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On the characteristic exponents of the solutions
of a system of ordinary differential equations

by C. KruczNy (Katowice)

In this paper we consider the asymptotic behaviour of the solutions
of a system of ordinary differential equations, which can be written as
a vectorial equation of the form .

(i) X' =AX+B(X,t)+C(X,1).
Here X denotes an n-dimensional vector, 4 is a constant n Xn-matrix,
B(X,t) and (X, t) are n-dimensional vector-valued functions continuous

for ¢ > ¢, and for arbitrary X.
It is supposed that

(1) |B(X, )] < |X|x(2),
(2) 10X, ) <1 Xfw(t), 0<g<1,
where

2 =@+ 20), Imp@) =0, [ g@)d< +oo.
t—>-00 t

The fundamental notion we deal with is the characteristic exponent
of the solution. In the following we shall write the characteristic expo-
nent of the funetion () (or of the vector function X (z)) shortly as Cex(t)
(Ce X (2)).

Some particular cases of (i) have been considered by P. M. Grobman
[2], A. Wintner and P. Hartman [8], K. Tatarkiewicz [5], T. Peyovitch
[4] and others. It is supposed in [2] and in [8] that O(X,#) = 0. In [5]
the author assumes that ¢(X,t) = W(t). Moreover, in [2] and in [5] the
following assumption appears:

6) |B(X,1)—B(X, 1) <|X—X|z().

In [4] and in [5] it i supposed that the inequality Cew () < ¢ holds.
In our paper this condition is replaced by the following (weaker) one:

2 o
Ce f'w(r)drgs or Cef w(r)dr < 8.
4 i
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In § 1 we present some well-known theorems concerning the Ceq(i).
Moreover we prove Theorem (1,3), which allows the introduction of some
simple rules of operating on Ce. The same theorem permits us to generalize
the assumption concerning the function w(t) (see (2)). In § 2 we consider
the equation X' = F(X,t) and we obtain some theorems useful in the
proof of Theorem C. This theorem, which is the main result of present
paper, generalizes some results of the papers mentioned above. We discuss
also in § 5 the equation

(ii) X' = AX+B(X,1).

If we replace (1) by (3), then there exists (yee Theorem (5,2)) a one-one
correspondence between the solutions of the equation X' = AX and that
of (ii). The corresponding solutions have the same characteristic expo-
nents. The existence of such a correspondence has been proved in [2]
under the additional assumption B(0,?) = 0 (see also Theorem (5,1)
of this paper).

We apply the qualitative method of T. Wazewski founded on the
notion of retract (see lemmas 1 and 2). Owing to this method the conside-
rations in this paper are of geometrical character. This seems to be valuable.
For example, Theorem (5,2) not only determines the quantity of the in-
tegrals with their Ce < r but at the same time informs about the structure
of the family of all such integrals.

I am very much. obliged to Prof. T. Wazewski for encouraging me to
work on asymptotic problems. I wish also to express my thanks to Dr Z.
Szmydt for her valuable remarks, which I have utilized in this paper.

§ 1. We now define the characteristic exponent of a function.
Definition (1,1). Let the function ¢(f) be continuous for ¢ > a
Ceg(t) (the characteristic exponent of ¢(t))is the greatest lower bound of
such a that
lim p(t)e™® = 0.
t—>+00
If there is no such a then Ceq(t) £ oo (4.
Note that Cep(t) may be equal to —oco. Ceg(t) is uniquely determined
if ¢(t) is defined and continuous for i sufficiently large. Furthermore the
following relations hold:

(1,1) Celp(t)] = Cep(t),

(1,2) Cep(f) < Cev(r) it |p(t)| < Iz(B),
(1,3) Ce(pp(t)) = Cep(t) i p +#0,
(1,4) Ce{p} =01i p %0, Ce{0}=—

(*) Cep(t) = — A where 2 is the Liapounoff number of ¢(f) (see [3], p. 317).
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Remark (1,1). Cep(t) <r < +oo if and only if hm pt)e A = o

for every & > 0. Similarly Cep(t) =7 > —oo if and only if the function
@()e " iy unbounded in [a, +oo) for every s> 0. In particular, if

Cep(t) < 0 then lim () = 0 and | p(z)ldr < +oo.
[ ) a

It follows easily from the results of Liapounoff (see [3]) that the
following theorems are true:

THEOREM (1,
Then

1). Suppose that ¢(t) is continuous for t = a and ¢ (i) # 0.

In
Cep(t) = lirasup M
t—>+ 00 11

THEOREM (1,2). Assume that Cep(t) = p, Cex(t) = q. Then
(a)  Ce(p(®+r(t)) < max(p, g).

If p()z(t) 20 or p #q then Celp(t)+7(1)
more the following formulas hold:

(b)  Oelp(t)v(t) <p+a(®),

= max(p, q). Further-

and for arbitrary k >0 if (1) = 0

¢
(d) Oe fgu(-r)dr <p whenever p =0,

() Cof p(rydr <p if p<0.
t

In this paper we have to deal only with the Ce < +oco. Writing
Ce <r, we assume in the sequel that r < - oo.
Now we are going to prove the following theorem:
THEOREM (1,3). Let the functions f(t), ¢
B(t) = 0. Suppose that
!
1 Ce fﬁ(t)dr <r or
a

(t) be continuous for t = a

Ce [ p(r)ds <7
t
2° Cep(t) <a —o0o<a.

(2 If p= +oo (p= —o0) and ¢ = —oo (g = + o) then (b) holds when the
right-hand member of the inequality is replaced by - oco.


GUEST


218 C. Kluezny
Then
. i
(a) Co [ p(0)p(R)dr < atr if atr >0,
(b) o [ p(x)f(n)dr <atr if atr<0.

t

Proof. Given any & > 0 it follows from Remark (1,1) and from 2°
that there is such a b > a that |p(7)] < *t9° for v > b. Therefore

i t
) | [omp@dr| < M+ [ o p(z)d.
a b

i
Suppose that Oe [ f(r)dr < r. Integrating by parts shows that
a
t 11 1 T
(1,6) [t (r)de = e+ [ Bz)dr—(a-te) [leer [ ﬂ(s)ds]dr.
b b b b

It [ B(v)dr < oo, then

b

3 o t 0o
1,7 f dr P p()dy = N—e* [ B(z)dr+(a+te) f [e‘°+')' f ﬂ(s)ds] dr.
b 13 b T

From the previous remarks it follows that the characteristic ex-
ponents of the right-hand members of (1,6) and (1,7) are not greater than
a-+&-+r provided that a+r > 0. Therefore in this case

i

Ce [ ¢(1)B(z)dr < atr+es.

