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sider the function f(z) = limf,(2). From (18) (if j = n) it follows that if
N—>0Q
kel 1

2K, then. |f(2)| < \fﬂ,<z)u+j£1 o1 PR < g e |f Wi (#)] 4
-f—?l;; < —21;—1—71'} Thus we conclude that if zye KX = Fr(H) then
lim f(2) = 0. On the other hand, F(2) does not vanish everywhere in
it

. . 1 '%01 1
the domain H, for if 2C @, then |f(2)| 2—2— 2 C[PW(e)] > o —

j=1] “

51
-—;‘1—27 > 0.

_The singularities of f, () It is closed and non-

) form. a set B, C K,,.
form. a closed set B = | B,

)

dense in K,,. Therefore, the singularities of f(z)

which is nondense in H. It is elear that K C K.

Let us now consider the function F(w) = f""'(w), which is univalent
(but generally multiple-valued). We shall show that the domain of inde-
termination of F(w) at point 0 is along a path L the continuum. K. To
prove this, let L be a path to point 0 sueh that D, (0, L) contains the
point p ¢ X, and such that the elements of that paths belong to H. Let I’
be another path of this kind which containg the point ¢e K. If ¢e L and
e ¢ L' are two elements such that e, ¢ C H—@,, then there is an are
which joing the two given values aece and a'ce’ in the exterior of @, and
which does not meet any singular point of '(w). Hence the paths L and
I’ ave equivalent and K C Dgr(0, L). On the other hand, Dz(0,.L)C K,
becauge the domain of indetermination of any univalent function is always
contained in the set of the singularities of the inverse function, and be-
cause in our case that et is Ko H.
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Solution of some boundary-value problems
by the method of F. Leja

by J. GORsKI (Krakéw)

Introduction. The method of extremal points of F. Leja has been
used. to solve some problems of the theory of harmonic and analytic
functions, for instance Dirichlet’'s problem and econformal mapping.
In this note the above-mentioned method will be applied to the solution
of the first boundary-value problem for the differential equation of a more
general type than the Laplace equation.

The first boundary-value problem for the equation Av—¢2v = 0.
Let Dy, be a domain in the 3-dimeusional Euklidean space containing
the point iu infinity and let E be the boundary of D,. We suppose that
the capacity d(E) of the set ¥ is positive. Let 1 > 0 be a real parameter,
f(P) & continuous real function defined on ¥ and w,(P, Q) a function of
two points P and @, where P and @ are different in E: ¢

e~
-

P@Q denotes the distance between P and @ and ¢ > 0 is a constant. Let

(1) @3(P, Q) = exp {ED‘(PHJ‘(Q)]"

Q™ = {Qq, @1, ..., Q,} be a system of w1 arbitrary points of BE. We
denote by
(2) P(M)z{Pu;PJ:-'an}

guch a mystem of n--1 points of F that

3) w3 (Qsy Or) <

Ossi<legn

3 (Piy Pr) = O,
ogi<hgn
for every system Q™ e B. System (2) will be called the n-th extremal system
of points of the set F connected with function (1).
It is known [1] that there exists a limit of the sequence v
limo ) = v, (B),  v(H) >0

N—>00

2/n(n--1)

(4)
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called the span of the set H. From (4), (3) and (1) follows the existence of
the limit of the sequence

2 ' 2 o FiF
w D) [F(Po)+S(Pr)]— Py BB,

0t < kel

O'M(P (n)) =

i<k

and the inequality limo,; = 0; > —oco. In fact, let m be the lower bound

MO
of the function f(P) on B and let R™ = {R,, By, ..., R,} be such a sys-
tem. of n-1 points of E that

1 . 1
vtran BB oz, o, i
Then
2

Ona (P(")) > GM(R("’) > omA— e 1 1 .
n(n+1) 0<iTen R, R,

It is known [2] that

2 v 1 1
- when % -> oo,
”("”’"I)Kfi'@ R.R,  4(B)

We supposed that d(#) > 0, and therefore o) > 2mi—1 Ja(H) > —oo.

