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Differential inequalities with unbounded operators
in Banach spaces

by W. MLAE (Krakéw)

The present paper attempts to give an abstract formulation of
theorems concerning differential inequalities. We apply the Hille-Yosida
theory of semi-groups of linear bounded operators (see for instance [71).
More precisely, we deal with positivity-preserving semi-groups. Such
gemi-groups have been considered in connection with temporally homo-
geneous stochastic processes of Markoff type. For details in this field we
refer to [3], [4], [6], [6], [17]. It must be remarked that infinitesimal
generators of positivity-preserving semi-groups in concrete functional
spaces of continuous or summable functions are in a certain sense second
order elliptic operators possessing the maximum property (see [4], [15]
and [18]). Thus the theory developed in the present paper combined
with the results of the papers mentioned above gives immediately an oper-
ator-theoretical treatment of parabolic differential inequalities. Our
theorems make it possible to consider countable systems of differential
inequalities in the space (). It is sufficient in this case to combine our
theorems with the theory of integration of Kolmogoroff equations of
Markoff processes with a countable number of possible states (see [8]).
However, a more detailed study in that field may be conducted by the
application of methods similar to that used in [6] and [12].

In our investigations we make use of some theorems similar to the
generalized mean value theorem. (see [2], [11] and [16]). The relation
of inequality is defined by means of a positive cone (see [7]).

For the terminology and some simple properties of semi-groups
of operators we refer to [7].

We discuss linear differential inequalities in sections 2, 3 and 4.
Section 5 concerns some simple almost linear differential inequalities.

1. Let F be a Banach space. The norm of zeF is denoted by |z|-
By £&,7,... we denote continuous and linear functionals over H. The
totality of such functionals, i. e. the adjoint space of ¥ is denoted by E*.
The real-valued functions of the real variable ¢t are denoted by small
Greek letters ¢, , o, ... etc. The operator A is linear if it is additive and
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homogeneous. The domain of 4 is denoted by D[A]. We deal only with
operators whose domain and range are included in the same space K.
S is a cone if the following conditions hold:
(x) if zeS and yeS then w4yeS;
(B) if 220 and 2§ then Avel;
(y) 8 is closed.
We define the relation “<" as follows:

//\

(8) y Ey—aes.

Let S* be the set of all functionals &¢F* such that £z > 0 for each
2e8. The lemma below follows immediately from the well known results
of Mazur [10]:

LeMMA 1. Suppose that for every £eS* the inequality &
Then zeS.

It is thus seen that S may be identified with the set of z-es satisfying
&x > 0 with suitable &.

A linear operator is called positive if Bx > 0 for weS~D[B]. We
say that a certain condition holds nearly everywhere [19] if it holds every-
where except an at most denumerable set of points. Tor the sake of
clarity we use in the following only the right-hand upper Dini derivative
D, . However, the properties discussed remain true if D, is replaced by
any other Dini derivative.

We now establish some notational conventions. The symbol w-lim
denotes a weak limit, s-lim a strong one. Let x(f) be defined in a neigh-
borhood of t,. We define

>0 holds.

D*w(l) = w-lim @ (Bt h) — o (ty)
+&bo) =

s h !
tot-h)— (8
D w(ty) = 8- lim Bl h) =l 7)1 2 () ,
i hs0 4
1y — 51 D=0
B0 h

The right-hand weak (strong) partial differentiation is denoted by 97 [ds
(0%./0s). The bilateral strong derlvatlve is denoted by 9°/ds. The Bouhner

integral of 2(t) is shortly written as fm
b
P) [z(z)dr
a

It follows from Zygmund’s lemma that if ¢(¢), ¢(I) are continuous
and satisfy nearly everywhere the inequality D, g(¢) < (), then

ydz; the Petitis integral is denoted
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P(r)—
the inequality <p (1) <

(1) < f tp(r) dv. For p(t) absolutely continuous and y(¢) summable,
p(t) satisfied almost everywhere implies that
(1) —¢(7,) < f w(r)dr. It is thus seer that the lemma below follows

from lemma 1 Eombined with the definition of the Pettis integral (see
for ingtanee [7]).