Hence (a) is proved. In order to prove (b) we take ¢ > 0 such that
a-+7r-+e < 0. Owing to Remark (1,1) and 1° it follows from (1,6) and (1,7)
that .

[ e B(z)dr < +oo
. i
and respectively

© @ H :
J' e(a-}»u)tﬂ (‘t) dr = — (a+ 6) f [e(u-l-s)r f ﬁ(s)ds] dr— g(ﬂ-l-n)l fﬂ("—') dr
i ¢ b b

or

_Fe(“"'"'ﬂ (v)dr = (a+e) }o [e‘“’f‘)’ f B(s) ds] dr+ e("'“)tf B(z)dv.
1 i 3 i
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From these formulas and from the properties of the eharacteristic expo-
nents given above we conclude that (b) holds.
Let us introduce the following definition:

Definition (1,2). SBuppose we are given the vector function &(f)
= (p;(t), @2(t), ..., pu(t)) continuous for t = a. We define the character-
istie exponent of & () as that of |P(f)|, i.e.

Co®(t) = Ce|D (1),

where |B(t)] = Vei(t)+gi(t)+ ...+ g2 (3) .
By (1,2), (1,3) we get

Ced(t) = Co D lp(1)| = Comax |p(#)].

Remark that if 7' = () is a non-singular nXxn matrix and |7
= Eltﬁ!; then
ij=1
12 (2)]
1=
Therefore Ce(T9(t)) = Ced(1).
Theorems of this section permit us to determine in a simple way the
characteristic exponents of solutions of some differential equations.
We now present some useful examples. Suppose that the functions

a(t), B(t), y(t) are continuous for ¢ >t,, and that
i

<T@ < |THS®)].

1
1°  lim —
t—>+ootl

a(t)dr = a, —oo<a< +oo,

Ce [ 1B(x)dr <b,
i

©

Cef y(r)dr < e.
i

Example 1. Let us consider the scalar linear equation

w = a(t)utpt).

13
20 Ce f|ﬂ(r)|dz<b or
h

1
3° Ce [p(nydr<c or
o

(1,8)

We write \

[a(v)dr = ta().
Ul

By 1°we get lim 4(¢) = a. From Theorem (1,1) we conclude that Cee™® = a.
]
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By 2° and Theorem (1,3) we get what follows:
t

Ce f B(r)|e™™dr < b—a whenever b—a > 0.
1

Cef 1B(D) e ™V dr <b—a whenever b—g < 0.
13

The general solution of (1.8) is given by the following formula:
]
(1,9) u=d[0+ [ B(x)e O dz].
i

If b—a < 0, then the solution of (1,8) may also be expressed as fol-
lows:

(1,10) u = "0 [01— fﬂ(r)e”“(’)dr].
; .

From theorems (1,2) and (1,3) we infer therefore that the following
conditions hold:

(a) if b > a, then the Ce of the solutions of (1,8) are not greater
than b,

(b) if b < a, then the Ce of the exceptional solution
(1,11) o = —6°0 [ p(z)e™0 gy
13

does not exceed b. All the remaining solutions have their Ce equal to a.
Remark (1,2). Solution (1,11) is positive it B(f) < 0 and if for every

t**> i, the function A(t) is not identically equal to zero in the interval
(¢, +o0).

Example 2. Let us consider the following equation:
(1,12) v =ea(utp®u?, 0<qg<1(Y.

Suppose that u(f) > 0 is the solution of (1,12) in the interval [%,, + oo)
(t2 = t;). Then the function

(1,13) o(t) = [u(®I'™
satisfies for ¢ >, the equation
(1,14) v = (1—qat)v+(1—g) B (Y.

(*) We write w81, if g — 0.
(*) The function v(f) defined by

(1,13) may not satisfy th i if
one assumes that w(f) > 0. v 7 the equation (L14) it
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One can easily infer from the definition of v(f) and from, the previous
results (see Example 1), that the following conditions hold:

(a) if b/(1—gq) = a, then every vpositive solution of (1,12) has its
Ce not greater than b/(1—q),

(b) if b/(1—gq) < a, then every positive solution of (1,12) has its
Ce equal to a except at most one, whose Ce is less than or equal to b/(1— ¢).
That exceptional solution is positive if A(¢) < 0 and if for every t* the

“function f(¢) is not identically equal to zerc in [t*, 4+co). Note that (in

case (b)) there always exist positive solutions. This follows from formula
(1,10) as applied to (1,14) under the assumption C, > 0.

Example 3. Suppose we are given the following equation:
(1,15) v = a(®)v+ )+, 0<o, r<1.

Suppose that
(L,15%) B(t) =0, y(l) =0, b—a(l—p)<0, oc¢—a(l—r)<O0.

Assume that v, > 0, ¢, > {;. Then there exists a solution of (1,15),
passing through (v, %), determined and positive for ¢ > t,. The last asser-
tion is implied by the elementary properties of the solutions of a linear
differential equation and by the obvious imequality v < {|a(t)|+ B(?)+
+y(t)}o for v > 1.

‘We shall prove that every positive solution of (1,15) has its Ce equal
to a.

