

COLLOQUIUM MATHEMATICUM

VOL. VII

1960

FASC. 2

ON THE INTERSECTIONS OF TRANSFORMS OF LINEAR SETS

 $\mathbf{B}\mathbf{Y}$

ROY O. DAVIES (LEICESTER), J. M. MARSTRAND (BRISTOL)
AND S. J. TAYLOR (BIRMINGHAM)

Introduction. A translation of the Euclidean line is a transformation $\varphi = \varphi_a$ of the form $\varphi_a(x) \equiv x+a$, where a is a real number; a linear substitution is a transformation φ of the form $\varphi(x) \equiv ax+b$, where a and b are real numbers and $a \neq 0$.

We consider the following properties of a linear set E:

(S_n) There exists a constant $\eta_n > 0$ such that for every set of n points $\{a_1, \ldots, a_n\}$ of diameter $< \eta_n$, the set $\prod_{s=1}^n \varphi_{a_s}(E)$ is non-empty.

 (S_{∞}) For every positive integer n, the set E has property (S_n) .

(S) There exists a constant $\eta > 0$ such that for every countable set of points $\{a_1, a_2, \ldots\}$ of diameter $< \eta$, the set $\prod_{s=1}^{\infty} \varphi_{a_s}(E)$ is non-empty.

(T) For every countable set of points $\{a_1, a_2, \ldots\}$, the set $\prod_{s=1}^{\infty} \varphi_{a_s}(E)$ is non-empty.

 (T_∞^*) For every finite set of linear substitutions $\varphi_1,\dots,\varphi_n,$ the set $\prod_{s=1}^n\varphi_s(E)$ is non-empty.

(T*) For every countable set of linear substitutions $\varphi_1, \varphi_2, \ldots$, the set $\prod_{i=1}^n \varphi_i(E)$ is non-empty.

Properties (S_n) , (S) and (T) were defined by Marczewski $(^1)$, who posed the following problems:

Does there exist a perfect set of measure zero having property (S₃)?

Does there exist an F_a set of measure zero having property (T)?

Recently Erdös and Kakutani [1] solved the first problem, and in fact constructed a bounded perfect set of measure zero having property (S_{∞}) .

^{(1) [3]; [4];} this paper also referes to related earlier results.

Sets of Lebesgue measure zero can be classified by means of other measure functions. If h(x) is an increasing real function and $h(0) = \lim_{x\to 0} h(x) = 0$ we call it a measure function, and we say that a set E is of h-measure zero if for every $\varepsilon > 0$ there exists a decomposition $E = E^1 + E^2 + \dots$ such that $\sum_{i=1}^{\infty} h(\operatorname{diam} E^i) < \varepsilon$ (Hausdorff [2]). The Hausdorff dimension of E is the lower bound of values of α for which the Λ^a -measure of E is zero, where $\Lambda^a(x) = x^a$. The example of Erdős and Kakutani was of dimension one. We shall prove the existence, for every measure function h(x), of linear sets E_1 , E_2 , E_3 , E_4 , all of h-measure

 E_1 is an F_{σ} set having property (T*), E_2 is a closed set having property (T*),

 E_3 is a bounded F_a set having property (S), and

 E_{Λ} is a bounded closed set having property (S_{∞}) .

Take

zero, such that

$$h(x) = \begin{cases} -(\log x)^{-1}, & 0 \le x \le \frac{1}{2}, \\ (\log 2)^{-1}, & x \ge \frac{1}{2}. \end{cases}$$

Each set then has dimension zero, and a fortiori Lebesgue measure zero. Since property (T^*) implies property (T), the set E_1 gives a positive solution of Marczewski's second problem. Since a closed set has property (S_{∞}) only if the same is true of its perfect kernel (2), another solution of his first problem is provided by the perfect kernel of the set E_4 .

The sets E_1 , E_2 , E_3 are as simple as possible, in the sense that (i) the only closed set having property (T^*) (or even property (T)) is the whole line, (ii) no bounded set has property (T^*_{∞}) , and (iii) a closed set having property (S) necessarily contains an interval and therefore has positive Lebesgue measure.

As Marczewski [4] showed, it is not difficult to construct for every measure function h(x) a bounded G_{δ} set with property (S) and h-measure zero, and similarly one may construct a G_{δ} set with property (\mathbf{T}^*) and h-measure zero.

Our results generalize without difficulty to n-dimensional space.

