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Remarks on some functional equations

by M. Kuvozma (Krakéw)

§ 1. In my preceding paper [4] I dealt with the funetional equation
1) p(e)+olf(@)] = F(x),
where ¢(x) denotes the required funetion and f(x) and F(z) are known
functions. I proved the following theorem:

If the function f(z) is continuous and sirictly increasing in an interval:
{a, by, and f(x) > @ in (a, b), f(a) = a, F(b) = b, then equation (1) posses-
ses at most one solution thai is continuous in the interval (a, b>.

Let us denote by f"(x) the n-th iteration of the function fla):
flo)=u, o) =fIf"(2)].

The above theorem may Dbe generalized as follows:

TurorREM L. If the function f(x) is continuwous and strictly increasing
in an interval (a, by, and f(z) > » in (a, b), f(b) = b, then equation (1)
possesses in the interval (a, b) at most one solution @ (@), fulfilling the con-
dition

@) L (" (@)~ [/" (@)]} = 0

Jor evory welE, f(7)), where T is o number from the interval (@, D).

Proof. Let ¢ (») and @,(z) be two solutions of equation (1) fulfilling
condition (2). The difference of these solutions

o) = gy () — gy (@)
also fulfils condition (2) and satisties the homogeneons equation

(8) e(@)+ e [f(w)] = 0.
Let us take an arbitrary we(7,f (%)) and let us write
¢ = p(w).

According to (3) we have (by induction):

elf"(@)] = (—=1)"e,
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whenee o (@)1 o[ (@)] = 2(—1)"e.
Sinee o(z) fulfils condition (2), we must have ¢ = 0. Then for every
ze<Z, f(z)) o(®) = 0, and thus

Pu() = () for we <~'T77f(5')) .

Singce (see [4]) every solution of equation (1) is unambiguounsly determined
by its values from the interval <z, f(%)), we have

p1(2) = g@a(2) for we(a,d),

which was to be proved.

Every function ¢(z) continuous in the interval (a,d) fulfils condi-
tion (2)(*). Therefore the theorem quoted at the beginning of this paper
is a simple consequence of theorem I.

Condition (2) may seem a little artificial. Theorem I enables us, how-
ever, to prove some more natural conditions for the solutions of equa-
tion (1) to be unique. We shall prove the following:

THEOREM II. Let @, be a number from the interval (a, b) and let us
put:

mngfn (2)
If the function f(x) fulfils the hypotheses of theorem I, and the function
F(x) fulfils the condition
) 1m {7 () —F (@)} =0,

N—»00

n=0,1,2,...

then equation (1) possesses at most one solution monotonic in the interval
(b—m,b), where u is an arbitrary positive mumber.

Proof. We have by relation (1):
F(,“'n)—F(wnH) = ‘P(mn)‘f“9’(-’”n+1)'—‘73(mn+1)—Q’(‘mnw) = @ (®n) — @ (Tn12) s
‘whence by (4):

(8) Hm { () — p(#n2)} = 0.

N=>00

Since limw, = b, there exists an index N such that aye(b—y, b).

N—>00
Let us take an arbitrary ze{wy, @y,,) and let p(x) be a solution of equa-
tion (1) that is monotonic in (b—1n, b). The functions f™(x) are increasing,
like f(»). Hence we have

M (@p) < (@) gfn(mN-H)y

(*) Under the assumptions of theorem I the sequence /™ (z) is (for every as(a, b))
increasing and converges to b.

©
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i e.
(6)
Similarly

(M

The points oy.n, ¥nyniz, (@), (@) (n = 0,1,2,...) belong to the
interval (b—7, b). Then from (6) and (7) follows either

(8) 17)(%'.2\74-”) < ‘Prfn(”)] < ‘PD%-H(Q})] < W(mN+n+2)y
or

(9) P@x1n) Z [ (2)] 2 @[/ (@)] = @(@y4nya).
From. (8) and (9) follows

_ lp[f* (@)1=l @)]] < 9@y n) — @ (@xsnia)],
whence we have by (5):

(10) m{w[f”“(m)]—w[f“(w)]} =0.

Tyin <fM@) <oy,

TN 4140 <fn+1 (w) < LN 24 -

Since » has been an arbitrary point of the interval {Tn, 2Zy.q), Telation
(10) holds for every we(wy, @y41). From theorem I it follows that there
may exist at most one such solution.

Every function convex in the interval (a , b) is monotonic in an in-
terval (b—#, b). Thus we have

CorOLLARY. Under the hypotheses of theorem IT equation (1) possesses
at most one solution convex in the interval (a , ).

§ 2. Now we shall consider a special case:
fla) = a+1.