Let v(t) be a positive solution of (1,15). Then %' = a(t)» and there
is a K > 0 such that for t > t, we have v(t) > Ke“® and 1/v(t) < 0K
Hence by Theorem (1,2) we conclude that

1
Co—— < —a, Cer* '(t) < —a(l—p).
(1)
Then from the third inequality of (1,15°%) and from Theorem. (1,3) it follows
that

Ce [ B(z)v* ! (r)dz < 0.
t
We therefore get the relation
t
1
(1,16) lim — | B(z)v* (z)dv = 0.

ts+4o00 t
1

Applying analogous arguments one shows that

H
1
(1,17) lim = f y(1)0" " ()T = 0.
t—+00 11 I
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By (1,16), (1,17), 1° and by Theorem (1,1) owing to the assumption
that o(f) > 0 we obtain

Cev(t) =
= lim — {a(-: +B(7) (1) + p ()0 (1)} dr = a.
t—>+to0 ttl
§2. Denote by X the m-dimensional vector X = (@1y @y onvy By)
and by F(X,t) the vector-valued funections F(X,t)= (fi(X,1),

fu(X, 1)). We shall consider the equation
(I X' =F(X,1).
Let us introduce the following assumption:

AssumprioN K. 1° The vector function F(X,t?) iy continuous in
the set D: t >1,, X arbitrary,

2° the scalar functions w(f) and w(f) are continuous for =t
w(t) =0,

’

t

.1
3°lim — | w(r)dr =p, —oco<u< 4oo,
tstoo T 4
2 o
4° Ce fw(r)drgs or Cef w(t)dr < 8

THEOREM A. Let the Assumption K be satisfied. Suppose that there
exisis such a g, 0 < g <1, that the imequality

5° X-F(X,1) < o(t) X2+ w(t)| X1
holds for (X, t)eD. Assume that X (i) is an arbitrary solution of (I). Then

CoX (1) < ma,x(ﬂ, : )
1—¢
Proof. By 5° we get
ax2(t)
di
Denote by u(t) a solution of the equation
u = 20(t)u-+ 2w (t)u?

(2,1) 1+g

<200 X2()+2w() [X2)F,

2,2)

such that «(¢,) —'u1 > X3(t,). We have u, > 0,0 < P <1and 2w(t) > 0.
On the other hand, if > 0 then #' > 20(t)u and for « > 1 the inequal-

icm°

Ordinary differential equations 223

ity ' < 2(lo ()| +w(t))u holds. Therefore u (1) exists and is positive for
t>1,. From (2,1) and (2,2) it follows that X2(t) < u(f). Hence X (f) exists
for ¢ > 1,. By Theorem (1,2) we therefore get

(2,3) Ce|X ()] < 3Ceu(t).

Owing to the elementary properties of the solutions of (1,12) (see
Example 2, §1), from (2,2) and from Assumption K we obtain

(2,4) Cou(t) < max {2y, 1;,}'

Finally, with the help of the equality s/(1—p) = 2s/(1— g) we find from
(2,3), (2,4) and from Definition (1,2) that

CeX (1) < ma,x{,u, 1iq}

a8 was to be proved.
We give below a certain lemma needed in the proof of Theorem B.

LeMMA 1. Assume that the posit’i'ué function @(t) is continuously dif-
ferentiable for t >1t,. Suppose that

(2,5) 2XF-(X,1) > ¢'(?)

whenever X* = @(t) and t > 1,. Then there exists at least one solution X,(t)
of (I) determined for t > t, and satisfying inequality

(2,6) X <gl) for t>t.
Proof. Define the function
D(X,t) = X2—p(1).
Let M and £ be sets of points (X ) 1) defined as follows:
M: P(X,t)=0,
2: oX,nH<o0,

(2=

=1

Denote by ii(l)(X, t) the derivative of @ (X, t) along the solutions of (I)
and let (X,t)eM. It is easy to verify that

By (X, 1) = 2X I (X, 1) — ' (§).

Owing to (2,5) we conelude therefore that dim(X y8) > 0 for (X,t)eM.
This means that every point of M is a point of striet egress from 2 with
respect to system (I) (see [7], p. 292-293).

Let = > ¢, and denote by Z a set of points (X, v) such that X2 < tp('t)
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It is easy to show that Z-M i3 not a retract of Z (see [7], p. 280). On the
other hand Z - M is a retract of /. This can be proved as follows. To every
point (X, t) of M there corresponds a unique point (X, t*) of Z-M where

=1,

X —
Ak

We denote by 7' the transformation (X, t) — (X*, t*) defined above.
It is continuous on M (X 5 0 on M!) and maps M on Z-HM. We also have
TP = P whenever PcZ-J. Hence Z-M is a retract of M.

Applying the topological principle of T. Wazewski ([7], Theorem 3
and [1], Theorem 3) we conclude that there exists at least one solution
X,(t) of (I) such that (X,(t), t)eR for ¢ > v. Hence the first inequality of
(2,6) holds for ¢ > 7. It holds as well for # >> ¢, owing to the fact that the
points of M are points of strict egress from Q. Thus Lemma 1 is proved.

THBOREM B. Suppose that Assumption K is satisfied. Assume that there
is such a qe[0,1) that the inequality

5 X-F(X,1) > o(t) X2—w(t)| X'+

X =

holds for (X, t)eD, X 5= 0. Moreover the constants s, u (see 3° and 4° of K)
and q satisfy the following condition
6 s—(1—q)u < 0.

Furthermore we assume that the solutions of (1) are determined fort >t

Our assumptions imply that the following conditions hold:

(a) there ewists at least one solution of (I) whose Ce is less than or equal
to s/(1—q),

(b) of X (%) 45" the solution of (I) such that CeX (t) > s/(1—q) then
CeX(t) = pu.

Remark (2,1). Assume additionally that there is such a ¢* that
w(t) =0 for #>>1t". Then s = —oo and the following conditiong hold:

(a) the solution of (I) whose Ce is equal to —oo is unique and it is
identically equal to zero for t > t*,

(b) all the remaining solutions have their Cle greater than or equal
to u.

Proof of Theorem B. Since Remark (2,1) will be proved next,
Wwe consider only the case where w (i) is not identically equal to zero in
any interval [t, +oo). N

Let us consider the following equation:
' 1+g
==
Tt follows from Assumption K, from 6° and from the results previously

1+

2,7 U = 20 (t)u— 2w (t)u®,

icm°

Ordinary differential equations 225

discussed (see Example 2, § 1), that equation (2,7) has a positive solution
@ (t) such that

H 2s
1—p 1—¢q°

(2,8) Cegy(t) <
By (2,7) and 5% we infer that 2X-F(X,t) > ¢(t) if X2 = (1)
(t > 1,;). From Lemma 1 we conclude therefore that there exists a solution
X,(1) of (I) such that X3(t) < @(t) for te[t;, +oo). This fact, together
with (2,8), Theorem (1,2) and Definition (1,2), implies that CeX,(t) -
<s/(1—q). _

Now we shall prove (b). Suppose that Ce X () > s/(1—gq). It is thus
seen that the inequality X2() < ¢,(f) is not satisfied for all ¢ > ¢;. There-
fore there exists a t, >, such that ungZ(tz) > polts). Let @i(t) be
a solution of (2,7) issuing from the point (u,, {,). It is easy to show that
@1 (t) > @o(t) for t >t,.