It is obvious that o, < 2MA where M = supf(P).
. PeE

We denote by 4 a Borelian set. Let tna(A4) be a funetion of a set 4
defined by the following formula;
0 if 4 does not contain any point of the system (2),
HMna (A) = k
n+1

. if A containg & points of the system (2).

We have 0 < p,,(4) < 1. Bach of the functions tna(4) gives a certain
distribution of the wnit mass on the set ¥ defined by the extrernal system
(2). The sequence {u,:(4)} is a uniformly bounded sequence of non-neg-
ative funetions. Let u,(4) = u,; be the limit of a copvergent subsequence
chosen from {u,,(4)}. Using a similar proof to that used in tho paper
[3] we can prove the formula k

) o =24 [ 1@du— [ [ %,—g— Ay

—oPQ

= sl.lp[Zfo(Q)dr—— fj—e—j)z?—— drdv:],

icm

Boundary-value problems 251
where v denotes an arbitrary distribution of the unit mass on E.

Let H; be the kernel of a mass corresponding to the distribution u,.
We denote by u,(P) the function

e
P

Q
(6) u(P) = [ g A E)

defined for PeFH.
TuEOREM 1. The function (6) 48 constant on the set E, except

or a set of capacity 0 contained in H,. We denote this constant by ¢,(*). On B
. P Y

s Uy (P) = ¢;.

The proof of theorem 1 is similar to that given in [3]. The constant
¢, 18 equal to the upper bound of function (6) in E,.

Let D, be a domain whose boundary is the set H,. It is eagy to prove
that B, — F as 4 — 0 (c¢f. [3]). We suppose that every point of the bound-
ary F is regular for Dirichlet’s problem.

TuHEOREM 2. The function
—~cPQ

n
1 re 1. 1 Pt
(() ’DA(P) = —k—f—ﬁ(—g— d[ua(: -th;",—igl ﬁ:— fO”' PEE;_)

satisfies outside the set B, the differential equation
(8) Av,—o02v, = 0.

The function v,(P) is continuous in D;+E, and v,(P) = f(P)+c;/A for
PeH,.

Proof. If we take the derivatives of funetion (7) it is obvious that
equation (8) is satisfied outside F,;. For PycE,; we have (gee (1)) v;(P,)
= f(Py)+e¢,/A. Since function (7) is lower semi-continuous, we have

1 e Fe
9) lim = f
PPy A
Pel)

. .

= —-.
g% TP+
On the other hand (see [5], p.69), we have

—cPQ —cPQ

— e — 1 re
]J'm—-J——«md >h'm—f——-—-d .
(10) PPy A PQ #a = Py AJ  PQ e
Pell; PeD;
But
—cPQ
e ¢ ¢
m = [ ———dpy = f(Py)+ —.
(1) =3 J g =0+
ey

(1) At every regular point PyeEy we have uy(Pg) = ¢; (of. [5]).
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From (9), (10) and (11) follows
. [
lim_v,(P) = f(Po)+ —
P>Pyeliy A
TueoREM 3. There exists only one function, u,, which satisfies for-
mula (5).
Proof. Conversely, assume that there exist two functions, u, and
03 5= 1y, which satisfy (5). Then
-G

0 = 22 [ £1Q) s — o) — [ [ o T — dosdos ).

Denoting by v; the difference o;— «; we obtain

0= 2f[—ﬂf(Q)+fc—;%Q—dm]drH- ff%tdndn-

But
P >¢ for Qe
_zf<_Q>+f—~—dm{/ : vel
'PQ =0y for Q € _E;_,
hence

f [“U(QH‘ fi_ﬁcgidm]dn

= OZT‘(E“E”)—l_c’-Tl(Eﬂ-E#Ea)"]‘GJ.TA(EU”E”EG) = G;,T(E) = 0.
Therefore
—cPQ

(4
0 2 ffTQ_‘dT‘d”'
It is known [4] that

/]