Then. f*(#) = #+n, b = -+ oo, and a can be any number —oo < a < +oo.
In [2] and [3] the following theorem has been proved (2):
If the function v(w) is concave in anm interval (a, oo) and Sulfils the
condition
lim {y(n+1)—p(n)} =0,
Ny OO
then there exists exactly one (up to an additive constant) convex function g(x)
satisfying in the interval (a, oo) the equation

g(@+1)—g(@) = y(z).
Now we shall prove the following:

(*) This theorem has in fact been proved for a = 0, but the proof is esgentially
the same when « is an arbitrary finite number. When ¢ = — oo we must apply the
theorem for intervals (a, co) and pass to the limit with a — — oo.
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TumoreM ITI. If the fumction F(m) is convex and fulfils the conds-
tion

(11) lim (P (n-+1)—F (n)} = 0,
then the equation
(12) p(@)+ple+1) = F(2)

possesses exactly one monotonic solution in (&, b). This solution is given
by the formula:

(13) (@) = g(ho) — g (3 (@+1),
where g(w) is the convex solution of the equation
gla41)—g(@) = — F(20).
Proof. The function ¢(x), given by formula (13), is decreasing,

g(4(z+1)) —g(42)

for the funection is increasing as a differences quotient

of a convex function. The function ¢(x) satisfies also equation (12):
p@)+g(@+1) = g(3o)—g(H@+1)+g(3(z+1)—g(32+1)
= g(3®)—g(3u-+1) = F(a).

From theorem. II it follows that it is the unique solution of this kind.
The function ¢ (z) given by formula (13) is evidently also the unique
convex golution of equation (12) if such a one exists. But it does mot
necessarily exist, as is illustrated by the following example:
Let us define the function g () in the interval {0, co) as follows:
1 1
g'(n) =g = =0,1,2,...
¢ (z) linear in the intervals {(n,n-+3%> and {(n+ %, n+1), continuous
) in <0, oo).
The function ¢’ (z) thus defined fulfils the following conditions:
g (@) >0 for

"' @-+1)—g" ()< 0

ze (0, 00),
for (0, o0),
(14} ¢"(3(@-+1))—g" (42) has not a constant sign in (0, o).

Further we put
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The function g(w) is convex and decreasing in (0, o), for ¢’ (x) > 0 and

g'(x) <0 in (0, cc). We shall show that
(15) jlm{g n+1)—g(n)} = 0.
We have
n+1 00
g(n-+1)— f g (wdu >

g'(n) = — [g"wat.

For wein, n-+1) is ¢ () < 1/2”. Then

;o 31 1

fg’ 257 = gn1
Hence

Z g(n+l)—g(n) >

27!-1’

whence follows relation (15).

Thus if we put F(x) R g(z+1)—g(x), then we have by (15)

lim F(n) =

>0
and since the function ¥(x) is monotonic (as a d1fferences quotient of
a convex functlon)

lim P () = 0.
Z—r00

Moreover, the function F(x) is concave, for F''(z) = g' (x4+1)—g" () < 0.
Then the only monotonic solution of the equation ‘

p(@)+ p(@+1) = —F($x)

iy
@) = g(}o)—g(H(@+1),
which is not convex, since, according to (14), ¢

(o) = }{g"” (do)—
—¢"(}e-+1))} changes the sign. ? = tlote)

§ 3. Theovem IIT is a generalization of the following tﬁeorem of A.
Mayer ([5]):

A convex function P(x) = 0 for x> 0, satisfying fo'r x> 0 the equa-
tion
(16) D(w-+1) = 1/ad(2) -
has to be of the form '
(17) Ola) = __f_@’f”__

Vo r(;(m+1 )’

where I'(w) is the Buler function.
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In fact, if a convex function &(x) > 0 satisfies equation (16), then
the funection ¢(x) 2111@(9:) is monotonice (for sufficiently large z), and
satisfies the equation

(@) +p@+l) = —nz.
Thus is has to be of the form
o) = g(30)—g(b(z+1),
where g(x) is the convex solution of the equation
g(@+1)—g (@) = ne+n2.

Hence (see [2], [3])
— InJ'(2)+ $on2+0,

and @ — 1 %m
z
y Ve Tl+)’
which proves the theorem of A. Mayer.

§ 4. J. Anastassiadis [1] introduces the notion of funetions semi-
monotonic o and semiconvex w. We call a function y(x) semiinoreasing
o (o — a fixed positive number) in an interval I if for every x such that
xel and o+ wel

W(m‘l' Q)) > ’(/)(.')9) .

Analogically we call a function y(») semidecreasing o if

pa+o) <p@), zel, ztoel.
We call a function y(x) semiconver o if
ple+ o) < dy@)+y@+20)], e, g-+wel, ©+2wel.

J. Anastassiadis proves that the only function semidecreasing 1
or semiconvex 1, positive for z > 0, and satisfying equation (16) is the
function @ («) given by formula (17).

Tt can be proved that if the funetion F(z) iy monotonic (in the ordi-
nary sense) and fulfils condition (11), then equation (12) possesses at
most one solution semimomotonic 1 or semiconvex 1 in (a,b). Below
we shall show a more general theorem.

