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On the domains of indetermination of analytic functions
by J. Mriovuszewskr (Wroclaw)

Lot us congider an analytic function f(2) in the z-plane. A sequence
of the clements of the funetion f is called a path to point p if the centres
of those elements tend to point p and each. of those elements is an immediate
continuation of the preceding one. Two paths L, and L, to the point p
are equivalent if in every cirele whose centre is p there are two elements,
e, L, and eye Ly, such that one of them is a continuation of the other in
that circle. If f(z) is single-valued and p is its isolated singular point, then
all the paths to p are equivalent. The same is also true when the dimension
of the set of all singularities of the single-valued function f(z) is 0 in a neigh-
borhood of p. On the other hand, if p lies in a continuum consisting of the
singularities of f(2) then it is possible that there are 2% paths to p, no two
of which are equivalent (e. g.: for p = 0, if the set of the singularities is
0 <7 <£1/2" ¢ =mr/2" , where m,n =1,2,...).

Let K, denote the circle whose centre is p and radius 1/m. Let DL
denote the set of all values of the elements which are continuations in the

circle K, of the elements belonging to L. The set Dy(p, L) = () DE is
Nn=1

called a domain of indetermination of the function f(2) at the point p
along the path L. This notion was first introduced in paper [1]
by Zoretti.

The domain of indetermination is of course always a continuum.
We yay that the function f(2) is delermined at the point p along the path L
it Dy(p, L) iv a single point. It is clear that the domain of indetermina-
tion of any single-valued function f(z) at its isolated singular point is
a single point (it p is a pole or a removable.singular point) or the whole
plane (if p is an essential singular point). The same is true if the set of the
singularities of f(2) in a neighborhood of p consists of a sequence of points
tending to p. If all paths to the point p are equivalent, then the domain
of indetermination does not depend on the path L. In this case we shall
write Dy(p) instead Dy(p, L).

This note consists of three parts. In the first we consider the single-
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valued functions only. W. Wolibner hag proved(*) that for every plane-
continuum O there exist a single-valued function f(z), a point p and the
path L to the point p, such that D,(p, L) = C. In this note I shall prove,
furthermore, that for any C it is possible to find f(z) such that the set of
its singular points is homeomorphic to the Cantor-set and that f(#) is de-
termined at all points except p.

In the second part we consider the domains of indetermination of
multiple-valued functions at their isolated singular points p. In the third
part we consider the domains of indetermination of analytic funetions
(single-valued or not), which are univalent in a neighbourhood of p.

This note has been prepared at a seminar conducted by Professor
W. Wolibner. It contains answers to his questions and sugestions.

L. TumorEM 1. For every plane-continuum C there exists a single-
valued analytic function f(2) and a point p such that the set of all singula-
rities of f(z) is homeomorphic to the Cantor-set, and f(2) is determined at
all points except p and Dy(p) = C.

Proof. Suppose that C iy a bounded continuum which contains
point 0. We define a function f(2) having the required properties for the
point p = oco. As a first step in this construction wo define a sequence
of polygonal domains ¢, such that

(1) dist (C, 0,) < 1/2"*

for every # = 0, 1, ..., where dist(4, B) = max[sup o (x, B), supo(x, 4)]
Lol wal3
denotes the distance in the sense of Hausdortf. )

Let P(z) denote the function of Pompeiu [2]. The singularities of P
form a set B, which is homeomorphic to the Cantor-set and P. is deter-
mined at all points of H,. We assume that F, lies in the unit circle 2] < 1
and P(oo0) = 0.

We need the following lemma:

Levua. Let @ denote the set of all values w == P (2). There exists a single-
valued function h(w) such that h(@G) is dense in a given polygonal domain
O and h(0) = 0.

Proof. From a theorem of Possel [3] it follows that there exishs
& conformal mapping ¢ which represents ¢ on the plane without a certain
nondense closed set consisting of parallel segments and single points.
Let I be one of those segments. There is a conformal mapping y which
maps the exterior of I upon the polygonal domain ¢, and where p(oo) =0,

(*) See Colloquium Mathematicum 2 (1951), p. 304, Comptes Rendus.
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The function h = yp represents G on ¢ without a certain non-dense
closed set consisting of arcs and single points. Furthemore, we have %(0)
= 0. The above proves the lemma.

Let

fo(@) = P (2),

where hy(w) is a single-valued function which maps the set of all values
of P(z) upon a set which iz demse in the polygonal domain C,, and
where hy(0) = 0. Such a function exists according to the lemma. We have
fo(oo) = 0. Therefore, there is an 7, such that if |2| > 7, then [f,(2)] < 1.

