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vérifient la condition de Holder. Quant aux autres fonctions qui figurent
aux seconds membres des équations (17), il est évident que toutes ces
fonetions satisfont & la condition de Holder soit en vertu des hypothéses
faites au début, soit grace au théoréme de Privaloff-Plemelj.

Or, en se basant uniquement sur la continuité des fonetions g, (?)
et @,(t), on trouve
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oll a est un nombre i)ositif inférieur & § (voir [4], p.10). Il vient par
conséquent

(30) [T (t) —

Par suite, les solutions du systéme (17) sont aussi des solutions du sy-
stéme (11). Si dans la formule (3) on porte les fonctions trouvées &+(t)
et @—(f), on obtiendra la fonction @(z) définie & 'intérieur des domaines
8+ 8y, 87, ..., 87, holomorphe séparément dans chacun d’eux, et dont
les valeurs limites satisfont & la condition (1). Le probléme posé au début
se trouve ainsi résolu.
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General solution of a functional equation

by M. Kuczma (Krakéw)

The object of the present paper is the functional equation

1) plf(#)] = G(z, p(x),

where g(») denotes the required funetion and f(») and G(z, y) are given
functions. We assume that the function f(x) satisfies the relation

(2) fi(@)] = =.

(Examples of such functions are: ¢—u, ¢/=, l/pz—mﬁ; 8. Lojasiewicz [3]
has given a construetion of all functions fulfilling (2)).
The linear equation

plf(2)] = A(@)p(2)+B(z

with a funetion f(x) fulfilling (2) has been treated by N. Gercevanoff [1].
In the present paper I give the general solution of equation (1) with
a function f(x) fulfilling (2).

§ 1. We shall discuss equation (1) in a set F such that f(Z) =
Using the terminology adopted in [2], we shall call such a set a modulus-
set for the function f(x). Let us decompose the set F into three sets
E,, E,, E, such that

f(#) =2 for weE,,
flw) >2 for wzekl,,
fle) <z for axekl,.

Lemma I If the function f(z) fulfils (2), then
3) By = E
(4) F(E,) = B,
(5) f(Ez) = E1~
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Proof. Relation (3) is evident, relation (5) follows from (4) and (2).
Thus it remains only to prove relation (4). To do this, let us take an
arbitrary seB,. Consequently f(x) > «. Bub according to (2)

fif@)] =@ < fla),

what proves that 7(#)eB,. Thus f(B,) C E,. On the other bhand, if w¢E,
then f(s)<H; (by an argument similar to the one above). Hence # =
= f[f(#)]ef(B,), which proves that F,C f(¥,). Thus E, = f(#,), which
was to be proved.

Now, let us suppose that equation (1) has a solution @(x), defined
in B.

Lemwa IT. If a function y = p(x) satisfies the functional equation (1)
in E, then for every fived weE its value must fulfil the equation

(6) y = Gf(@), G 9]
Moreover, for every fimed w<B, its value must fulfil the equation
(M y = G(@,9).

Proof. Let us suppose that a function @(w) satisties equation (1).
Putting in (1) f(#) in place of ®#, we obtain according to (2)
(8) p(x) = G(f(2) ,tp[f(W)])
Inserting (1) to (8) we obtain

p(@) =G[f(w),G(w,fP(w))]7

which proves the first part of the assertion of the lemma.

For weH, is ’ :
(9) : f(@) = .
Ingerting (9) in (1) we obtain

p(2) = Gz, p(a),

which proves that for & ¢ H, the value y == ¢(2) is a root of equation (7).
This completes the proof of the lemma.

Equation (6) can have no roots, as is shown by the following example:

BExampre I. Let us consider the equation
(10) p(Llfz) = p(@)+1,
Here G (2, ) = y+1 and equation (6) assumes the form
(11) y =y-+2.

Equation (11) evidently has no roots. It is also obvious that equation (10)
has no solutions.

ze(0, c0).
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Nevertheless, if equation (6) has a root for # = &, then it also has
a root for # = f(x,). Namely, we shall show
Levwma IIL. If y is, for a fized x<H, o root of equation (6), then

g 2 Glz, y)
i8 a root of the equation
(12) Y =G(m,G[f(w),y]),

which we obtain replacing © by f(z) in équation (6).
Proof. Let us insert 7 in the right-hand side of equation (12). We

have by (6):

G2, G[f(2), 7)) = & (v, 6[f (@), Gz, )])
which proves that 7 fulfils equation (12).
Equation (7) can have no roots, although equation (6) has roots
(of course, every root of equation (7) is also a root of equation (6)):
Exampre II. Let the function G(z, y) be defined by the formulae

¥ <0, %‘)’
y€<’]z‘7 1),

Equation (6) is identically fulfilled for xeH, ye<0,1). On the other hand
we always have G(z,¥) #* Y.

In the above example the function G(z,y) was discontinuous. We
shall prove

Lemma IV. If the function G(z,v) is for &<E, continuous with respect
to y in an interval I, then from the ewistence of the roots of equation (6) for
z =% follows the ewistence of the roots of equation (7) for & = Z.

Proof. Let us write

=G(=,9) =7,

y+3% - for

Gz, y) = _% for

9ly) = 6@, ).
Equation (6) can be written for # =% in the form
(13) glgwl =y.

Let us suppose that equation (13) has a root 7, and that 7 does not falft
equation (7) for = Z:

97 #79.

