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‘SOME NON-PARAMETRIC TESTS
FOR THE k-SAMPLE PROBLEM
BY
M. PISZ (WARSAW)

1. Summary. This note is a summary of some methods that have
been proposed for testing the hypothesis that % (k > 2) independent
samples have been drawn from populations with the same (unspecified)
continuous distribution function. The methods discussed are generali-
zations to k > 2 of Smirnov’s [1], [2] tests for & = 2, which have been
proposed by Ozols [3], Fisz [4], Chang and Fisz [5], [6], Kiefer [7], [8],
Gichman [9] and David [10].

2. Formulation of the problem. Let (,;, ..., #15), -..y (@aay -+ Biong,)
be k independent samples drawn from populations having the same
continuous distribution funetion F(z). Denote by Sy, (x) (j=1,...,k)
the empirical distribution function of the j-th sample, i. e. ;8 (%)
represents the number of those observations of the j-th sample which
are smaller than z. Xolmogorov [11] has shown that for k = 1 (omitting
here the subscript j) the relation

(1) lmP(nsup|8,(2)—F(2)| < 7) = K@) = > (—1)exp(—24%?)
N—>00 z 8=—00

holds for arbitrary 1> 0. Smirnov [1], [2] has shown for k = 2 that

if ng/m, = a > 0, the following relations hold for arbitrary A > 0:

(3) lim P (l/—’ll-'f”—z X 8, () — Sy 0)] < /1) = K(3).
ny-r00 Ny Ny
Smirnov’s formulae are used as a bagis for general tests of the hy-
pothesis that 2 independent samples have been drawn from populations
with the same unspecified continuous distribution function. Now a similar
problem arises for k¥ > 2 samples.
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It is worthwhile to note that the construction of tests of practical
importance which generalize Smirnov’s tests to arbitrary k > 2 (methods 2
and 3 below) have been proposed very recently although Smirnov’s tests
were constructed about 20 years ago. It is an elegant idea of Doob [12]
for proving the Kolmogorov-Smirnov limit theorems that stimulated
investigations in the direction considered.

3. Method 1. A natural generalization of Smirnov’s 2-sample pro-
cedure would be to consider tests based on the expressions:

Ty Noj
max ]/_“l ' max [Sini (w)_’s’:inj(w)],
i n+n oz

i

(x)

(%) ax| ml(w)— Sy"nj(m)l .

x

max 'l/
In”b
%

In a recent paper, David [10] obtains the exact and asymptotic
distribution of (x) for &k =3 and n, = ny, = Ny =n. We present Da-
vid’s theorem for the asymptotic case.

TEEOREM 1. For A¥Vn integral the relation

lim P(Vnmax [0ax (Son (@) — S10.(®)) , M3% (S4n (2) — Sa (0)),

San(‘”))l? l)

(4)
max (S, (z)—

~

=3

o

[
|%

+)exp[—A(i*+ 52— )]

i JeJ (%

holds, where J(i) conssts of the integers (2—4,3—4,5—4¢,6—1,8—1,
9—1, ..., 21) and where (1-)-sign indicates that for fized i successive terms
in the finite series indexed by j have alternating signs beginning with + for
j=2—4, —for j =3—14, + for j =5—1, and so on.

A result for a somewhat related statistic has been obtained by
Ozols [3], namely

THEOREM 2
@) B

hEuP (_l//'g"mg‘x[gln(m)—szn(mﬂ < }'l:l/i; m'a,x [Szn(w)_’gan(wﬂ < /12)

. For arbitrary positive 1y, A, the relation

=1—exp(—224)—exp(—24)+

+2exp(— A+ 4+ (2+2)]) — exp( — 2 (ha+ 4)?)

holds.
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In particular, for Jy = Ly = A the right-hand side of (4') becomes

1— exp( — 24%)+ 2exp(— 622) — exp( — 812).

Ozols has also found the exact distribution of the left side of (4')
with 7, % ny 7% N3

The idea of the proofs of the theorems of David and Ozols consists
in a straightforward generalization of the proof for the case k = 2 given
by Gunedenko and Koroluk [13]. In general, however, it seems impossible

to treat the distribution for arbitrary % by this method.

4. Method 2. Write N = (ny, %y, ..., ;) and
&
721 "y Sfﬂf (09)

Sl =

k

max 2 7 [Sny (@) — Szvo (m)]”

=1

2
DNIc

Method 2 is based on the following theorem of Gichman [9] and
Kiefer [7], [8].