THREOREM 4. .Let B be the common boundary of two domains D and D,
Suppo:se that B is o Liapounoff surface and f(P) satisfies the Lipsohitz
condition. Then v,(P) = f(P)4-c;/2 on B for a sufficiently small value
of > 0. )

Proof. Denote by w,(P) the followin, i

. E ! g function: w,(P) == the so-
lution of Dirichlet’s problem, for the domain D with the boundan; value

F(P)+¢,/4 if PeD and w,(P) = the same solution for t o s
PeD,, (w;(o0) = 0). ‘ : or the domain D, if

g—cPQ

PQ

drdv, = 0;

: ©
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If B and f(P) satisty the above-mentioned conditions the function
w,(P) can be expressed for a sufficiently small value of 2 > 0 as the New-
tonian potential of a simple layer (see [6]). Then w,(P)is a superharmonic
function in the whole space and w;(P) = f(P)+c,/A for PeE. We have
{12) %(P) = f(P)+efh PeE,
and v;(P) = f(P)+c,/A for Pek,. Sinee v,(P) is subharmonic outside (?)
B,, we have
(13) wy(P) = v (P) B,.

For PecB—E, we have w,(P) = f(P)+¢,/A; therefore from (12) and (13)
follows v,(P) = f(P)-+c;/A on B.
The parabolic equation Ve = ;. Let B be a curve
m=X(t)7 t5<0;a‘>;

where the function y(¢) satisfies the Lipschitz condition, and f(z,t) i8
a real, continuous function defined on E. Let (x(ii), ti), i=20,1,...,n,
be a system of n-+1 arbitrary points of E. Consider the following expres-
sion: :

for v;(c0) =0

outside

2 X
On(toy ooy n) = W"‘“—l—) {o<¢<k<n lf(%(ti)y tﬂi)“‘f(%(tk), tk)]_
~ exp | — [x () — £ (BT — tel }
tgi<hsn 21/71: lti'_‘tlc‘

A system of n+1 points (x(%),%), ¢ = 0,1, ..., n, of B will be called an
exiremal system of points of E if

On(Byy Ty ey Bn) = On(try oo oy tn)

for every other system of points (x(t),%), ¢ =0,1,...,n, of E.

Lot »,(4) be a function of a Borelian set 4 which gives the distri-
bution of the unit mass defined by the extreme system. of points {x &), &}
and let » = »(4) be the limit of a convergent subsequence chosen from
{vu(4)}. As before (cf. [3]), it can easily be proved that

exp { — [ (8)— () 1*/4[t— i}
o(v) = fode ff P dvdy = o(7)

for every other distribution of the 1 mass on defined by 7 = =(4).

(?) because Av; = c*vy > 0.
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We have o(») > —oco. In fach, let # = ak/(n--1), @) = y(#),
k=0,1,...,n; then o,(%, ..., %) = on(ty, ..., &) and therefore

g P exp {— g () — 1 (m) /A lt— ]}
>2 | fdn— didy > —oco.
= off ! ofof 2Vr|i—q| = e

puy SR 2O A=l ),

THEOREM 5. Let I, be the kernel of a mass corresponding to the distri-
bution v. The function

(14) w(@, ) = [Ule, t; x(n), n)dv—f(w,1), (2,0l

18 constant almost everywhere on H,.
Proof. The function (14) is lower semicontinuous on &,. In fact
let (@, %) be a point on H,. If(8)

_{U(“"o: ts 2(n), n)dy < oo

we can choose a radius 7 of a circle K with the cenfre in (w,, t,) 5o small
thait

fU(mtn b x(n), "7)621’ <& e>0.

KE

On the other hand, we have

JU@ s, ev= [ + [>

BE-EK BEK n-gK

Therefore
lim  w(w,1) > f U(mo’toiZ("?):"])d"‘“f(moyto)“(“}m to)—e.
(@,0)~(zp.%) E-EK

Since ¢ > 0 is arbitrarily small, it follows that

B w(o, 1) > (@, b).
(=)~ (@o,%)

Let
fu(w, Ndv = o,.