Preliminaries. Let h(x) be any measure function. Choose a sequence $\delta_0, \delta_1, \ldots$ of positive numbers, such that

(1)
$$\delta_0=1, \quad \delta_{\nu}\leqslant \frac{1}{6}\delta_{\nu-1} \quad (\nu=1,2,\ldots),$$
 and

(2)
$$\lim_{r\to\infty} \left(\frac{6}{a\delta_{r-1}} + 1\right) h(a\delta_r) = 0 \quad \text{for every rational } a > 0.$$

To do this, enumerate the positive rationals as a_1, a_2, \ldots , and define δ_r by induction, taking it so small as to satisfy (1) and the conditions

(3)
$$\left(\frac{6}{a_i \delta_{\nu-1}} + 1\right) h(a_i \delta_{\nu}) < \frac{1}{\nu} (i = 1, 2, ..., \nu).$$

Since, by (3),

$$\left(\frac{6}{a_i\,\delta_{r-1}}+1\right)h(a_i\,\delta_r)<\varepsilon$$

provided $\nu \geqslant \max(i, \varepsilon^{-1})$, the sequence thus defined satisfies (2).

Let F_r ($v=1,2,\ldots$) be a fixed set consisting of closed intervals of length δ_r equally spaced out along the entire x-axis so that the distance between the end-points of adjacent intervals is $\frac{1}{6}\delta_{r-1}$. Define the closed sets $K_i = F_{2^{i-1}} \cdot F_{3,2^{i-1}} \cdot F_{5,2^{i-1}} \cdot \ldots$ ($i=1,2,\ldots$). Let ψ_1,ψ_2,\ldots be an enumeration of all substitutions $\psi(x) \equiv ax + b$ for which a,b are rational and $a \neq 0$.

Each of the sets E_1, \ldots, E_4 which we construct will be a subset of the set

(4)
$$\sum_{r=1}^{\infty} \sum_{i=1}^{\infty} \psi_r(K_i),$$

and we now show that they will be of h-measure zero by proving that the set (4) is of h-measure zero. It is enough to show that for any fixed r, i and any fixed interval I of length 1 the set $I \cdot \psi_r(K_i)$ is of h-measure zero. Now if $\psi_r(x) \equiv ax + b$, any set $\psi_r(F_r)$ consists of intervals of length $|a| \delta_r$ separated by gaps of length $\frac{1}{6} |a| \delta_{r-1}$. Hence the set $I \cdot \psi_r(F_r)$ consists of

$$m \leqslant \frac{6}{|a| \, \delta_{\nu-1}} + 1$$

intervals J_v^1, \ldots, J_v^m , say, each of length $\leq |a| \delta_v$. Since

$$\sum_{\mu=1}^{m} h(\operatorname{diam} J^{\mu}_{\nu}) \leqslant \left(\frac{6}{|a| \, \delta_{\nu-1}} + 1\right) h(|a| \, \delta_{\nu}) \to 0 \quad \text{as} \quad \nu \to \infty$$

by (2), and since for ν of the form $(2q-1)2^{i-1}$ we have $I\cdot \psi_r(K_i)\subset I\cdot \psi_r(F_r)$, our result follows.

The set $E_{\scriptscriptstyle 1}$. We shall show that the F_{σ} set

$$E_1 = \sum_{r=1}^{\infty} \sum_{i=1}^{\infty} \psi_r(K_i)$$

has property (T*).

⁽²⁾ For proof, see the remarks at the end of the paper.

and the same of th

Let then $\varphi_1, \varphi_2, \ldots$ be any countable set of linear substitutions, and for each positive integer s choose from among ψ_1, ψ_2, \ldots a substitution $\psi_{r(s)}$ such that $\chi_s = \varphi_s \psi_{r(s)}$ is of the form ax + b where $1 \leq a \leq 2$. We have

$$(5) \qquad \prod_{s=1}^{\infty} \varphi_{s}(E_{1}) \supset \prod_{s=1}^{\infty} \varphi_{s} \psi_{r(s)} \left(\sum_{i=1}^{\infty} K_{i} \right) = \prod_{s=1}^{\infty} \chi_{s} \left(\sum_{i=1}^{\infty} K_{i} \right)$$

$$\supset \prod_{s=1}^{\infty} \chi_{s}(K_{s}) = \left[\chi_{1}(F_{1}) \cdot \chi_{1}(F_{3}) \cdot \chi_{1}(F_{5}) \dots \right] \cdot \left[\chi_{2}(F_{2}) \cdot \chi_{2}(F_{6}) \dots \right] \dots$$

$$= \prod_{s=1}^{\infty} \lambda_{r}(F_{r}),$$

say, where $\lambda_{\mathbf{r}}(x) \equiv a_{\mathbf{r}}x + b_{\mathbf{r}}$ with $1 \leqslant a_{\mathbf{r}} \leqslant 2$.