TeEOREM 3. Let Sy, (@) (j =1,2,..., k) be k empirical distribution
functions of & independent samples drawn from populations having the
same continuous distribution function, and let Dy be defined by (6). Then
for arbitrary 2 > 0 the relation

(1) ImP(Dy; < 2) =

N-roo P(k”"l) 272) (k- 1)122 [J(k x)/z(ﬁa
2
holds, where N — co denotes m, — oo,...,%; — oo and where p, is
the s-th positive root of the Bessel function J .z (2).
The idea of the proof of theorem 3 is the following: write for
jg=1,...,k

=V [8/m; (@) — 8o ()]

Consider the vector-process (&wi(®), ..., éwk(®)). The processes
&yi(@) are linearly dependent since they satisfy the linear relation

Eny (@

S
Zl/n1+ — ) = 0.

-y
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Transform the. vector process (Em (@), ..., &vp(®)) by using an arbitrary
orthogonal k x % matrix (y;) with :

/ 1y .
Vi = |/ T,T_.{iv—fm (J =1,...,k)-
it :
The vector process ({y;(«), ..., Cyg-y(®)) is then obtained, for which
k-1

Dy = maxZ C?w(w):
z 4=1

where {yy (@), ..., {yg-1(@) are, a8 N — oo, asymptotically normal and
asymptotically independent, and moreover the relations ()

Biw(®) =0 (0<o<1),
Elwi (@) lyi(me) = 2 (1—25) (0 <y <y < 1)

are satisfied. In virtue of Centsov’s [14] theorem the problem is then
reduced to that of finding the probability distribution of the maximal
length of a vector (Zl(m),...,tk_l(m)), where the processes Z;(z) are
Gaussian, independent and satisfy relations (8). It is shown then that
this probability distribution is given by the right side of (7).

5. Method 3. Method 3 has been formulated in Fisz's paper [4] for
k = 3. Theorem 4 below is a generalization of this result to arbitrary &
(Chang and Fisz [5], Kiefer [8]).

Define for ¢+ =1,..., k—1

(8)

x
(9) i (4) = Z ﬂNi:iy/;;‘Sinj(w)y
=1
(99 A = H;&Xﬂm(m); A yy = max |5y (2)],

where N = (n,,...,n;) and Bai; are real constants.

THEOREM 4. Let Sf,,].(m) (§=1,...,%) be empirical distribution
functions of k independeni samples drawn Sfrom populations having the
same continuous ‘distribution function. Assume that

k
(10) Y BwaVm=0 (i=1,.., k1),
=1

(11) Bm fry=8y (i=1,..,k=1;j=1,...,%

(}) We make the unrestrictive assumption that the theoretical distribution
considered is uniform in the interval [0,1].
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where
14
Zﬂhiﬁii =80 (") (hyi=1,..,k=1)
F=1
Then the following relations hold for arbitrary positive Ay, ..., At

k—1
(12) hmP(A?\h < lq‘y"; = 1, reey k—1) = ” [1———6Xp(v—21%)],
=1

N—oo

(13) limP(Am<li,i:1,>..,7a——1)

Neroo
- ﬁ K(%) = H D) (1) exp(—223s).
=1 i=1 8=—00 .

In particular, for arbitrary positive A

(14) lim P( max Af; < ) = [1—exp(— 2417,
N-soo Iighk—1
(15) lim P( max Ay; < 2) = [K(#)T

Nes2o 1igl~1
b
Tt follows from relations (10) and (11) that the k(%k—1) unknown f;’s
must satisfy 2(k—1)+ (kgl) equations. This permits an arbitrary choice
of values for (kgl) Bi’s. A particularly interesting set of Bwii’s a.r}ses

by assuming that

(16) lm 2 =g >0 (G=1,...,k

ny—so0 My
and by setting
Bigeny = oo =P =10 (i =1,..,k—1).

This choice gives rise to

]/ My Mip1 (j=1,...,%),
(""41+'--‘|‘”'i)(7"1+---+"‘i+1)

an  fw= B Vm (j = i+1),
Pyte o+ Ny
0 (j=1+2,..., k).