Taking into account the discussion connected with Example 2.
(§ 1) we infer from Assumption K that

(2,9)

Condition 5°° implies

Cepy(t) = 2p.

AX(1)
a

(2,10) > 20(1) X2(t)— 2w (1) | X2 (1),

From (2,7) and (2,10) it follows that X2(t) = ¢,(t) for ¢ > {,. There-
fore by (2,9) we have CeX(t) = Ce|X(t)| = u.

Proof of Remark (2,1). Suppose that w(f) = 0 for ¢ >¢*. By 5°
we have

(2,11) X-F(X,t) > w{t) X2

whenever X = 0. But F(X,t) is continuous, whenece F(0,%) =0 for
12 4

Let X (t) be an arbitrary non-zero solution of (I) and X2(f,) x % > 0
(t; = t*). Suppose that g,(f) satisfy the equation «' = 2w (t)u and @,(t;)
= u;. A reagoning similar to that presented above shows that X2(7)
= p,(t) for t > t,. It follows from the results discussed in Example 1 (§ 1)
that Ceq,(t) = 2u. Therefore Ce X(t) > p.

In this way Remark (2,1) is proved and at the same time the proof
of Theorem B is completed.

§ 3. This part of the paper deals with some properties of linear trans-
formations.
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Let A be an nxn square matrix with constant coefficients. It is
kliovm that there exists a non-singular matrix U such that the matrix
A* = U'AU has the Jordan canonical form. By this we understand
that '

D,

D,

A* =

D,

where D; are square matrices having one of two forms:

0,7

4 —T,0

& 0 £, 0 0,7
0,6 | —7,0

or

&

L7 4

é.1,0] o,7
| anzq, T, 0

where the entrigs ﬁhat have not been filled are all zeros. The number o is
a real cha.?a,cterlstm root of 4 and o 4 47 are complex conjugate ones, s; are
non-negative and may be made arbitrarily small provided that, U is suitably
chosen. The sequence of characteristic roots of 4 is ordered in such & man-
ner that the real parts of the roots of D; do not decrease with respect to d.
roal lﬁ,e:na‘fﬂ;h(&lh). Suppose that e < & (¢ > 0) and that the different
Tt8 of the characteristic roots are ordered in ing i i
oo the following increasing
01 < R <o 0 < g1 < vve << g

Let I, denote the number of characteristic roo f
do not exceed p, (each i-fold characteristic root ig coiﬁn:gﬁozetiﬁii)pgg
note by Y.s .the l-dimensional vector and by Z, the Ny dimons‘ional
veetfn-. Wntmg X = (Y, Z,) we mean that the first I, coordinates ‘of X
are 1denifma1 wi‘?h that of Y, and the remaining n—1J, with that of Z .
Uimg this notatlox} one can easily obtain the following inequalities whelfe
A" has the canonical Jordan form described above: ’

(Ya) 0)A%(Y,, 0) < (go-+2) X2 for
(01 Za)A'*(O; Zs) > (Q,,_H-—a)Zi for

Y, 0,
Z, #0.

icm

Ordinary differential equations 227

In particular we have
(01— &) X? < XA*X < (qu+2e) X for

§ 4. Now we present our main result, which concerns the charac-
teristic exponents of the solutions of the system

(IT) X' = AX+B(X,)+0(X,1).

To begin with we introduce the following assumption:

AssUMPTION H. 1° The vector-valued functions B(X,1), 0(X,1)
are continuous in the set D: ¢t > 1¢,, X arbitrary.

2° Mhere exists a scalar function x(t), continuous for ¢ >>t,, such
that

X #0.

1(8) =0,

lim g, () =0, f 2a2(7)dr < 400

{400 i

%) = 22 () + 222}, 12(0)2 0,

3° There exists a scalar funetion w(t) = 0 continuous for ¢ >1, and
a constant s (—oo < 8 < +oo), such that
. 12 00
Ce fw(r)d-r <s or Oef w(r)dr < 8.
& !
4° Moreover, in the set D the following inequalities hold:
IB(X, 0] < | X|x(t), 10(X,0)] <|X|() 0<g<l.
Just as in section 3, denote by
(4,1) 0 < o< e < 0k

an increasing sequence of all real parts of the characteristic roots of the

matrix 4.
‘Write

‘where

Now form the sequence
(4,2) . By < 0y < e < U

containing v, and all members of (4,1) greater than v,. Moreover, let n;
be the number of characteristic roots of A whose real parts are not greater
than v; (each k-fold characteristic root is counted & times). Denote by
8 (4 =0,1,...,p) the family of the solutions of (II) whose Ce do mnot
exceed »; and by Si(r) a seb of points X eB" such that there exists
a solution of (II) issuing from (X, 7) and belonging to S;.
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We now introduce some definitions.

Definition (4,1). The set ZC K" is said to be of type [, (k =1, 2, ...,
n—1) if there exists a k-dimensional subspace E*C B™ such that each
hyperplane parallel to a certain complementary space E™ *(°) has at least
one point common with Z.

We say that Z is of type I, if it is non-void, and of type I, it Z = E".

Definition (4,2). The set Z of type I), (k =1,2,...,n—1) is called
a surface of type I if there exists a homeomorfic correspondence between
the hyperplanes parallel to the complementary space B"* and the poirts
of intersection of Z with those hyperplanes.

TireorREM O. Suppose that Assumption H holds. Let X (1) be an arbi-
trary solution of (II) and CeX (f) = 7.

Then the following conditions hold:

(@) » < v, or v = v;, where i is one of the integers 1,2, ..., p(%.