Suppose that the functions fy, fi, ..., fu_, and the numbers ry, 71, ..., ¥u_y
are already defined and that they have the following properties:

n-—-1
@) PRICIRS VA Sy
F=0
(3) Ifs(e) <1/2' for j=1,2,...,n—1, and |¢ <y,
(4) the singularities of fi(¢), for j =1,2,...,4—1, lie in the ring
7.1 < |2l < 7; only.
Let .
(5) ‘ fn(z) = h'nP(z""zn)y

where h,(w) is & single-valued function which maps the set of all values
of P(z—2,) upon a set which is denge in the polygonal domain C,, and
where h,(0) = 0. Such a function exists according to the lemma. We
have f,(oc) = 0. The point 2, in (5) is such that

[fale)l <1/2"7" o] < 7uogy
{#n = 1 +1.

Such a point 2, exists because f,(oc) = 0. From the same equality
and (2) it follows that there exists an 7, such that

(6)

Dh@l<aet it ol >,
(7) =0
|zn‘ < 7‘11'_1'

Therefore, all singularities of f,(2) lie in the ring r,_, < [2| < 7, only.
Thus, the sequence {f,(2)} is defined.

The convergence of the series D f;(2) is uniform in every bounded clo-
Jm=0

ged domain, for, according to (6), if (2| <r,_, then |f;(2)| < 1/27-* forj = n.
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Hence the function f(2) = 3 fi(2) is regular in the plane except the points
=0

of the set ¥ = G B,, where E, = U (2+2,). Tt is c}ear that E is homeo-

n=0 26liy
morphie to the Cantor-set.
Since all the paths to the point p = oo are oqulvmlont the domain

- A 7@

Hymalh

of indetermination at p = oo ig of the form Dj(oco m)y where

Qn = E{]z] > #p_1). We shall show that Dy(oc) = C.

Trom (6) and (7) it follows
Hence

Let R,, denote the ring 7, < 2] < 7.
that |f,(2)] < 1/2" in the exterior of Ri.

8) st [F(Ra)y O] < 1/2%70.

From. (6) it follows that if zeR, then |f;(2)j < 1/2‘“1 J‘or j > m, for in
this case |2| < 7;_,; furthermore from (7) it follows thcmtjg Ifi@)| < 12"
Hence, if 2R, then |f(z)—f.(2)| |2f, (&) < /2" 4120t = 12

This can be written in the form: (1lbt Yj )y Fu(R)] < 1202
Thus, by (8), we obtain dist[f(R (/,,|< 1/3” - aynd by (1),
dist [f(R,), 0] < 1/2"%

Since f(Qm) Z%L.gnf(Rn):
Aist[f(Qm), 0] < 1/2™*, This proves the theorem.

II. It is easy to see, that the domains of indetermination of single-
valued and finitely multiple-valued analytic functions are, at their iso-
lated singular points, single points or the whole plane. This is not ftrue
for the infinitely multiple-valued functions.

THROREM 2. If p is an isolated singular point of the infinitely multiple-
valued analytic function f(2), then the domain of indetermination of f(2) at p
is a point or & closed domain (different, or not, from the whole plane).

Proof. Let { = F(z) be such a function and p == (. It iy posgiblo to
assume that the function F(2) is of the form F(2) = floge, whoeve f(w) is
single-valued and regular in the half-plane mm < Jogl/m whore m iy
an integer.

Let XK, be a circle |2| < 1/n whithout the point 0, whore w = m,
m--1, ... The function F(2) is regular in every K,. The function w == logz
‘maps those domains onto the half-planes P, = [ {rew < log1/n}. The

w

Wo have

from the above inequality it follows that

funetion f(w) maps every of these half-planes onto domaing ¢,,.

(9 Gpyy C Gy for every m =m
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and
bt -
(10) =N G,.
n=m

Let us congider the sequence of functions f,(w) = flw— (log1/n—
—logl/m)), where % > m. All of those functions are regular in the same
half-plane Py, and they map this half-plane onto the domains G,,.

Case 1. There is an integer n, = m such that @"o is different from
the whole plane. Hence, by (9), it follows that {f,(z)} is a normal family
of analytic functions, and therefore it contains a subsequenee {fuy,(2)}
which ig uniformly convergent in P,, to an analytic funetion. This function
maps Py, onto a domain @. Because of the uniform convergence of { For, (3}
we have dist[@G, @, ] — 0 as k — oo, Hence, by (10), dist[F, Dx(0)] = 0,
and finally @ = Dx(0).