LevmMA 2. Suppose that (1) and y(t)
ditions:

satisfy one of the following con-

(1) The function m(t) is weakly continuous and for every EeS* there ewists
an at most denumerable set Z,C (0, a) such that D, Ex(t) < &y (1) for
te(0, a)—Zs. The function y(t) is weakly continuous and Peltis inte-
grable.

d
(2) For every £e8* the fwr_wtion Ex (1) is absolutely comtinuous and E £ (t)

< &y(t) for te(0, a)—Z;, mesZ; = 0. The function y(t) 4s Pettis
integrable.
Then

fy(s

2. Suppose that we are given a one-parameter family 4 (f) (0 < < a).
of linear operators. Let the family {U(t, s)} of linear bounded operators
posgess the following properties:

(4) U(t,s) is positive for 0 < s <t

(3) @(ty) — o ( (0 <ty < 1y).

Ut
(5) The strong derivative ‘h—;;—s)ﬁ (s < 1) exists for weD[A] and
8
EJLa(:’ﬂ”-”_ — U5, 5)A(s)a.

(6) TFor every zeF the function u(s) =
in s and U(t,t) = L.
TraEOREM 1. Let U (¢, ) satisfy (4), (B) and (6). Suppose that x(t), y ()
are strongly continuous in (0, a). We assume that x(t)e D[A(1)] (0 <t < a).
Let the inequality D% x(t) < A()»()+y(t) be satisfied nearly everywhere
in (0, a). Then

U(t, s)x is strongly continuous

i
(7 2(t) < U, s)w(s)—l—f T, 0)y(x)de  for O<s<<i.

Proof. It follows from (4) that for a fixed ¢ the inequality

(8) Uty s)Diw(s) < U, s)A(s)@(s)+ Ut 8)y(s)
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holds nearly everywhere in (0, ¢). Using (6) we conclude that U(t, s)x(s)
is continuous in s. Suppose that D% x(s,) exists. It follows from the
formula

1
—;;[U(t, 8o+ h)w(so+h)—TU (t, 8o)®(8,)]

"“[U(t 8o+ h)a(80) —

+U(, 30+h)_@‘

and from (6) that

(61 U, 's)m(s)) (a: U (¢, 8)a(sy)
@ | =|t—0"
ds s=3 os

U (ty 80)@(8) 1+ U (2, 8o+ h) D7, @(s0) +

) + U, so)Diw(so)-
8=8

By (5), (8) and (9) we get

0. (U s)als))
10 —_——=
(10) = Ut $)y(5)
nearly everywhere in (0,?). Using (10) and lemma 2 we get

(11) Uty 8o (ss) < Ut 81) (s +f U(t, 1)y (v)dr
for 8, < s, <t Let s =s, and s, - ¢ (7) now follows from (11).

Some obvious consequences of theorem 1 must now be mentioned.

TeEoREM 2. Let U(t,s) satisfy (4), (B) and (6). Let x;(2), v:(t) (¢
=1, 2) be strongly continuous in (0, a). Let the inequalities
Diay(t) < t)ml( )+ y.(8),
Diay(t) = A(B)wy(8)+v,(8)
be satisfied mearly everywhere in (0, a). Then
¢
@1 (1) =@ (8) < U (L, 8)[@1(8)— 2a(s)]+ [ Uty 9 [y2(2)—ya(m)ldr (s ).
8

Moreover, if #,(0) < @,(0) and y,(t) < yo(t) then 2,(8) < @, (2).