(b) there exists such o number 1, that for © > i, each of the sets 8;(x)
(1=0,1,...,p) 18 of type Iy,

Firgt we prove two lemmas needed for the proof of Theorem C. Those
lemmas concern the system

ey X' =FX,1) (X=(Y,2)

It is supposed that F (X, 1) satisfies 1° of K.
Levma 2. Suppose that the function g(u,t) > 0 for u > 0 has contin-

uous derivatives of the first order for t = 4, = t, and for arbitrary w. Assume
that the inequality

() 200,2) F(Y,Z,0)—2(Y,0)-F(Y, Z, 1) (Y*, ) — g; (Y2, 1) > 0

holds on the surface M defined by the equation 7> = g(X2, t) and for ¢ > t,.
Then, for each © > t, and for arbitrary Y, there ewists such o solution X (t)
= (¥(1), 2(%) of (1) that ¥(x) = ¥y, and 22(t) < g(Y2(), 1) for ¢ > .

Proof. We write (¥,Z,t) =P and o(P) = Z%—g (Y2, 1). Denote
by o such a set of points P that y(P) < 0. Let us find the derivative
Yy (P) for P<IM along the solution of (I). We obtain

Y (P) = 2Z-2'—2g,(V2, ) YY" — g,(¥2, 1).

Owing to (x) and from the relations ¥ V' = (Y, 0)-F(P), Z:7 ==
= (0,Z)-F(P) we get the inequality Yy (L) > 0 for Pe M. This means that

®) kWe say that B~ is a complementary space to J% it 7™ is a divect sum of 7%
and "%, The hyperplane is parallel to 7% if it is obtained by a translation of /¥ along
a suitable veotor belonging to E»-,

() f 8 = —oo then vy = —oco. In that case # < v moeans that » = — no,
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each point of M is a point of striet egress from w. Using Wazewski’s
results, just as has been done in the proof of Lemma 1, we conclude that
for every = > 1, and every Y, there exists at least one Z, such that at
least one solution of (I) issuing from the point (¥, Z,, v) remains in
for t = 7.

Taking into account the definition of o we find lemma 2 proved.

LumMA 3. Let us suppose that the solutions originating on the hyper-
plane t = t, are determined for ¢ > t,. Suppose that there ewist numbers 1
and p such that

' i

s

B e <A<
) 1= q "

We assume moreover that
60 (Y,0)-F(X,1) <AY2H|Y||X|x(0)+ Y| X|"w(),
7 (0,2)F(X,1) > uZ—|2||X| 3 (1) — 2] | X["w(t) for

where x (), w(t) satisfy the assumptions 2°-3° of H and 0 < g < 1.

We then assert what follows:

(a) there is such a mumber t, that for v > 1, and every ¥, there exists
at least ome solution X (1) = (Y (1), Z(t)) of (I) such that Y (z) = ¥, and
CeX (1) < 4, o

(b) if the Ce of any other solution of (1) is greater than A, then it s equal
to u ot least.

Proof. By 5° there exists a o satisfying the inequality

Z #0,

L. i

(4,3) - <o<h
Put .
(4,4) Ta(t) = 1072 (8),  Ka(t) = 10 {xa(t)+w(t)e™ 0%},
By assumption 2° of H we get
(4,5) llim ky(t) =0
|- 00

and by 3° of H, (4,3) and Theorem (1,3)

0o
(4,6) Oef w(z)e~ P dr < 0.

[
Tlence using once more assumption 2° of H concerning x,() we have

00

4,7 [ ky(z)dr < +eo.
' 12
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Now let us write

(4’8) (t) — {k,(r)ﬂ"z

(4,9) glu, 0) = B3(t) (ut-6)

and let ¢, > ¢, be chosen in such a manner that

(4,10) Blt) Su—2, h(t) <2 for 13ty
Denote by o the set of points satisfying the inequality

(4,11) w:  ZrP< g(Y% 1), t=t

and by M the boundary of w

(4,12) M: 22 =g(X% 1), t=t,.

We shall prove that g(u, 1) satisfies the agsumptions of Lemma 2.
In order to show that assumption (x) (of Lemma 2) is satisfied we put

I(P) = 2[(0,2) - F(P)— (Y, 0)-F(P)gu(T?, )]~ g: (Y2, 7).

We have to prove that I'(P) > 0 on M.
It eagily follows from, (4,9) and assumptions 6° and 7° that the ine-
quality

I(P) > 2{u2" ~ 12| | X| z(t)— |21 | X "0 () — W () [AT*+ | Y| | X| £ () +
+ | Z] X[ w( 1——h(t B (2) (X% 4 6) — h2 (1) o)

holds when (Y, Z, t)eD and Z # 0. But (4,8) implies that h(t) >
on M we have (see (4,12) and (4,9))

1. Hence

12| > 1Y, 12| > ¢, 1 X| < |Y[+ 2] < 2|2}, (1) X* = 72— h2(t) ™.

From the last inequality and from (4,3) we conclude that

uZE— R (1) T2 — ah* (1) 6 = pZP— AZ*+ (A— o) WA (1) & > (u— A 22,
From the previous inequalities and (4,10), (4,4) we have
— |2} X2 (t)— h2(8) | T| | X1 (t) > — 222 (1+h2(2)) 2 (4)
=2 —10Z2 [y (1) + xa(f)] = — k() Z2—1022ys(t) = — (u—A)Z2—10Z2 x4, (2)

and similarly
— 121X [w () — B (8) | X[ X w(t) = — 212" w(8) (141 (1))

= —10w()|Z|" = —10w(1) 22 e O,
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Summing the above inequalities and using the relation

2

RO (724 ) = ——

) b (1)

we geb

—h'(H].

The lagt inequality together with (4,8) implies that for PN we have
Py > 0.

Ag follows from Lemma 2, part (a) of Lemma 3 will be completely
proved if we show that the Ce of any solution of (I) which remains in
o for t > 1, is equal to 1 at most. Solutions of that kind satisfy the follow-
ing inequality:

(4,13) Zz(f < B {T3()+ 6.
By (4,10) (h{t) < 2) we have
(4,14) 2] < 2(|Y1+e°‘), |X| < 3|X|+2¢% for (Y,Z,t)eo.
Therefore by assumption 6° we obtain
(4,1B) (Y,0)-F(P) < AY*+|X|(3]X|+2¢%) 2 (1) +
+ w(1) | ¥|(3| Y|+ 2¢™)
Write
(4,16)  3f(u, 1) = (A+ 3y (D) ut 6w (1) +- (26" 1 (1) + 4w (1) ™)',
+4q
P=y

From (4,15) and (4,16) and from the inequality 0 < g <1 we get

(Y 0)-F(P) < (X%, 0(7).
Hence, if the solution X (t) = (¥ (1), Z (1)) remains in o for t >
following inequality is samﬁed
ar(

2 <1, ).

t, then the

(4,17)

Now let us consider the scalar equation

(4,18) w' = f(u,t).