We cannot have wu(w,t) <o,—e for every point (m,%) e B, because
it would contradict the definition of ¢,. Therefore there exists such a point
(0, to) e B, that u(z,t) > ¢,—e. Hence %(@, 1) is semicontinnous on JH,

(*} In the case of [T (mp, fo; % (1), n)dv = oo we have lim L T (@ tos x(m), n)dv
_ r-+0 B—-BK

= oo and therefore limu (s, ) = 0o as (z, 1) — (w9, tg).
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and we have %(z,t) > ¢,—¢ in a neighbourhood O (x,, %) of (2, %,). We
shall prove that the inequality «(z, t) > ¢, holds almost everywhere on H.
In fact, suppose that there exists a subset F C F of positive measure such
that w(2,?) < ¢,—2¢ on F. Let v = v(4) be a distribution of mass de-
fined by the formula

T= =7 on 0(%, %), t(H) =’V(0(%,t¢,)),

=0 outside O(zy, )+ F,
4 =EfEfU(x(t),t;x(m,ﬂ)MT < oo,
and let 0 < h < 1. We have
o(v+ht)—a(») = 2k [fdv—h2A—2h [ [ Udvdc
> —Zr’A—Zh[(cr—s) rn(;(wu, t)+ (6,— 2¢) ()]
= h[—hA+2ev(F)] > 0

for a sufficiently small value of h > 0. But this contradicts the inequa
lity o(v) > o(»+ hr). Since s> 0 is arbitrarily small, we have u(xz,) >¢,
almost everywhere on E. We cannot have u(xz, t) > ¢, at a point P on E,
because it follows from the lower semicontinuity of u(,#) that that ine-
quality holds in a neighbourhood of P and {udy would be > ¢,. Therefore

=¢, almost everywhere on E,,
(15) u(w, t){
>¢, on H.
The function »(4) possesses almost everywhere a finite derivative
4 - 4
lim vl('A ) . In the remaining points the degree of infinity of V_(Z_) ag |[4] -0
141—0

cannot be > — } because in the opposite case we should have [Udy = oo,
which contradicts (15).
Let

t
(16) v(@,1) = [ Uls, t; 1(n), n)dv.

Suppose that the point (v,1), —co <@ < o0, te {0, a) is outside the set
H,; then

t
" likx)
V(@5 8) = de’
H
)’ t+at
, oU . Ulw, t+ At; % (n), n)dv
v;(w,t)=f7,?d”—‘111£10f (2, A’t ) ;
] i
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but

t4-48
h’mf
Al—»ﬁf

Therefore we have
THROREM 6. The function (16) satisfies outside the
ton vy = v, and v(x, 0) = 0, v(foo, ) = 0.

Ula, t+ At; x(n), n)dv
At -

set I, the equa-

. . !
The function rf Udv is the sum of two functions: v(x, 1) = [U(»,¢;
~ & a 0
x(n), n)dv and (z,?) = th(m, t; x(n), n)dv, where o(x,1) satisties out-

side F, the equation v, = v; and o(w, ) the equation oy, == —v,. For
@ - 0o 0T & — —oo the functions v(x, t) and (», t) tend to 0.
Suppose now that f(z, ) =0 and F is a segment = = u,, te {0, a).
In that cage the function if Udy is equal to a constant ¢, everywhere on K.
I .

In fact, we have

1 av
f Udy € —= f ——=—=x  overywhere
I 2Vn P l/lt-—nI
and
1 dv
[ var = | )
i 2V 5 Vit—n]
But the function
1 f‘ dv
2Vm 4 Vii—n|

%s subharmonic outside B, and from the maximum, principle results the
inequality

dv

. 1
(17) —— J e &0, over '@
pY ) V|t~—?ﬂ < ¢, verywhere,

From (15) and (17) it follows that

E{U(w, t; x(n), 17) dv = ¢, almost everywhere on K.
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