Cage 2. Every @, is the whole plane. Then, by (10), Dp(0) is also
the whole plane.

Thus, the theorem is proved.

We now define an analytic function whose domain of indetermina-
tion iy different both from the single point and from the whole plane.

Exavprm. Consider the function F(z) = ¢'°€2 gnd its singular
point p = 0. The function ¢ = ¢!°8* maps the half-planes rew < logl/n
onto the constant ring

(11) e < L] < 6.

Hence Dp(0) is the closure of this ring.

TuEOREM 3. Bvery closed domain D in the plane is a domain of inde-
termination of an (infinitely multiple-valued) analytic fmwtw'ns at one of
its isolated singular points.

Proof. It iy easy to see that the function (¢ —e ™) maps the ring
(11) onto a simply connected domain. There is a conformal mapping ¢
which maps that domain onto a domain which is dense in D. Therefore,
the closed domain D is the domain of indetermination at the point 0
of the function

q [(eiloglogz_

g—ﬂ.‘/Z)Z] .

III. TreoREM 4. If the analytic function f(2) (single-valued or not)
W8 univalent in a neighbourhood of its singular point p, then every domain
of indetermination Dy(p, L) is the boundary of a certain plane domain.

Proof. Let f(2) be univalent in the open circle K the centre of which
i8 p. Let L be a path to p. Let e L be an element having its centre in K
and such that if ¢'« L and ¢’ comes after ¢ in L then the centre of ¢’ is in K.
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Let Uz be the set of all the centres of elements e of this kind.
Finally, let Rz be a component of the Riemann surface of f(z) over
regular points in K such that ¢C Ry, and let ¥V be the set of all values
of f(z) in the domain Uy. Since f(2) is univalent in K, there is a homeo-
morphism which is induced by f(z) and which maps E; onto V.

Let us note that

(12) Dy(p,

To prove this it is sufflclent to remark tha.f lim f(z,) eFr(Vy) as
#, — p. This is true since the limit p’ of the points 2, of the Riemann sur-
face corresponding to the points 2, lies in the boundary of E;, and the
homeomorphism., which is induced by f(2) and maps Ry, onto V;, at the
same time maps the sequence {z,} into a sequence whose limit points
lie in Fr(Vyz).

Let Hy be a component of B2
E* denotes the whole plane. We have Fr(H?—
and therefore

(13)

L)C Fr(Vy).

—Dy(p, L) such that V5 C Hy, where
Dy(p, L) C Dy (p, L)

Fr(Hz) C Dy(p, L).
Finally, we shall show that
Dy(p,

To prove this, we notice that
Fr(H) = Hp~(B*—Hp).

(14) I)C Fr(Hy).

(15)

Hence, by (12), we have D;(p, L) C V. Therefore, by (15), we obtain
(14) since Dj(p, L)C B*—Hy and V. C H;. Thus, according to (13)
and (14), the theorem is proved. '

‘THEOREM 5. If the continuum K is the boundary of a plane domain H,
then there exist an analytic function I (generally o multiple-valued function),
a point p and a path L to point p such that Dy(p, L) = K.

Proof. First we define a function f(z) which has the following prop-
erties: 1° it is single-valued and regular in H— H, where B is cloged and
non-dense in H, 2° f(2) vanishes at all points of K and 3° f(z) is determined
at all points. '

Construction of the funection f. Let @,C H, n =0,1,..., be
a sequence of polygonal domains sneh that @, C Q.. and dist[Fr(@,,), K
-0 a8 n->oco. Let K, =Q,—Qn_;, for n=1,2,... and lot K, = @,.

We define a sequence of functions {f,(2)},n =0, 1, ... Let fy(2) ==1/2.

Let us consider the function of Pompein [2] w == P(2) which is
bounded, i.e. |P(2)| < M, and regular in the unit circle, and which maps
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one-to-one a certain domain in the unit circle containing 0 onto the circle
|w] < 1. We agsume that P(0) = 0. Hence there is a branch D (2) of the
inverse function P~*(w) which is regular in |W| < 1 and has the proper-
ties:

(16) ®0)=0 and |D(w

Suppose that the function fj(2)
have the following properties:

N<1 i jw <l

) for j < m—1 are already defined and

(amn fi(2) are regular in the exterior of @.
(18) Ifi(2)] < 1/2"*'  in the exterior of @,
(19) @) —fi1 ()l <12 in Q.

