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On the form of solutions of some functional equations

by M. Kuczma (Krakéw)

In my previous paper- [3] I have proved the following theorem:
If the function f(x) is continuous and siricily increasing in an interval
(a,b>, and f(z) >« in (a,b), f(b) = b, then the functional equation

@ p(o)+olf(@)] = F(2)

possesses in the interval (a, b) at most one solution @(x), fulfilling for every
we(a, b) the condition

@ nﬁi{w[f"(w)]—tptf"“(w)]} =0.(Y

In the first section of the present paper I prove that if this unique
solution exists, it has to be of the form (12). In the second section I prove
(under suitable conditions) that if equation (1) has a semimonotonic {f}
solution (?) then it has to be also of the form (12). If moreover the function
F(#) is semiconvex {f}, then such a solution necessarily exists.

In §3 I consider the more general equation

®) olf(2)] = G(o, p()).
I prove that under suitable assumptions equation (3) possesses exactly
one solution whieh is, continuous at the point # = b such that

(4) flx) = =.

The uniqueness of such solution of equation (3) has been proved
in [1]. There also has been stated the problem of finding when such solu-
tion really exists. Thus theorem IV of the present paper gives an answer
to the above question.

§1. At first we shall prove the following:

Levua I. Let us suppose that the function f(w) is continuous and
strictly increasing in an interval (a, b> and that f(z) > in (a, by, f(b) = b.

(*) Throughout this paper the symbol f*(z) denotes the n-th iteration of the
funetion f(x).

() The notion of functions semimonotonic {j} and semiconvex {f} has been
introduced in [3]. For the definition see also §2 below.
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If a function .tp(w) satisfies equation (1) and for every we(a,b) fulfils the
condition

(5) lim p[f*(@)] = 0,
then
(6) _ p@) = D (=1 F[f ()]

v=0

Proof. Equation (1) can be written in the form
(" ’ p(2) = F(2)—o[f()]-
Putting in relation (7) f(#)(®) in the place of » we obtain
(8) pIf(@)] = PIf(@)]—g[f@)].
We have by (8) and (7)
(9) p(#) = F(a)—F[f @)+ (#)].

Putting in relation (8) f(x) in the place of » we obtain

(10) p[f(@)] = FIfA@)]—elf(@)].
‘We have by (10) and (9)

p(@) = F(2)—F[f(@)]+F (@) - [f@)].

By induction one can obtain the relation

n
(11) p@) = D (—1VFIf @]+ (—1" o[/ @)].
»=0
Passing to the limit in relation (11) as n — oo we obtain, according to (5),
relation (6), which was to be proved.
TrnoreM I. Let the function f(x) fulfil the hypotheses of the lemma 1.
If a function o () satisfies equation (1) and for every we(a, b) fulfils condi-
tion (2), then

0o

(12) p(@) = {F @)~ 3 (—(PIr @]1-FIF @)])]-

y=0

Proof. Let us put

(13) p(@) Lolf(@)]—¢(@), a<a,b).

(*) From the hypotheses of the lemma it follows that for xe(a, b) also f(x)e(a, ).
(See [2]. Compare also the footnote on page 57.)
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The function w(z) satisfies the functional equation

(14) p(@)+y[f(2)] = Ff(2)]—F (@),
and moreover, by (2), fulfils the condition
(15) in;wﬁ“(wn =0.

Hence, on account of lemma I

(16) p(@) = > (—INFIT @)—FIF (@)

»=0

Now we have by (1) and (13)

o@+olf@] =Fla), o@—plf@)]=—v),

whence ‘
p(@) = F[F(@)—v(2)].

Hence, according to (16), we obtain formula (12).

Remark. In my paper [2] I have proved that equation (1) with
the function f(x) fulfilling the hypotheses of lemma I has at most one
solution ¢(2) that is continuous in the interval (a, b) and that this solu-
tion is given (provided it exists) by the formula

(1) (@) = FF D)+ D (—{FS (@)1 F@)}-

p==0

Since every function g(z) continuous at the point # =b fulfils condi-
tion (2)(*), formula (17) can be derived from formula (12).

§2. In [3] I have introduced the notion of funetions semimono-
tonic {f} and semiconvex {f}. We call a function ¢(2) semiincreasing {f}
or semidecreasing {f} in (a, b) if for every we(a, D) '

plf@)] Zel@) or olf(2)] <el),

respectively. Similarly, we call a function ¢(x) semiconvex {f} or semt-
concave {f} in (a, b) it for every ze(a,Dd)

Plf@)] < Ho@ +olf@]}  or  olf@)] > How@ +ol @),

respectively.

