 2
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and the radius »} of the sphere %, is
7y = }s,.
Similarly, for the sphere K, we have
r, = }d,.
Hence
v, _ V., __Irer (i) Ign+1) (_2_) _(_dl)" -
m(D) " mik)  TEatD) \2) TIHr i

si’
and it suffices to put § =" in order to have inequality 5 sausﬁed
Thus the proof of the theorem is finished.

§5. Now we will give fwo examples illustrating the essentiality
of suppositions 4 and 5 of theorem 1. Those examples are constructed
for n = 2 in order to avoid some lengthy computations. Analogous coun-
ter-examples can be constructed for » > 3.

Examprk 1. Let be given a scalar field

(19) o (@, @) = Va2 Vay-

This function is everywhere continuous, and at the point (0, 0) possesses
a differential in the Stolz-Fréchet sense (equal to zero). Moreover, the
field o has a gradient at the point (0, 0), which is a null vector. As a se-
quence 8, we will take the sequence of ellipses

1 1 .
Ty =—C08t, B =—sint (v=1,2,...).
v P

The unit normal veetor N, has the following components:

cost y8int
’ { Veos* t++*sin’t . Voostt-+ sin“t} ’
Further
ds = Vool 14 ettt
Let us put

2r
at y8int
=f ———————ods.
F COS t—+—w gin®t

icm
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From this it follows that

2rn Sn‘
sint-o 1 L3 /1 1, 1
I, = f —dt = ——f smtl/-z—smt l/—zcos't—}— —sin’t @
H 4 v H v ¥4 4

1 2 ——1—_
= ;a/—sf (sint)*?- ]/COSQH—?sin’t dt.
]

It is obvious that the funection under the sign of integral is not nega-
tive, and we will diminish it (as well as the integral) replacing the coeffi-

1
cient |/ cos’t+ —sin’t by |cost|. Let us write
,‘12

1, —J lcmt[l/ ftdi.

In this case

In our example we have

m(D,) ==« % c— =
»

e“‘ ju—
!“l 3

thus

I, Iﬂ ey
m( ,)

Since I, > 0, #' — oo if ¥ —+ co, we have I,/m(D,)— oo, while I,/m(D,) = 0
if formula (6) holds true. Thus in this example the sequence S does
not satisfy supposition 5, although it satisfies all the other agsumptions.
The statement of theorem (6), as we have established, does not hold.
ExAMPLE 2. We take the same scalar field as in the preceding
example, whereas the sequence S, we determine otherwise. The enclosed
figure represents the form of a polygonal line which makes up §,. The
polygonal (closed) line links up the following sequence of points

AU Bla (v“ Dl) Azy Bz; 027D21A3’ "'iDv—ls Av! E,E,Z,,, sty
137 Dza EER) Euzh Ah
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Let us evaluate m(D,). Obviously

20 " 8. Golab and A. Plié

where every particular point has the following coordinates

11 11 4
1 _ AN (20) m(D,) < 2 =g F2mimy =
A le, —, j_aj,—;-, je=1,.00,7, Yy v Yo v
v
11 11 Denoting by X, the unit normal vector to S, and with an outside orien-
B; (01: _— + 7)1 Bi\~q, - . + = tation let us notice the following. With respect to the properties of the
function ¢ expressed by
1 1 a 1 1 ) L
CitBss — _'v ) 1\ —Bi» - +F P=dyee vl (21) o(— &y, Bs) = oy, Ts), 0%y, —B) = —0(2y, Ty)
_ 1 the vectors N, in the corresponding points (symmetrical to the axis a,)
D, (/3;’ ) i\ — B — of the segments A,;B; and 4,;5B; will be in opposmon to each other. Con-
1 1 1 i sequently
E(~’ "_‘)’ E(_—, - ~). fN,~ads = f.N,-ads.
4 v v v 4B, . =
757 4;By
The sequences are chosen thus: For the same reasons we shall have
.1 N, ods = — N,-ods.
0<a1<ﬁ1<a3</32<---<lgv—1<av==';5 01‘1[1 (“Z'j%‘j

and the lengths of the intervals are to be so chosen that Consequently the integral

r—1 1 1 f.N,'G‘dS
v(ﬁi—"d)>——;i- &
f=1 is reduced to the sum of integrals along the horizontal segments of the
X line §,, i. e.
i Ba BD A j = '
P A Ak b D @) L= [Nots=X{[+ [+ [ + [ }+ [
8y j=1 B;Cj B;0; Djdj4y Dpdjia B

Let us denote by I,,, I,, the components of the vector I,. We will calculate

I,, (I,; equals zero). The vectors o-N, are vertical at all points of the

segments which appear on the right side of the formula (22); moreover,

. the second component of the said vectors is positive, which results from

it % Bl o Besr|ld . the second property (21) of the function o and from the principle that N,

‘ ’ is divected to the outside of 8,. From this it follows that, denoting by
(4, u) the components of the vector ¢-%,, we have

(23) I, = f/uds> fyds.
S, EE

Cy-. B, E .
ber Bl o B 1B G (&, E':'_ But u at the segment EE is

rYs

Fig. 1
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W o N
13/1 —3/1
Zf ]/m§+7l/—dwl>2f ZA 'l/ - dm,
H Y L4 H v

2/ 1 [t =2/ () =g/t L -
RS Ve C A VAN S
7’0 1%%1 » 2 Jo » ,Vz 77/5

1

Ly > —-
"2 1’7/3

Hence

f,uds
EE

I

I

Thus

Therefore with respect to inequality (20) we have
I, 9® W23

mD) ~ WP 1

4B 4
and thence it is obvious that

1,

moy

Y~ 00,

while, if formula (6) were true, I,,/m(D,) would tend to zero. In this
example the sequence S, satisfies all suppositions of theorem 1 except
supposition. 4. It may be shown that here m(S,)/F, - co as ¥ -» oo,
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Sur Péquation différentielle ordinaire du premier
ordre dont le second membre satisfait aux
conditions de Carathéodory

par Z. OpIAL (Krakéw)

1. Supposons que la fonetion f(z,y), définie dans un rectangle
Ria<a<bh, ¢ <y <d, vérifie les conditions de Carathéodory (cf.
[2], p. 665), c’est-a-dire
(i) pour tout yele, d) f(z,y) est une fonction mesurable par rapport

a 23 :

(ii) pour tout we<a, b> f(z,y) est continue par rapport & y;
(iii) il existe une fonction mesurable M () telle que l’on ait dans le

rectangle R: .

. b
(1) Vo, <H@) ot [ M@)do <oo.

Envisageons P’équation différentielle

(2) ¥y = f@,9).

On dit qu’une fonction absolument continue y(x) est une solution
de P’équation (2) dans un intervalle (a, g) C <a, b), si la relation

y' (@) = flz, y(2))

est vérifiée en tout point de cet intervalle, sauf peut-étre aux points d’un
ensemble de mesure nulle. On sait (cf. [2], p. 665-674, [5], p. 140-1486)
que pour tout point (a,, ¥,) appartenant & 1intériewr du rectangle R il
existe au moins une solution de I’équation (2), définie dans un voisinage
suffisamment petit de =, et égale & y, au point z,.

2. Toute solution y(z) de l’équation (2), étant une fonetion abso-
lument continue, est dérivable presque partout dans Pintervalle ou elle
est définie. L’ensemble des points o la dérivée g’ («) n'existe pas est done
de mesure nulle. Mais est-il possible que I’ensemble des points # en les-
quels une au moins des intégrales de ’équation (2) n’est pas dérivable
soit de mesure positive ou méme identique & tout l'intervalle {a,b)?
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