. Assumptions (4), (5) and (6) hold for U(t, s) = T(t—s) where {T(z)}
i a positivity-preserving semi-group of class (Cp): A(t) = A4 and 4 is
the infinitesimal generator of {7T(z)}. Other conditions which ensure
the existence of U(t, s) ‘sa.tisfying (5) and (6) for time-dependent A4 (t)
are given in [9], [14]. In order to ensure (4) one must assume that the
semi-groups generated by A(f) are positive.
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3. Suppose now that A is the infinitesimal generator of positivity-
preserving semi-group {T'()} of eclass (0, A). We shall prove the follo-
wing theorem:

THEOREM 3. Let x(t) be weakly continuous in (0, a), and let the ine-
quality .

(12) DYa(t) < Az(t)

be satisfied mearly everywhere in (0, a). Then x(t) < T(t—s)w(s) for s < 1.
Proof. Define x,(t) as follows: 2;(f) = AR (4, 4)x(t). Suppose that

D¥ax(t,) exists and let £<E*. We have
Eml(ta“’h;)b“wl(to) = EAR(A, 4) m(to+h’1—w(to) .

But x(f,— h)—u(1,) /b tends weakly to DY x(f,) and EAR(A, A)eE*. Hence
D¥x,(t,) = AR(A, A) DY x(t,). The resolvent R(1,A) is positive. We thus
infer by (12) that

(13) ' DY, (1) < Amy(2)
- nearly everywhere and consequently
(14) T(E—s) DY wy(s)—T(1—s) A (s) < 6

nearly everywhere in (0, ?). Observe now that

T2

(158) [T(zs)—T(z)]AR(A, A)® ~——f T()AAR(A, A)xdz, @B
(0 < 7y < 7,). This implies that
(16) [[T(z)—T(z))1AR(4, A)2]| < lmp/llT(T NIAR(A, A 1106I [Ta— Tl

where sup is taken over an arbitrary compact interval of (0, a) which

includes 7, and 7,. Thus, the operator-valued function T'(t)AR(Z, 4)

is continuous in ¢ (¢ > 0) in the uniform operator topology. We will prove

VT (t—s) w4 (3)
ds

is equal to the difference appearing in the left-hand member of (14).

Let £eE* and let D% x(t) exist at t =1,. We have

now that the derivative exists nearly everywhere and

: T (t—ty—R) @ o+ h) —T (8 — o) @2 (4)
h
T(t— to— h)—T (t—1,) i+ b

= —¢ — — 0 gy () - ET (b—ty— h) — h_wl(_t-;).
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The first member in the right-hand sum tends to —EAT (t—1,)m,(t,).
The second member is equal to

(A7) ET(t—ty—h)AR(A, 4)—2 10

TR0, 4) 20T o)

= E[T(t—~1ty—h)
@y (ty - 1) — @, (4)
h .

Suppose that h, —0-+. The second member of the right-hand sum of
(17) tends to T'(t—1,) DY m,(4). It follows from the weak convergence of
@ (b -+ b)) — 2 (%) (to‘|"h) 2 (%)

by T T T
By (16) we thus infer that

+ ET (t—1,)

that there is an M > 0 such that < M.

(18) E[T(t—t0~hn)—T(t—-to)]ZR(l,A)w(t—o-t;%ﬂz < MNh,

with suitable N. From the previous part of the proof and from (18) it

w
follows that M(ia—())
s

). Hence the inequality
0% (T (t—s) @ (s))
0s

exists and is equal to the left-hand diffe-

rence of (14
<0

holds nearly everywhere in (0, ). Applying (16) one easily proves that

T(t—s)m(s) is weakly continuous in s. We thus infer that T (t— s,)@,(s,)

S T({—s1)mi(8y) for sy < 8. Bub s-lima,(s) = w(s). It follows from the
A—>00

last inequality that T'(t—s,)@(s,) < T(t—s;)@(s,). Now introduce 7 =
= t—s,. This Jeads to the following inequality: T'(7)w(s,) < T (v) T (s,—
—8,)2(8;). Thus