Now a set $\lambda_{\nu-1}(F_{\nu-1})$ consists of closed intervals of length $\geqslant \delta_{\nu-1}$ and a set $\lambda_{\nu}(F_{\nu})$ consists of closed intervals of length $\leqslant 2\delta_{\nu} \leqslant \frac{1}{3}\delta_{\nu-1}$. (by (1)), separated by gaps of length $\leqslant \frac{1}{3}\delta_{\nu-1}$. There is therefore at least one complete interval of $\lambda_{\nu}(F_{\nu})$ in each interval of $\lambda_{\nu-1}(F_{\nu-1})$, whence the set $\prod_{\nu=1}^{\infty} \lambda_{\nu}(F_{\nu})$ is non-empty. By (5) the set $\prod_{s=1}^{\infty} \varphi_{i}(E_{1})$ is also non-empty and thus E_{1} has property (T^{*}) .

The set E_2 . For each $m \ (=1, 2, \ldots)$ choose closed intervals $I_m, \ I_m'$ such that

- (i) the set $\sum_{r=1}^{m} \psi_r(I_m)$ lies entirely at a distance $\geqslant m$ from the origin, and
- (ii) I'_m is of length $\geqslant 1$ and is contained in all intervals $\chi(I_m)$ for χ of the form ax+b where $1\leqslant a\leqslant 2$ and $0\leqslant b\leqslant 1$. We may for instance take as I_m, I'_m the respective intervals [k, 2k+2], [2k+1, 2k+2] if k is sufficiently large. We shall show that the set

$$E_2 = \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} \psi_r(K_r I_m),$$

which is closed by (i), has property (T_{∞}^*) .

Let then $\varphi_1, \ldots, \varphi_n$ be any finite set of linear substitutions and choose from among ψ_1, ψ_2, \ldots distinct substitutions $\psi_{r(1)}, \ldots, \psi_{r(n)}$ such that for each value of $s \ (=1,\ldots,n), \ \chi_s = \varphi_s \psi_{r(s)}$ is of the form ax+b where $1 \le a \le 2$ and $0 \le b \le 1$. If $R = \max[r(1),\ldots,r(n)]$, we have

(6)
$$\prod_{s=1}^{n} \varphi_{s}(E_{2}) \supset \prod_{s=1}^{n} \varphi_{s} \left\{ \sum_{r=1}^{R} \psi_{r}(K_{r} \cdot I_{R}) \right\} \supset \prod_{s=1}^{n} \varphi_{s} \psi_{r(s)}(K_{r(s)} \cdot I_{R})$$

$$= \prod_{s=1}^{n} \chi_{r}(K_{r(s)} \cdot I_{R}) \supset \prod_{r=1}^{\infty} \chi'_{r}(K_{r} \cdot I_{R}),$$

where we put $\chi'_r = \chi_s$ if there exists s such that r = r(s) and we put $\chi'_r(x) \equiv x$ otherwise. Now

(7)
$$\prod_{r=1}^{\infty} \chi_r'(K_r \cdot I_R) = \left\{ \prod_{r=1}^{\infty} \chi_r'(I_R) \right\} \cdot \left\{ \prod_{r=1}^{\infty} \chi_r'(K_r) \right\}$$
$$\supseteq I_R' \cdot \prod_{r=1}^{\infty} \chi_r'(K_r) = I_R' \cdot \prod_{\nu=1}^{\infty} \lambda_{\nu}(F_{\nu}),$$

say, where $\lambda_{\nu}(x) \equiv a_{\nu}x + b_{\nu}$ with $1 \leqslant a_{\nu} \leqslant 2$.

Since $\delta_1 \leqslant \frac{1}{6}$ (by (1)), and I_R' has length $\geqslant 1$, there is at least one complete interval of $\lambda_1(F_1)$ in I_R' , and at least one complete interval of $\lambda_r(F_r)$ in each interval of $\lambda_r(F_{r-1})$, whence the set $I_R' \cdot \prod_{r=1}^{\infty} \lambda_r(F_r)$ is non-empty. By (6) and (7) the set $\prod_{s=1}^{n} \varphi_s(E_2)$ is also non-empty, and thus E_2 has property (T_∞^*) .

The set E_3 . Let I denote a closed interval of length 2. We shall show that the bounded F_{σ} set

$$E_3 = \sum_{i=1}^{\infty} K_i \cdot I$$

has property (S), with constant $\eta = 1$.

Let then $\{a_1, a_2, ...\}$ be any countable set of points of diameter < 1. We have

$$(8) \qquad \qquad \prod_{s=1}^{\infty} \, \varphi_{a_s}(E_{\mathfrak{F}}) \supset \prod_{s=1}^{\infty} \, \varphi_{a_s}(K_s \cdot I) = \left\{ \prod_{s=1}^{\infty} \, \varphi_{a_s}(I) \right\} \cdot \left\{ \prod_{s=1}^{\infty} \, \varphi_{a_s}(K_s) \right\}.$$

Since $\prod_{s=1}^{\infty} \varphi_{a_s}(I)$ contains (as is easily seen) a closed interval of length $\geqslant 1$, the same argument as before shows that the set on the right of (8) is non-empty. By (8) the set $\prod_{s=1}^{\infty} \varphi_{a_s}(E_3)$ is also non-empty, and thus E_3 has property (S).