(1) Oni denotes the Kronecker delta.
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This system has, as has been shown by Chang and Fisz [6] and Kie-
fer [8], the remarkable feature that the functionals A% (¢ =1,..., k—1)
resp. Ay; defined by (9') are exactly independent.
. ‘An alternative system for k = 3 (if it is assumed that (16) holds)
is given by

by+b —b n —by [,
By = 2B a, ﬂNxz =2 ;1‘5 ﬂNlB = 33 Zbl;
(18) 2 Ty
by—b —by o /g by /1y
B — 2 3 = 2 e _ Py
21 B 3 ABNz. B e ) ﬂst B s ’
where

and B = V24 2b,b,.
The power of the tests considered with different systems {Bis}

is of course not known and consequently it is difficult to say which of
them is better.

We pow present the idea of the proof of theorem 4.
Consider the sequence {Qy} of measures induced by the vector-
processes {ny;(x), ..., N1y ()} in the Cartesian product-space

# = D,[0,11X...XDy_, [0, 11,

x\.rhere D[0,1] is the space of real functions defined on [0, 1] having
mght-l}and and left-hand limits at each point and continu’ous’ on the
left with Prohorov’s [15] distance d. Applying some results of Donsker
[16] and Prohorov [15], the relation

(19) €=,

is obtained, where @, is the measure induced in & by the vector-process

(m2(@)y +..y s (@) With my(z) (@ =1 k—1) independ
{ 5 Mk i ent -
sian, satisfying the equalities T ' e and Gons

Enfm) =0  (0<a

(20) <1
<

4 )
Eni(z1)n;(w) = B(l—z,) (03 < %, < 1).
- Tgﬁ?‘gbhﬁo account (19), the independence of 7;(z) and the proba-
Tl -

Yy utions of m::xm (x), resp. mj\'le (z)] (Doob [12]) the assertion
of theorem 4 is obtained.

6. Concluding renllarks. Let us first remark that for % = 2 the
methods 2 and 8 are identical since in this case both coincide with

icm°®
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Smirnov’s method. On the other hand, relation (7) holds for any Dy
defined by the formula
k-1
D, = max i (@
87 2 2 i (@),

q=1

where 7y;(®) (# =1,...,k—1) are given by (9) and fyy satisfy the
assumptions of theorem 4. The essential difference between methods 2
and 3 is the following: Method 3 recommends the use of the limiting
joint distribution of the Af; (resp. Ay;) or that of the largest of them as
a bagis of the tests considered, and all calculations may be carried out
by using Smirnov’s [1] tables. Method 2 recommends the use of the limit-
ing probability distribution of the maximal length of the vector (an(m),
ceey "7N(Iu~1)(m))- TFormula (7) has its own merits, but simplicity is the
merit of method 3. Nevertheless it is only the knowledge of the power
functions that can give a correct answer to the question which of these
methods should be used. It is no doubt worthwhile to make considerable
efforts in order to find a reasonable general solution to the problem of the
power of the tests of Kolmogorov-Smirnov and of tests related to therm.
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ON SOME LOSS FUNCTIONS
BY

5. TRYBUEA (WROCLAW) »

In this paper we shall deal with some questions concerning the Wald

theory of decision functions. For some known distributions depending on

@ parameter we shall find a loss function such that the minimax estimate

of that parameter is unbiased. We shall see that the least favourable
prior distribution of the estimated parameter is the uniform one.

1. Definitions. Let F(z|w) be a distribution function defined on
a Euclidean space X which depends on a parameter we®. In the sequel
we shall assume that o is a vector. Each estimate of o is a measurable
function f(») with values belonging to Q. Let L[f(x), &) be the loss to
the statistician if he applies the estimate f(#) when 2 is the observed
value of X, and w, is the value of the parameter . If we establish the
function f(x) and the value of o, then we can find the expected value
of the loss L, i.e. ’

" dat
(1.1) R(f,0) = [ Lf(z), ©]dF (3]w) = B{L{f(X), o]lo};
X

here X is a random variable with distribution function F(z|w).

The function R(f, w) will be called the risk.
The estimate f* is called minimax if

(1.2) supR(f’, ) = infsup R(f, ).
! w

weld

Let the prior distribution of the parameter w be given by a dis-
tribution function G(w). The expected risk r(f, @) is

at
(1.3) r(f, @) = fR(f, 0)dG(0) = Eg[R(f, v)].
2
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