(*) Under the assumptions of lemma I the sequence f™(») is for every ze(a, b)
increasing and lim f™(z) = b (see [2])-
N—r00
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In [3] I have proved that under some conditions equation (1) posses-
ses at most one solution which is semimonotonic {f} in (a,d). Now I
shall prove the following:

THEOREM II. Leét the function f(x) fulfil the hypotheses of lemma I,
and let the function F(x) fulfil for every wme(a,b) the condition

(18) lim {F{f"+'()]— F[f*(=)]} = 0.
N—00
Then, if there ewists a function ¢(x), semimonotonic {f} n (a, b) and satis-
fying equation (1), it has to be of the form (12).
Proof. Let p(x) be a solution of equation (1) that is semimonotonic

{f} in (a, b). The function y(x), defined by relation (13), satisties equation
(14). The function

(19) G(@) £ P[f(2)]~ F(a)
fulfils, according to (18), for every we(a, b) the relation
(20) lim @[f"(x)] = 0.

‘We have by (14)
(21) GIf" ()] = pIf* @1+ p [+ (@)].

The sequence u[f"(¢)] has terms with a constant sign, because the
function ¢ (@) is semimonotonic {f}. Thus from (20) and (21) follows rela-
tion (15), and the proof runs further as the proof of theorem I.

We shall also prove

TrrEOREM IIL. If the hypotheses of theorem II are fulfilled and, more-
over, the function F(v) is semiconvex {f} (semiconcave {f}) in (a,b), then
equation (1) possesses exactly one solution that is semidecreasing {f} (semi-
increasing {f}) in (a, b).

Proof. Let us suppose that the function F'(x) is semiconvex {f} in
(@, b) (in the case of the function F(x) being semiconcave {f} the proof

runs similarly). For the proof of the theorem we need only to show that
the series

(22) D (—W{FLF+ (@)= FIf ()

converges for every we(a, b) and that the function ¢ (2), defined by formula
(12), is semidecreasing {f} in (a, b). o

To begin with, we remark that the function F(z) is semiconvex {f}
if and only if the function F[f(x)]— F (x) is semiincreasing {f}. Indeed,
the function ¥ (x) is semiconvex {f} if the inequality
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(23) Flf(2)] < HF @) +F [ (@)]}

holds for every ze(a, b). Simjlarly,b the function F[f()]—F () is semi-
increasing {f} if the inequality :

(24) Flf(@)]—F (o) < P[P (2)] - Ff(2)]

: i iti 24) are equivalent.

holds for every we(a, b). Both inequalities (23) and ( !
Thus from the h§potheses of the theorem it follows that the function
F[f(z)]— F(2) is semiincreasing {f} in (@, b). Congequently the sequence

P+ (@)]— P (@)]

is monotonic and by (18) converges to zero for every xe(a,b). Thus
geries (22) converges since it is alternating.
Further we have by (16)

18

¢[f(w)]—<P(w)b=1P(w) =§(—1)"{FW+1(w)]—FLf(W)]} = M (—1)ef (@]

2

[
)

y=0
where the function G (x) is defined by formula (19). The sequence Gf(x)]

is (for every ze(a, b)) increasing and converges to zero, and thus all its
terms are non-pogitive. Consequently for ze(a, b)

G(@) < p@) < G@)—GLf(@)] <0.
Hence

plf(@)]—e@) <0, ie olf(@)]<g@),

which means that the function ¢ () is semidecreasing {f} in (a, b). This
completes the proof.

§ 3. In the present section we shall consider the functional equation

(3) plf(2)] = &z, p(a)).

In the sequel we shall assume that ' ' .
(i) The funetion f(z) is continuous and strietly increasing in an
interval (a, by, where a and b are two consecutive roots of equation (4),
and f(z) >2 in (a,b). ' '
(ii) The function G(w,y) is continuous and has the contmuous. deri-
vative 8G[dy # 0 in a region Q, normal with respect to the z-axis.
We shall denote by 2, the z-section of the get Q:
2, = E{(.’l),y)e.Q},

v
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and by I, the set of values assumed by the function G(x, y) for yeQ,.
We shall also assume

(fi) @y #0, I, = Q) for ze(a, b).

From hypothesis (ii) follows the existence of the unique function
H(»,y), inverse to the function G(»,y) with respect to the variable y.
The funection H(w,y) is defined and continuous in a rogion £':

Q= E{f’lerx}r

=)

normal with respect to the x-axis, and has the continuous derivative
0H[oy # 0 in &',

In [1] the following theorem has been proved:

If hypotheses (i)-(iil) are fulfilled, then for every x,e(a,b) and for
every functon @(x) which is continuous in the interval (@,,f(z,)> and
Sfulfils the conditions:

@(w) ega: fO’V‘ w‘<$07f(wo)>7 @ [f(mo)] = G(mm [ (a’o))’

there exists a function (@), defined and continuous in the interval (a,Db),
satisfying equation (3) and such that '

@ e {@oy f(w0) -

Let numbers ¢ and d be roots of the equations

¢(@) = g(@) for

¢=G(a,¢) and d=@G(0,d

respectively, and let us suppose that the points (a, ¢) and (b, d) respecti-
vely belong to the region Q. We shall define two functional sequences
{g2(@)} and {h,(2)}:

Go(®) = ¢, gup () = G(f‘l(m), gn[f—l(ﬁ)])a
ho('”) = d! hn+1(‘”) = H(wy hn[f(.m)])y

Lmma II. Let us suppose that hypotheses (i)-(iii) are fulfilled. If the
sequence g, (@) (h,(x)) converges for © = m,, then it converges also for o = f(w,)
and = f(x,) and the fumction g(x) = lim g,(z) (h(z) = Lim h,(2)) sa-

N=—>00 OO
tisfies equation (3) for all values & for which & is defined.ﬂ

The proof of this lemma is to be found in [1].