(19)  AR(A, A)a(sy) = A fwe""l’(r dr

0
<A[ e ()T (s,—8))w(s,) dr
0

= AR(1, 4)T (35~ 81)m(sy).
On the other hand, s-}im/lR(/l,A)w = & for z<E. The agsertion of our

theorem follows from (19).
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Remark 1. Suppose that w-limz(¢) = #(0) < 6. From (16) and from
the assertion of theorem 3 it follows that w,(f) < T(t—s)x,(s), and
w-lim T'(t—s)x;(s) = T(8)x,(0) < 0. Hence a(t) < 0.
8504

Remark 2. Suppose that (12) is replaced by the following inequality:
Da(t) < Ao(t)+y()
We assume that y(f) is weakly continuous and 7T'(t—s)y(s) is supposed

to be Pettis integrable in s. Then the assertion of theorem 3 may be re-

placed by
!

o(t) < T(t—s)a(s)+(P) [ T(t—1)y(x)dv

8

(s<t).

We have the following generalization of a theorem of Reuter [13]:

THEOREM 4. Let A, and A, be infinitesimal generators of positivity-
preserving semi-groups. T (t), Th(f) of class (0 A). Suppose that D[A,]
=D[A,]=D and A, <A,. Then T.(t) < Ty(t) for t >0.

Proof. Define #,(u) = T,(u)s and let zeS~D. It follows from
the inequality 4, < 4, that

y(u) = A4, T (w)a < 4, Ty (u)s = A,2,(u).
By theorem 3 we get
BT ()T (s) < e To ()T, (s)2

for 0 < 7 < oo, § > 0. We thus obtain
(20) T,(7)AR(A, 4,)& < Ty(v) AR (A, A))w.
The inequality T,(z) < T,(r) is now obtained from the following rela-
tions: s-lim AR (A, 4,)o = o for zeE, S~D = 8.

200

Tt should be remarked that for semi-groups of class (0, 4) the condi-
tion
(21) < B, 4,) <E@, 4,)

implies that 4, < 4,. If R(4, 4,) and R(2, 4,) satisfy (21), then the
inequality 7T (u) < T,(u) follows from the Hille inversion formula:

Ti(u)w=s—1jm{ﬁR(ﬁ,Ai)} @, i=1,2.
n—soo | U w

4. The aim of this section is to discuss the case where a differential
inequality holds almost everywhere. In what follows we assume that the
function (f) possesses the strong derivative »'(¢) almost everywhere ().

(') The strong differentiability is not more restrictive than the weak one:
see [1], th. 4.
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Tor the sake of clarity it is supposed that z(¢) can be expressed a8 the

_indefinited Bochner integral of «'(f), i.e. #(7s)— f ' (r)dv for

7y, T2¢(0, a). Observe that x(f) becomes now strongly absolutely conti-
nuous.

TuBOREM 5. Let A be an infinitesimal generator of a positivity-pre-
serving semi-group {T(u)} of class (0, A). Suppose that the inequality

(22) o' () < Ax(t)
holds almost everywhere in (0, a). Then

(23) o(t) K T(t—s)w(s) for 0<s<t.
Proof. Just as in the proof of theorem 3 we introduce the function
@,(1) = AR(4, A)a(t). It follows from (16) that the function T(¢—8)m,(s)
is strongly absolutely continuous in s in an arbitrary compact interval
of (0, ). Using arguments similar to that used in the proof of theorem 3

we derive from (22) the inequality

PT(E—s)m(s) 6
0s =

This inequality holds almost everywhere and T'(t—s)a(s) is absolutely
continuous in s. By lemma 2 we thus obtain

T(t—8,)w3(82) < T(t—s)®a(81) (81 < 8).

In order to prove (23) we can now apply a procedure used in the proof
of theorem 3.