(") Here we make use of the inequality (a+0)?<C 2( a2+ b?) provided that
a>0,0>0 0Kqg< 1.
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Equation (4,18) has been investigated in Bxample 3 (§ 1). By (4,3)
we have s-+og < o. Using the same notation as in Example 3 we infer
on the basis of Theorems (1,2), (1,3) (see §1) and owing to assumptions
2° and 3° of H that

1
a=21, b=s, o=0c<h g:p:—;ﬂ, r=1/2(9
Hence by (4,3) we have
1—q
b—a(l—op) :s——22-—2—~< 0, ¢—a(l—r)=0—A<0.

It has been shown in § 1 that every positive solution of (4,18) has
its Ce equal to 2A.

If p(t) is a maximum solution of (4,18) such that Y2(i,) < ¢(f,)
then, owing to (4,17), we have Y2(¢) < @(t) for t > 1,(°). This means that
Ce|Y (¢)] < 2. Inequalities (4,14) and the inmequality o < A imply that
Ce|Z (t)] < A. Therefore Ce|X (#)] < A. This completes the proof of part
(a) of Lemma 3. .

Now we are going to prove part (b) of Lemma 3. Suppose there exists
a solution X (¢) of (I) such that Ce X (1) > A. X (¢) cannot be contained in w.
Since every point PeM is a point of strict egress from. w, there exists such
a 1y >1, that for ¢ >{; we have

Z2(1) > hR(t){ X2 (t)+ & .

1, (4,19) implies inequality

(4,19)
Since h(t) >

(4,20) Y < Z@)  for 13t

() To prove that ¢ = ¢ we have to show that

(i) Ce { f2e”" 7)dr - fttm

7) 497 (71}

or

7)dr 4 f 4w (7) 607 dv}

. g
(ii) Ce { f 267y,
i
There are three cases: 84 0q < ¢ < 0, 8+ 0¢ < 0 0, 0 << 8- 0q < . It follows
from Theorems (1,2) and (1,3) that in the first case (ii) is 1‘,rue and in the othoer cases
(i) holds. In the second case we have to note that (a[f 4w (7) 1% dr =< 0.

(*) One can replace the term “maximum qoluhon” by “solution” according
to the uniqueness property.

icm

Ordinary differential equations 243

Now let us write system. (I) in the form
Y =F(Y,%,1), Z =F(Y,Z,1) F=F,F)
and write K (Z,1) = Fy(X (1), Z, t). Let the set R of points (Z,1) be de-
fined by the inequalities
R: |Z)> Y|, t=1s.

Now put, in 7°, X = (¥ (1),
infer that the inequality
(4,21) Z-K(Z,1) > (p—2x(1) 22
holds for (Z,t) k.

Z(t) is a solution of the following differential equation
(4,22) - 7' =K(Z,1).
By (4,20) the curve (Z(t), t) is contained in R for ¢ >
(4,3) it follows that

Z). Owing to the inequality |X| < 2{Z| we

—2\Z| a0 (£)

ts. From (4,19) and

s
CeZ(t) = 0> g

Applying Theorem B to (4,22), according to (4,21) and (4,23) we
conelude that CeZ () > p. Therefore Ce X (t) > u. This completes the proof
of Lemma 3.

Proof of Theorem C. Let X(t) be an arbitrary solution of (ILI)
and let » = Ce X (t). Write

1.
g = g l'mIl(’Uq;— /U'i-—l)

i

(4,23)

(4,24) (=1,2,...,0).

Tirst we prove part (a) of Theorem C. In order to do so it suffices
to show that given any & > 0

(4,25) 0<e<g
the inequality
(4,26) r L vpte

holds, and in the case where v, < g the following alternatives are sat-
igfied:
(4,27) (t=0,1,...,p—1).

Let & satisfy (4,25) and let the non-singular linear transformation
T, (X* = T,X), change equation (IT) into the following one:

(1 XM = A*X*+ BY (XY 1)+ 01 (X 1),

r Lo 00 P2 V8
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The matrix A* is in the Jordan canonical form (see §3) with its
underdiagonal numbers not exceeding e. If X*(f) = 7,X(f) and X(1)
is a solution of (XT), then X*(¢) is a solution of (IT*) and CeX (f) = Ce X*(1).

Tt is easy to see that equation (IT*) satisties the assumptions of Theo-
rem C. In particular, there are the functions x*(z), w*(), which play
the same role with respect to B* and C* as x(¢), w(¢) with respect to B
and C. ¢ and s have the same values, whence the sequence (4,2) is not
changed.

Now we prove (4,26) and afterwards (4,27).

Owing to Remark (3,1) we have

X*.Xml < (Qk .{_ E—|~ Z*(t)) Xﬂ _1_ w*(t) ‘X*ll"'q.

This means that (IT*) satisfies the assumptions of Theorem A. We there-
fore get

(4,29) OBX*(t) < max {g+ & %}

Since v, = oy Or v, = vy, (4,28) and (4,29) imply (4,26).
Suppose that v, < g;. We shall prove first the following particular
case of'(4,27): if v, < p, then

(4,30) r<v O T Z=v,—e.

On account of (4,25) and (4,24) we have v, < g;—¢ and g, = v,.
Owing to Remark (3,1) we have
X5 XY > (= s — 1" (1) X2 —w* (1) | X0 for  X* 5 0.

This inequality shows that (4,30) is a consequence of Theorem B.
In the remaining cases of (4,27) we have n; 7 0 and #n; 5 n; thus

We can P}lt' X = (Yiy Zy), Xy = (21, 0, L] ww)y ai = (w'n,ﬁ-h ey T
The integer ¢ assumes the values
ll,Z, sy p—1 if
0,1,...,p—1 if

(4,31) Ty < Q1y
01 K% < Q-

Let j denote a fixed value of 4. Matrix A may be written as follows:

where A4; iy an n; % n; matrix. Similarly we write equation (IT*) in the form
YJ" = A; Y7+BJI(YH z, t)+0;(Y17 Zh 1),
Z; = A3Z;+Bj(Y,, 7y, 1)+ 0} V), 2, 1),
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or shortly (¥;, %) = F(Y;, Z,1). Here by Bj(P) and (j(P) we denote
the sequences of first n; coordinates of vectors B*(P) and C*(P) respec-
tively and .