The notion of functions semimonotonic « and semiconvex « may
be generalized in the following manner:

Let f(x) be a positive function, f() >« in an interval I. We call
a function zp(w) semiinereasing (f} in I if

p[f(@)] = »(

x) for a,f(@)el.
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We call & function y(x) semidecreasing {f} in I if
pIf(®)] < 9 %, fw)el

We call a function v(x) semiconvex {f} in I it

vIf(@)] < $p (@) + ()
We shall prove the following
THEOREM I'_V. If the function f(m) fulfils the hypotheses of theorem
I, m?d‘ the function F(x) is monotonic (in the ordimary sense) and fulfils
conflztzoaz .(,4) then equation (1) possesses at most ome solution semimono-
towic {f} in the interval (b—n, b), where 1 is an arbitrary positive: number.
??.roof. It follows from. the monotonity of the function F (#) and from
condition (4) that

(18)

z) for

for @, f(2), f*(z) el

llm{F[f" )] —F " (z)]} = 0

for every we(a, b). Let o(x) be an arbitrary solution of equation (1) that
is semimonotonic {f} in (b—=,d). From (18) it follows that

(19) hm{(ﬁ[f” @)1= [ (@)} =

for every we(a, b). Let us fix an arbitrary s e(a, b). There exists an index N

?;wh t}ll)?t ¥ (@) e(b—n, b) for m > N. Since p(2) is semimonotonic {f} in

M, ‘
wU" @)1=l @] < lpl@)]—p[f**@)]  for  n>N,

whence, according to (19),

(20) Tim {p [f" (@)] ¢ [f**' (@)} = 0.

Since # has been arbitrarily fixed, relation (20) holds for every we(a, b).
Then, on aceount of theorem I, equation (1) possesses at most one solution
semimenotonic {f} in (b—y, b)

We shall prove also

TueoREM V. Under the hypotheses of theorem IV equation (1) possesses
at most one solution semiconves {f} in (a, b).

Proof. Let ¢(z) be a solution of equation (1) semiconvex {f} in
(@, b). From the hypotheses of the theorem follows that relation (19)
holds for every we(a, b). Let us fix an arbitrary ze(a, b). We shall show
that the sequence ¢[f"(z)] is monotonic for sufficiently large n. Let us
suppose that there exists an index N such that

(21) e[ @)] > o[ (@)]
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Sinee the funetion ¢{w) is semiconvex {f}
(22) 207 (@)] < o[ @)1+ (@)].
Subtracting 2p[f¥*+ (s)] from both sides of inequality (22) we obtain

< oY (@)1= 20 (@) ]+ o [F7H (@)

whence, by (21)
0 < o[ @)1=l (0)] < ol @)1= ()],

Pl (@ ]><p[fN”( ).

By induction we obtain
Pl (@] > @] for n=N,

which proves that the sequence ¢[f"(x)] is inereasing for large n. On the
other hand, if relation (21) does not hold for any N, it means that

p[f" )] < ol

for every n», which proves that the sequence cp[f”‘ (@)] is decreasing.
Thus we have shown that the sequence ¢[f"(x)] is momotonic for
large n. Hence it follows that the inequality

e[ @] — e " @) < lo [ @)]1— e[ (e

holds for sufficiently large m, and hence, by (19), follows relatio_n (20).
And since » has been arbitrary, relation (20) holds for every wxe(a,b).
Thus from theorem I it follows that there may exist at most one solution
of equation (1) semiconvex {f} in (a, b), which was to be proved.
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Remarque sur la note de A. B. Turowicz sur
[} By . . .
Papproximation des racines de nombres positifs

Dar Z. MixorAsska (Krakow)

Dans la note de A. B. Turowicz ,,Sur Papproximation des racines
de nombres positifs” () on trouve la formule
(n—=1)a "' + (n+1) A,

(n+1)af+(n—1)4 '

(1) By = x>0,

pour lapproximation de la racine V4 d’un nombre positif 4 > 0. A. B.
Turowiez démontre que la suite (1) est monotone et converge
vers V4. Tl donne aussi une évaluation de la rapidité de la convergence

|y —VA| - 0.
Nous allons montrer dans cette note que 1’1dée essentielle wutilisée
par A. B. Turowicz pour établir la relation

(2) sign (v, — 4.,,) = sign(z,—V4) powr k =0,1,2,...,
et la convergence
(3) o> VA

peut facilement étre appliquée au cas plus général de la suite {a}, définie
par les formules suivantes:
Ly B_y)— (@ — A
(4) 0 = 6-1 {9 (@r1) ‘PSblc1 )}’ @ >0,
¥ (@pnr) + @ (@1 —4)
ol les fonetions w(w) et p(u) sont continues et satisfont aux relations sui-
vantes:

(5) p(@)Fpa"—4) >0 pour =0,

(6) p{®)— ?—v«l/-w— p@"—A4)>0 pour " #£A4,
m—l/A

(1) o(u) = —p(—u), @(u) est monotone.

(*) Ce volume p. 265-269.
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