The set E_4 . It is enough for us to construct for each $n \ge 2$ a bounded closed set D_n with property (S_n) , since if we then place sets similar to D_2 , D_3 , D_4 , ... in the respective intervals $(0, \frac{1}{2})$, $(\frac{1}{2}, \frac{3}{4})$, $(\frac{3}{4}, \frac{7}{8})$, ... and add the point $\{1\}$, we obtain a bounded closed set E_4 having property (S_∞) . We shall show that if I is a closed interval of length 2, the bounded closed set

$$D_n = \sum_{i=1}^n K_i \cdot I$$

has property (S_n) , with constant $\eta_n = 1$.

Let then $\{a_1, \ldots, a_n\}$ be any set of n points of diameter < 1. We have

$$(9) \qquad \prod_{s=1}^{n} \varphi_{a_{s}}(D_{n}) \supset \prod_{s=1}^{n} \varphi_{a_{s}}(K_{s} \cdot I) = \{ \prod_{s=1}^{n} \varphi_{a_{s}}(I) \} \{ \prod_{s=1}^{n} \varphi_{a_{s}}(K_{s}) \}.$$

For the same reasons as before, the set on the right of (9) is non-empty, and D_n has property (S_n) .

Remarks. I. No countable set D has property (S_2) . For given any constant $\eta > 0$ there exists a real number a satisfying $0 < a < \eta$ and not equal to the distance between any two points of D, whence $\varphi_0(D)\varphi_a(D) = 0$.

II. If a set E has property (S_{∞}) then for every n there exists a constant $\eta'_n > 0$ such that for every set of n points $\{a_1, \ldots, a_n\}$ of diameter $< \eta'_n$, the set $\prod_{i=1}^n \varphi_{a_s}(E)$ has property (S_2) .

Proof. Let E have property (S_{∞}) . Then it has property (S_{2n}) , with constant η_{2n} , and we shall show that we may take $\eta'_n = \frac{1}{2}\eta_{2n}$. Let $\{a_1,\ldots,a_n\}$ be any set of n points of diameter $<\frac{1}{2}\eta_{2n}$, and $\{a,b\}$ any pair of points of diameter $<\frac{1}{2}\eta_{2n}$. Then diameter of the set $\{a+a_1,\ldots,a+a_n,b+a_1,\ldots,b+a_n\}$ is less than η_{2n} , whence the set

$$\varphi_a\bigl\{\prod_{s=1}^n\,\varphi_{a_s}(E)\bigr\}\cdot\varphi_b\bigl\{\prod_{s=1}^n\,\varphi_{a_s}(E)\bigr\}=\bigl\{\prod_{s=1}^n\,\varphi_{a+a_s}(E)\bigr\}\cdot\bigl\{\prod_{s=1}^n\,\varphi_{b+a_s}(E)\bigr\}$$

is non-empty. Thus the set $\prod_{s=1}^{n} \varphi_{a_s}(E)$ has property (S_2) with constant $\frac{1}{2}\eta_{2n}$.

Similarly, for sets having properties (S), (T), (\mathbf{T}_{∞}^*) or (\mathbf{T}^*) the non-empty intersections in fact have property (S₂) (possibly with an altered value of the constant η , in the case of property (S)).

From I and II one immediately deduces III, from which follows IV and then V:

III. The intersections in question are non-countable. Consequently, if E is analytic these intersections contain perfect subsets and are of the power of the continuum. In particular, this is true of our sets E_1, \ldots, E_{λ} .

IV. If a set E has any of the properties (S_{∞}) , (S), (T), (T_{∞}^*) or (T^*) and if D is countable, then E-D has the same property.

V. A closed set has any of these properties only if its perfect kernel has the same property.

Generalizations. We could generalize our results, replacing linear substitutions by a wider class of transformations, for example those of the form $\varphi(x) \equiv (ax+b)/(cx+d)$, where $ad \neq bc$, and using the same methods. We have not however determined how far it is possible to go in this direction.

REFERENCES

- [1] P. Erdös and S. Kakutani, On a perfect set, Colloquium Mathematicum 4 (1957), p. 195-196.
- [2] F. Hausdorff, Dimension und äußeres Maß, Mathematische Annalen 79 (1919), p. 157-179.
 - [3] E. Marczewski, P 125. Colloquium Mathematicum 3 (1954), p. 75.
- [4] O przesunięciach zbiorów i o pewnym twierdzeniu Steinhausa (On translations of sets and on a certain theorem of Steinhaus), Prace Matematyczne 1 (1955), p. 256-263 (in Polish).

Reçu par la Rédaction le 28, 2, 1959