0*(P) = (C](P), C3(P)).

From. the agsumptions of Theorem C and from Remark (3,1) it follows
that

B*(P) = (B}(P), Bj(P)),

(X, 0)-F (X, Z;,'t) < (v5+ ) X3+ Tl |1 X" (0)+
+ 12| X (8),
(0, Z;) Xy, Zsy 1) > (v55:— ) Z5— |Z)) | X¥| 1" () — |24 | X 0" (8).

Inequalities (4,32) ave satisfied in D, the second of them whenever
Z; # 0. By (4,24), (4,25), and (4,31) we have

(4,32)

S
——v——-g-z- =Py < Vj+& < Vp—¢&.

Hence (I1*) satisties the assumptions of Lemma 3 (4 = v+¢, 4 = V.1 €).
We therefore obtain r < »; +¢ or » > v;,,—&. j may be chosen arbitrarily
from, the set (4,31). Hence the alternatives (4,27) ave satisfied and part
(a) of Theorem O is completely proved.

Remark (4,1). Theorem B (§2) implies that in the case where
v, < o, there exists at least one solution of (IT*) for whieh the inequality °
r < v, holds. In particular if w(?) = 0 then (IX*) possesses a trivial solu-
tion and the Oe of any other one is equal to some member of the sequence:
Q1) Q2y -++y Q-

The proof of part (b) of Theorem C results from the remarks given
below.

A non-singular linear transformation maps a set of type I; on a set
of the same type. It is sufficient therefore to prove (b) for (IT*) assuming
that & < &

Tt follows from part (a) of Theorem C and from (4,24) that the con-
dition r < v; is equivalent to r < v, + g for ¢ =0, 1,..., p. Hence S;(v)
is @ set of such X-es that there exists a solution passing through (X, 7)
whose Ce does not exceed v;--e.

If m; £ n and n, 7 0 then we have one of the cases of (4,31); thus X
may be written as (Y, Z;) and (11*) gatisfies the assumptions of Lemma 3.
From, part (a) of the assertion of that lemma as applied to equation (IT*)
(A = v;+&) it follows that there is such a %,; that for 7 > 1,; and for each
Y, there exists at least one Z; such that (X, Zs, v)e Si(v).

£ n; = 0 then ¢ = 0 and v, < g;, and from Remark (4,1) we conclude
that Sy(z) is of type I, for v > 1.
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If n; = n then i = p, and by (4,26) we infer that 8,(7) is of type 1,
fort>=1,.

It follows from these remarks that assection (b) holds whenever we
put fy = max . Thus Theorem C is proved.

§5. We shall congider in this section the system

(III) X' = AX+B(X,1).

AsgumerioNn H,. 1° B(X,t) satisties assumption 1° of H.

2° There exists a function x(¢) satisfying assumption 2° of Il
3° B(0,1) =0 for t >4,

4° |B(X,t)—B(X, ) < |X—X|x(1).

Grobman. (see [2] Theorem. 5, . 141, and corollary p. 142) haws
proved that if Assumption H, is satisfied, then each set S;(r) iy am
n;-dimensional set; n; — denotes here the number of characteristic roots
whose real parts are not greater than p; (each r-fold characteristic root
is counted 7 times). This result may be formmulated in the following
slightly generalized form.: v

TrEorEM (5,1). If B(X,t) satisfies Assumption I, then there exists
such a t, that the following conditions hold:

1° each of the sets S;(z) (4 =1,2,...,k=1) is o surface of type I,
for © =1, . '

2° for every v > t, there exists a continuous and one-one transformation
’TF mapping the hyperplane t = v on itself and such that the solution of (111)
%SS?I/L"I?g from the point (X, v) and the solution of the corresponding linear
equation

(5,1) X =AX
issuing from (TX,t) have equal characteristic ezponents.
Proof. Following Grobman let us consider the integral -equa,tion

i .
(8,2) X(t) = W0+ [ W, (t—8)B(X(s), s)ds +

11
[ Waon, (4= ) B(X (), 5)ds
oo

where W(¢) is a so called normal matrix of (B,1)(10),

(20) A. matrix W () is called & normal matriz of (5,1) if ts columns Live us i Hys-
tem of m linearly independent solutions of (5,1) and, moreover, if the u]‘x‘ﬂ,rulu‘turir:lrl'u
exponents of 1.;he first ) columns are equal to g, of the next Iy — to 02 and 80 on, and
the characteristic exponents of the last I columns are equal to gp.l denotes ,hm‘u

the number of characteristic roots of 4 with 1 s e ;i y y
is counted r times). real parts equal to gy (each r-fold root
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The matrices W, (1) and W, _n,(i) are obtained from W (¢); the former
by replacing the last n—n,; columns by zeros and the latter by replacing
the first n; columns by zeros. ¢t ig an n-dimensional vector of the form
0" = (01, Cpy vvvy Ongy 0y 0,...,0)

Grobman has proved (see [2], Lemma 3, p.132 and p.136) that
for every ¢ = 1, 2, ..., k and for every vector ¢° there exists exactly one
solution of (5,2) with, its Ce equal to or less than o, which depends contin-
uously on (%, According to the notation adopted in this paper we put
¢ = (¥, 0), ¥y = (1, Csy ..., Cn;) and denote by X(¥;,?) the solution
of (5,2) which corresponds to ¢'. Then we have CeX (¥, t) < e for
every Y;.

Tt suffices to prove Theorem (5,1) in the case where 4 is in the J ordan
canonical form. Tn this ecase the matrix ¢?¢~? is a normal one with respect
to (5,1). Let us replace in (5,2) W(f) by ¢“¢™". From (5,2) it follows that
for i < % X(Yi,7) has the form X (¥, 1) = (¥4, 0)+ (0, &'(¥y). dt is
an n—n; dimensional vector function which depends continuously on Y;.
Hence

(5,3) X (Y, 7) = (¥s, d(X)-

This means that 8;(z) (i = 1,2, ..., k—1) may be considered as a diag-
ram of & continuous vector function defined on the subspace E". There-
fore 8;(z) is a surface of type Iy, .