Thus for instance let g(7) > 7. But then (see lemma I) g[g(7)] < ¢(7)-
From the continuity of the function g(y) it follows that in the interval
(7, g(3)) there must exist a point » such that g(7) = 7, which means that »
is a root of equation (7). This completes the proof.
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In the sequel we shall assume that equation (6) possesses roots for
every zeE, and that equation (7) possesses roots for every zeB,.. If
equation (6) has no roots in a set ¥, and equation (7) has no roots in a set
¥, C B,, then, on account of lemma II equation (1) has no solution defined
in the set

rE pur,.
From lemma IIT it follows that the set F is a modulus-set for the function

f(z). Then also the set
rLlp-F

is a modulus-set for the function f(x), but now equabion (6) possesses
roots for every zeE*, and equation (7) possesses roots for every eIy
¥ B*~P,. Thus we can restrict our considerations of equation (1)
to the set E* only.

For an arbitrary zeH,oH, resp. wel, we shall denote by V, the
set of all roots of equations (6) or (7) respectively. Further, let us denote
by ¥ the class of all functions y(#) defined in the set Eyw B, and fulfilling
the condition

p(x)eV, for weB,wFH,.

With the above notation we shall prove the following

THEOREM I. The formulae :

y(@) for
G(f(@), p[f(@)]) for
where p(x) is an arbitrary function from the class ¥, determine the general
solution of equation (1) in E. '

Proof. It is evident that the function ¢(2) is by formulae (14) unam-
biguously defined in the whole set E. We must show that it satisfies
equation (1).

Let us take an arbitrary zeF. We shall consider three cases:

1° 2eF,. Then

MEE‘]UE“

14
( ) wGEg’

p(w) =

p(@) = @[f(x)] = y(a).
On the other hand, since the value y(x) fulfils equation (7), we have
Gz, p(o) = G(v, y(2) = p(@) = p[f(@)],
and thus equation (1) is satisfied.
2° peH,. Then (on account of lemma I) f(x) e B, and according to (14)
and (2)
p@) =9@), elf@)]=EG@,v@) =6, ¢@),

and thus equation (1) is satisfied.
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3° zeH,. Then f(z)eF, and according to (14) we have
p(@) = G(f(@), p[{@)]), of@)]=v[f@]

Hence

(15) Gz, p(x) = &(2, ¢(f(2), p[F@)]))-

But the value y[f(2)] fulfils equation (12), then

G (2, ¢(f(2), p[f(@)])) = v[F(@)],
whence we have by (15)

Gz, 9(@) = v[f (@] = o[f(2)],

which proves that equation (1) is fulfilled.

It remains to show that formulae (14) give the general solution of
equation (1), i. e. that every solution of equation (1) can be represented
in the form (14). But this follows immediately from the fact that every
solution of equation (1) is in the set E,wF, a function from the class ¥,
and that every function satisfying equation (1) is unambiguously deter-
mined in the set E, by its values in the set F,. This completes the proof
of the theorem.

The number of solutions of equation (1) varies considerably. It is
illustrated by the following examples:

ExampLe ITI. Let us consider the equation

(16) e(V1—a?) = 2p(z), e(0,1).

Here G(z, y) = 2y and equation (6) assumes the form
(17

The only solution of equation (17) is ¥ = 0, and so the only solution of
equation (16) is the function ¢(x) = 0.
ExampLE IV. Let us consider the equation

y =4y.

(18) p(l/s) = o[p(@)]*, @0, o).

Here G(x, y) = 2zy? and equations (6) and (7) assume the forms

(19) y = zy*,

(20) y = zy*

respectively. Equation (19) has (for every x > 0) two roots:
=0, ¥ ="V1ls,
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which are for @ = 1 also the roots of equation (20). Equation (18) has
two solutions that are continuous in the interval (0, oo):

pla) = ]s/]—-f;’li

but besides it possesses infinitely many discontinuous solutions in (0, co).
The general solution of equation (18) is the function

¢(w) =0,

we(l; ),
we(0,1),

8(@)V/1jm  for
plo) = o —
8(1jm)yLfjx for
where &(x) is an arbitrary function defined in the interval (1, co) and
assuming the values 0 or 1 only.

§ 2. Now let us suppose that the set I is an open interval, and the
function f(x) is continuous in E. Let us further suppose that the function
G (x,y) is continuous in an open region £, normal with respect to the
z-axis. Tor every # we shall denote by £, the set of values y such that
(0, y) 2, and by I, we shall denote the set of values assumed by the
function @ (», y) for yef,. We suppose further that

(21) 0, #0, I,= Q for vel.

As has been proved in [2], equation (1) with a funection f(x) eon-
tinuous, strictly increasing and different from @ in an open modulus-
interval E possesses in K, under the above agsumptions, a continuous
solution depending on an arbitrary function. The question arises whether
equation (1), with a function f(w) folfilling (2), has also~(under the above
assumptions) a continuous solution depending on an arbitrary function.
The answer is negative, as is illustrated by the following

ExAMpPLE V. Let us consider the equation

(22) p(—o) = (@+1)p(@)+a% @e(—00, o).

Here G(z, y) = (@*+1)y-+a* is a continuous function on the whole plane.
Algo the function f(¢) = —a is continuous in (—oq, oa). Relations (21)
are fulfiled. Equations (6) and (7) assume the forms

(23) y = (0t +1)2y+a* (0 +2),

and

(24) y = (@*+1)y+o?

respectively. For # = 0 the solution of equation (23) is

y = —1/[z.
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For s =0 egua,tions (23) and (24) are identically fulfilled. Thus the
general solution of equation (22) is the function

C @@) = —1fz®  for

#(0)

This solution is evidently discontinuous for z = 0.

The econsiderations of the preceding section imply however the
following ’

z # 0,
arbitrary.

THEORELEK II. If the function f(x) is continuous in a modulus-interval
and the fzmctwn G(x, y) is continuous in a region Q, and if conditions (21)
are fulfilled and. moreover equation (6) is identically fulfilled in £, then

equation (1) po. a continuous solution depending on an arbitrary
function.
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