According to the theorem of Runge there exists a rational function
W..(2) having the following properties:

(20) if #e @, then |W,(2)| < A4,, where A, is the maximum of |® (w)|
in the cirele |w| < 1/2",
(21) if 2¢Q, then Wy,(2) = O(—nfu_y(2))+ 8.(2), Where [8,(2)] < 9,

and [P(2+6,)—P(2)] <1/2""" if [¢] <1, and |W,(2)] <1 (by
(16) and (18) it is possible).

The rational function W,(z) approaches with the error 4,(2) the
function :

D(—nfusle) it
0 if
QTL)

—|— PW (2). We shall show that (17)-(19

2¢Qn,

Re Qn—l’

Bule) = {

which is regular in Q,Lulu(E2

Lot fu(2) = faal
) follows 1mmedla-tely from (21). (18
= st 22| = Lp( 0 — 0,0 Pt <

) hold
for j=mn. (17
21), a8 |fn(e)

1
<

1
= ZIPWa(e

) follows also from

7+ (19) holds too, for if ze @,,_,, then, by (20), we have |f,(2)
1
P T S oA onl
Thus, the sequence {fu(2)} i8 defined.
1
The geries 0 +- 2 PW,L (#) =

n=1

is true, for if ze @, then for j > n we have |PW7 (#)| < 1/27+, Let us con-

“‘fw—-l (z)‘

@) < —

lim fn(2) is convergent for all ze H. Thig
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sider the function f(z) = limf,(2). From (18) (if j = n) it follows that if
N—>0Q
kel 1

2K, then. |f(2)| < \fﬂ,<z)u+j£1 o1 PR < g e |f Wi (#)] 4
-f—?l;; < —21;—1—71'} Thus we conclude that if zye KX = Fr(H) then
lim f(2) = 0. On the other hand, F(2) does not vanish everywhere in
it

. . 1 '%01 1
the domain H, for if 2C @, then |f(2)| 2—2— 2 C[PW(e)] > o —

j=1] “

51
-—;‘1—27 > 0.

_The singularities of f, () It is closed and non-

) form. a set B, C K,,.
form. a closed set B = | B,

)

dense in K,,. Therefore, the singularities of f(z)

which is nondense in H. It is elear that K C K.

Let us now consider the function F(w) = f""'(w), which is univalent
(but generally multiple-valued). We shall show that the domain of inde-
termination of F(w) at point 0 is along a path L the continuum. K. To
prove this, let L be a path to point 0 sueh that D, (0, L) contains the
point p ¢ X, and such that the elements of that paths belong to H. Let I’
be another path of this kind which containg the point ¢e K. If ¢e L and
e ¢ L' are two elements such that e, ¢ C H—@,, then there is an are
which joing the two given values aece and a'ce’ in the exterior of @, and
which does not meet any singular point of '(w). Hence the paths L and
I’ ave equivalent and K C Dgr(0, L). On the other hand, Dz(0,.L)C K,
becauge the domain of indetermination of any univalent function is always
contained in the set of the singularities of the inverse function, and be-
cause in our case that et is Ko H.
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Solution of some boundary-value problems
by the method of F. Leja

by J. GORsKI (Krakéw)

Introduction. The method of extremal points of F. Leja has been
used. to solve some problems of the theory of harmonic and analytic
functions, for instance Dirichlet’'s problem and econformal mapping.
In this note the above-mentioned method will be applied to the solution
of the first boundary-value problem for the differential equation of a more
general type than the Laplace equation.

The first boundary-value problem for the equation Av—¢2v = 0.
Let Dy, be a domain in the 3-dimeusional Euklidean space containing
the point iu infinity and let E be the boundary of D,. We suppose that
the capacity d(E) of the set ¥ is positive. Let 1 > 0 be a real parameter,
f(P) & continuous real function defined on ¥ and w,(P, Q) a function of
two points P and @, where P and @ are different in E: ¢

e~
-

P@Q denotes the distance between P and @ and ¢ > 0 is a constant. Let

(1) @3(P, Q) = exp {ED‘(PHJ‘(Q)]"

Q™ = {Qq, @1, ..., Q,} be a system of w1 arbitrary points of BE. We
denote by
(2) P(M)z{Pu;PJ:-'an}

guch a mystem of n--1 points of F that

3) w3 (Qsy Or) <

Ossi<legn

3 (Piy Pr) = O,
ogi<hgn
for every system Q™ e B. System (2) will be called the n-th extremal system
of points of the set F connected with function (1).
It is known [1] that there exists a limit of the sequence v
limo ) = v, (B),  v(H) >0

N—>00

2/n(n--1)

(4)
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