We will prove the following theorem:

THEOREM 6. Suppose that A is an infinitesimal generator of a positi-
vity-preserving semi-group {T(w)} of class (0, A). Let the function ®(t) be
weakly absolutely cominuous and Bochner integrable in any subinterval

of (0, a). Assume thatf 7)dreD[A] for w1, T5¢(0, a). Let An(t) be Bochner

integrable in any sub'mterval of (0, a). It is supposed that for &eS* the ine-
quality
d

(24) c—Ea(t) <

7 EAx(t)

-holds for te (0, a)—Z;, mesZ; = 0.
Then ®(t) satisfies (23).
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Proof. Define xp(t) = lf x(t)dv. The integration of (24) shows that

t+h
(25) o((t+h)—o(t) <& Aw(r)dr:  EeS%
i
The operator A is closed. It follows from our assumptions and from
th. 3.7.12 of [7] that ’
t+h
(26) £f Av(z)dr = EAz(Y).
i

a .
On the other hand, o — & (t) = x(t+h)—x(t) for almost all . Using (25)

and (26) we infer that the inequality
é 2p(t) < Amp(t
7 h( < Az ()

holds almost everywhere. Obviously a,(t) satisfies the regularity assum-
ptions needed in theorem 5. Hence a;(t) << T'(t—s)an(s) and conse-
quently

@7 %m,,@ < %ET(t—s)w;.(s).

The function z(t) is weakly continuous. We infer therefore that —:lh—fmh(t)

— &u(t), %51’@—3)%(3) - ET(t—s)x(s). The assertion of the theorem

follows now from (27).

Remark 3. Suppose that (f) is merely weakly continuous. Let
Ax(f) be weakly continuous. Then (23) holds if (24) is replaced by the
following condition: for each &¢8* the inequality D, tx(t) < £EAx(t) holds
nearly everywhere in (0, a).

5. The purpose of this section is to discuss almost linear differential
inequalities. For the sake of simplicity we restrict ourselves to the case
of time-independent A. Throughout our investigations we assume
that A is an infinitesimal generator of a positivity-preserving semi-group
{T(u)} of class (Cy). We say that f(t, ) defined in <0, @)X E increases
in » if the condition 2, < x, implies that f(i,x,) <f(f, ®5). In what
follows we suppose that f(¢, #) is bounded, say |f(t, ) < M.

TumoreM 7. Let the function () be strongly continuous and let the
inequality

(28) D2a(t) < As()+flt, o(t)
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be satisfied nearly everywhere in (0, ). Suppose that the transformation F
defined by

¢
(29) a(t) = [ T(1—)f(v, 2(7))de

0
is completely continuous when considered in the space 0z(0, a>. Let .the
function f(t, ) inerease tn x. Then there exists a solution y(t) of the equation

12

(30) y(t) = TWa(0)+ [ T(E—v)f(e, y(n)de
[}

such that

(81) alt)y <ylt) for 10, ad.

Proof. (28) implies that
4
(32) z(t) < T(t)m(O)—l—fT(t—r)f(-c, »(7)) dv.
0
Suppose that M = sup|f] and N = sup |T'(¢)|. Let V be defined as follows:
<0,a

2(")eV = 20540, a), x(t) <#(t) in €0, ay and |2(1)| < N|z(0)|+M.

V is closed and bounded in COx(0, ¢). Using (32) and the monotonic'%ty
of f(t,®) onc easily verifics that F(V)C V. By Schauder’s fixed point
theorem we infer that there is a solution ¥ (t) of (30) and y(-)¢ V. Therefore
Co(t) <y(), q.e d o '
Using the method of successive approximations one easily proves
the following theorem:
THEOREM 8. Let f(t, ) be continuous and let it satisfy the condition

If(ty @) —f(Ey #5)] < K |@g— .

Suppose that f(t, z) increases in x. Let x(t) be strongly continu?us and let
@ (1) satisfy (28). Then x(t) < y(t), where y(t) is the unique solution of (30).
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