‘We shall now prove the following :

TerorEM IV. Let us suppose that hypotheses (1)-(iii) are fulfilled. If

0q
25 &
(25) ‘ ay(b,d)b>1,

zela, b).
ve(a,bd.
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then equation (3) possesses emactly one solution @(x) that is continuous in
the interval (a, b) and fulfils the condition @(b) = d. This solution is given
by the formula

9(@) = lim hy(@).
N—»00
Similarly, if

<1,

lﬁ(a‘sc)

dy

then equation (3) possesses evactly one solution @(x) that is continuous in
the interval {a,b) and fulfils the condition ¢(a) = c. This solution is given
by the formula

¢ () =1{J;n;g»(w)-

Proof. We shall prove only the first part of the theorem, the proof
of the second being quite similar.

The uniqueness of the solution continuous at the point # = b has
been proved (under condition (25)) in [1]. Thus, according to lemms II,
it is enough to prove that the sequence h,(#) converges in the whole inter-
val (a,b) to a continuous funection.

From condition (25) it follows that

oH
&@(b’ d)’<1.

Then there exist positive numbers ¢, # and ¢ <1 such that the rectan-
gle

R: je—bi<y, y—di<e
is contained together with its closure B in Q~’ and that
(26) |0H [0y < &

for (z, y)eR. The function H(x, y), being continuous in L', is uniformly
continuous in . Thus one can find #,e(b—7, b) such that

(27) |H(@,y)—Hb,yl <1—=Ne/2 for wmelm,bd, [y—d <ef2.
Hence
(28) H@z,y)—dl <ef2 for wmelmy,d), [|y—dl <e/2.


GUEST


62 M. Kuczma
In fact, we have by (26) and (27)

|H(@,y)—a| = |H(z, y)—H(), d)| < |H(,y)—H(b,y)|+|H(b,y)--
—HO,d)|< (1—e/24-H, (0,440 (y— )| ly— d} < (1—D)e/2+D5/2 = ¢/2.

Following (28) one can easily prove by induction that

(29) |ho(w)—d| < £/2 for welwy, by, n=0,1,2,...
Now we put
(@) E By (@) —Rn (@), n=0,1,2,...
We sghall show that
(30) Ira(®)] < 0"e/2  for w@el®o, by, n=0,1,2,...

For n = 0 we have by (29)
[ro (@) < &/2.
Let us suppose that (30) holds for a certain » = 0. We have
Fas1(8) = Pny2(@) = huy1 (2) = H (0, hupa[f(2)]) —H (2, half())
= Hy (2, h[f(#)]+ 0 (@)7a[f (@)]) ra [f ()]

For wel®,, b) also f(x)e{®,, b>. Thus we have by (29) and the inductive
hypothesis R

1 [f (@) 1+ 0 (@) 7, [f (@) — 8] < [ [f(@)]— ]+ Iru[f(2)]] < &,
whence, according to (26), we have for we{w,, b)>:
\Hy (2, b [ (@)1 4 O @) [f(@)])] < 9
and
a1 (@) < Bl [F(@)]].

Hence, it follows by induction that inequality (30) holds for we{w,, b,
n=0,1,2,...
0
Consequently the series ) r,(») uniformly converges in the interval

n=0
{&y, b). Thus also the sequence h,(») uniformly converges in the interval
(o, by and its limit

h(@) = lim h,(2)
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is & continuous function in the interval <{,, b>. Moreover, by (29), the
graphs of the functions h, (x) pass for xe{z,, b> through the rectangle R,
and so

h(z)eQr for welzm, bD.

On account of lemma II the sequence h, (x) converges in the whole
interval (a, b) and the function k() satisfies equation (3). Hence it follows
that there exists a function @(s), continuous in the interval (a, b), satis-
fying equation (3) and such that

(31) p@) = k(@) for zedmy, fl@y)).

Since every solution of equation (3) is in the interval (a, b) uniquely de-
termined by its values from the interval (=, f(z)), from (31) follows
p(@) =h{z) for ze(a,d),

which proves that the function h(z) is continuous in (@, b>. Moreover,
from the evident relations

ho(b) =@, n=0,1,2,...
follows
h(b) = d.
This completes the proof.
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