This completes the proof of part 1° of Theorem (5,1).

Tn order to prove part 2° let us define by induction the transforma-
tions TFY, T%-%, ..., T*. Put

T X = X—(0, & (Yi-a))-

Owing to (5,3) we have T*'X = (¥_;,0) for XeSp(z) and
718, (1) = B™-1. Since 8;(r) C 8;(z) for ¢ < j, we get

T X = (Ypog, W3 ¥pmn), 0)  for X eSjpa(n); k> 2,

where 12 is an #;_,— M-, (imensional continuous vector funetion
composed of the first mny_,—ny_, coordinates of a2 (Yr_s).

Now let us suppose that 7' (5> 1) iy already defined and that it
satisties the following conditions: T7S;(v) = BY for i <j<k—1 and
T'X = (Yiq, B (¥4), 0) for X e8iy(v), where KXYy, is & conti-
nuous n;—m;., dimensional vector funetion. The transformation T is
defined. as follows:

T X = TP X—(0, K™ (Y1), 0)

(zeros are the first m,_; and the lagt m—n; coordinates of that vector).
It is clear that T8, (r) = B for i—1 <j <k—1 and if 7> 2 then
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T X = (Yig, WH¥ ), 0) for XS y(7), and if 4= 2 then 2%(0) = 0.
Tn this way we shall finally obtain a non-singular transformation 7, & 7
which maps the hyperplane ¢ = 7 on itself. Bach of the sets §;(z) is mapped
by T on B% (i=1,2,...,k—1), and (0,0,...,0) is a fixed point
of T.

Suppose that X(¢) is a solution of (III) and that CeX (¢) = g;. Since
X (v)e8;(7) and X (z)¢8;(v) for j < i, we have I'X (v)e B™ and TX (7)¢ E"
for j < i. The solution of (5,1) issuing from (T'X (), ) is of the form
¢2t=7(¥;, 0) where ¥;cE™ and Y,¢E" for j < i. Hence its characteristic
exponent is equal to o;.

This completes the proof of part 2° of Theorem. (5,1).

The following theorem is a generalization of Theorem (5,1):

TrEorEM (5,2). If the function B(X,t) satisfies asswmplions 14
2° and 4° of H, and if there exists a constant s such that

¢
Ce [ |B(0, 7)|dv <s

it

o0
(5,4) or  Ce [ |B(0,)\dr < s,
i

then there ewists a number t, such that for v >, the following conditions
hold:

1° Bach of the sets S;(t) is a surface of type I, (cwcept the cases where
8i(z) is a single point or covers the whole space).

2° There ewists a one-one continuous transformation 1 mapping the
hyperplane t = v on itself and such that the solution of (ILL) issuing from
(X, 7) and the solution of the limear equation (5,1) issuing from (T'X, 1)
have characteristic exponents which either are equal to each other or do not
emceed v,.

Proof. Equation (ITI) is a particular case of (II) and it satisfies
Assumption H where ¢ = 0. Moreover w(f) = |B(0, )] and owing to Theo-
rem. O there exists a solution X, (t) of (ILI) such that its Ce iy mot greater
than v,. Let X (¢) be an arbitrary solution of (III). Now pub

(5,5) X(b) = Xo(t)+42).
The vector-valued function &£(f) is a solution of the equation
(5,6) X' = AX+B*"(X,1),
where
BY(X,1) = B(X+X,(t), ) — B(X,(1), 1).

We have B*(0, ) = 0. Hence (5,6) satisfies the agsumptions of Theo-
rem (5,1). Therefore relation (5,5) establishes a one-one correspondence
between the solutions of (III) and that of the linear equation (5,1)
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From Theorem. (1,2) and from Definition (1,2) it follows that
Ce X () = Oa|X (1) = Ce|Xy(t)+£()] < max {Ce|X,()], Cels(1)]}
and CeX (i) = Cef(t) if Ceé(t) > CeX,(t).
The remarks given above immediately imply Theorem (5,2).
Tinally let us consider the linear equation
(L) X = A+ V) X+W ()
where the matrix V (t) and vector function W (t) are confinuous fort =1,
and satisfy the following conditions:

V() = Va()+ Vo), ImVy) =0, [ [Va(@)lde < +oo
t

fr- 00

i
Gef [W(z)|lde <s or
b
Bquation (L) is a particular case of (ITI) considered above (B(X, 1)
= V(1) X+ W (1)). From Theorem (5,2) it follows in particular that (L) pos-
sesses an ny-parameter family of solutions whose characteristic exponents

do not exceed v; (¢ =0,1,..., D) ' ‘
This result is a generalization of some results of T. Peyovitch [47].

Ce_fo | W ()| dr < 8.
i

References

On a method for regularization of differential equation Mot

[1] A. Bielecki, ] )
erty (in Russian), Bull. de ’Académie Polonaise des Scien-

Possessing uniqueness prop
ces, CL III, 4 (19586). )

[2] D. M. Grobman, Characteristic ewxponents of solutions of almost linear
systems (in Russian), Mat. Sbhornik 30 (72): 1 (1952), p. 121-166.

3] I. & Malkin, Theory of the stability of motion, G. 1. T — T. L. Moscov-Le-
ningrad 1952 (in Russian). - "

[4]1 T. Peyoviteh, Sur le valeur & Vinfini des intégrales des équations différen-
tielles lindaires, Bull. de la Soc. Math. de France 61 (1933), p. 85-94 i )

[6] K. Tatarkiewics, Propriéiés asymplotiques des systémes &’ équations diffé-
rentielles ordinaires presque lindaires, Annales UMCS 8 (1954), p- 25-69.. )

[8] T. Wazewski, Sur les intégrales d'un systéme d’équati?m différentielles,
tangentes auw hyperplams caractéristiques issues du point singulier, Annales Soe.
Polonaise Math. 21 (1948), p. 277-297. ) L

[7} — Sur un principe topologique de Iewamen de Tallure asymptotique des inté-
grales des équations différenticlles ordinaires, ibiderm 20 (1947), p. 2’19-313:

[8] A. Wintner and P. Hartman, Asymplotic integrations of ordinary mom-
linear differential equations, American Journal of Mathematios 76, No 4 (1855), p.
692-723.

Regw par la Rédaction le 21. 2. 1968


GUEST




