Concerning the measurable boundaries of a real function
by
C. Goffman and R. E. Zink (Lafayette)

1. While it is known that the equivalence classes of extended real-
valued meagurable functions on certain types of measure spaces form
a complete lattice, this basic fact has found little application to problems
concerning real functions.

It is our contention that this property of measurable functions greatly
simplifies various discussions in the literature. A first application, [3],
was to the definition and elementary properties of the upper and lower
limits in meagure of a sequence of measurable functions, a notion which
was introduced by D. B. Menchov [5].

In this note we indicate how the complete lattice property of the
measurable funetions simplifies the theory of approximation of arbitrary
real functions by means of measurable functions.

2, H. Blumberg [1] has defined the upper and lower measurable
boundaries # and I of f, an extended real-valued function on the real
line, as follows:

For every v, let By = {o: f(x)>y}.

For every &, let u(&) = inf{y: exterior metric density of B, at
£ is zero}.

The lower measurable boundary I is defined in the obviously
analogous way.

Blumberg showed that « and I are measurable and used these
functions to obtain several other facts that pertain to arbitrary functions.
The definitions and methods of Blumberg are resgtricted to functions on
very special measure spaces, since they use such special devices as density
theorems, the Vitali covering theorem, and approximate continuity.

We shall give a definition that makes sense in any totally o-finite
measure space. This definition agrees with the Blumberg definition for
Lebesgue meagure on the real line, and in the general situation, yields
proofs simpler than those given by Blumberg for the special case.

3. We first say a few words about terminology and notation. Let
{(X,d, u) be a measure space. A null seb is a set of measure zero.
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Throughout the paper, we shall assume that J contains all subsets of
null sets. Two measurable sets S and T are equivalent if their symmetric
difference is a null set; the class of all sets equivalent to § is designated
by [8], and the collection of equivalence classes is called the measure
ring associated with the measure space. A function is a null function if it
vanishes everywhere except on a null set; two measurable functions f
and g are called equivalent if f—g is null; the class of measurable functions
equivalent to f is designated by [f]; and the lattice of equivalence classes
of measurable functions is designated by M.

4. We now make a preliminary remark regarding the relation between
the measure ring 2 associated with (X, dJ, #) and the lattice L.

Ledva 1. The measure ring of o measure space (X, S, p) is o complete
lattice ¢f and only if W, the family of equivalence classes of ewtended real-
valued measurable functions on X, is a complete lattice.

Proof of sufficiency. Let [E,], a e, be a family of members
of ‘R, and let fesup [xz,], where yg is the characteristic function of the

set 8. Now, 0 <f(#) <1 almost everywhere, and {z: 0 < f(») < 1} is
& null set. Thus, there is a subset B of X such that j(z) = ye(®) almost
everywhere. Since f is a measurable function, F is a measurable set.
Now, for every « in %, H,—F is a null set, since [1z,] < [f]. Moreover,

if F' is a measurable subset of ¥ such that E,—F is null for every a in 91,
then

lxs,) <[xr] <[xz) = sup[yz,]1,

80 that [yr] = [x&] and [F] = [H]. Hence, [F] = sup[&,].

Proof of neceessity. Let f, ae¥, be a family of measurable
functions. We may assume, without loss of generality, that the f, are
non-negative. For each a, let the increasing sequence {fi}, converging
to f., be defined as follows:

k-1 . E—1 %
o= 0 B G SEO<g, k=1,
' 7y i ffz)=n

Let E}" = {o: (k—1)/2" < f(a) < k2™, & =1,2,..,»—1, and let E
= {#: fu(x) = n}, where » = 22" 11, For fixed #, let H,; be an element
of Sup[E], for k=1,2,..,», let Fp = By \J By tor every

k o j=l4+1
=1,2,..,7=1, and let F,, = B,. Let the simple functions g, be
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defined in the following manner:

k-1
Il®) = i Zp, ()
k=1 =~

-

Then [¢.] = sup[f;]. Moreover, since [f*] < [/**'], for every a, n,

it follows that
[l <[g] <. gl < .

Hence limg, = g exists, almost everywhere, and is measurable. Finally,

[g]= sagbp[ﬂ‘] = sup[fa].

A subset of X that intersects each measurable set of finite measure
in & null set is called a local null set. We remark that the theorem obtained
from Lemma 1 by replacing the null sets by the local null sets can be
proved in exactly the same manner.

It is known (see [4], p. 169, or [3]) that the measure ring of a totally
finite measure space is complete, and the totally o-finite case follows
immediately. We state this formally in the interest of completeness.

Lemma 2. The measure ring of o totally o-finite measure space is
a complete lattice.

It is easily seen that there are measure spaces which do not have
this property. For example, if (X, d, ») is a measure space for which
the corresponding measure ring has no maximal element, then the latter
is not complete.

A somewhat less trivial example is that for which X is uncountable,
d is the set of all countable sets and complements of countable sets,
and for every S in o, u(8) is the number of elements in 8.

5. We now turn to our main consideration. Let (X, d, u) be a totally

. o-finite measure space. Let f be an extended real-valued function on X.

By a measurable majorant of f we understand any measurable ¢ such that
g{x) = f(x) almost everywhere. (In all of the work that follows, the
assumption that subsets of null sets be measnrable can be eliminated if,
in the above definition, the condition g(x) > f(#) almost everywhere,
be replaced by ¢(x) < f(z) on a subset of a null set.)

LumMa 3. Let (X, S, u) be a totally o-finite measure space, let | be
an arbitrary extended veal-valued function on X, and let U be the set of
measurable majorants of f. If u ein)f Lg], then u is & measurable majorant of f.

gl

Proof. Let x* be the outer measure generated by u. Suppose that
1(x) < f(x) on a set of positive outer measure. Then there exist a positive
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number ¢ and a set B* of positive outer meagure such that u(w)+2 < f(x)
on B*. Thus, for each measurable majorant g of f, there is & measurable
set B, such that (z)+e < g(x) on B, and such that B*—, is a null set.
Let H be a measurable cover of B*. Then H—F, is of measure zero for
each g in Y. Since u(z)+e << g(x) on H,, it follows that the restriction
of g to H is a measurable majorant of the restriction of %+ & to H. Define
the measurable function v as follows:

w(x)+e it weH;
u (), otherwise.
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(x) ={

Certainly [v]> [u], but [»] < [g] for every g in ‘. Since we are thus
led to a contradietion, our original premise is false, and the lemma is
established.

6. We turn now to a consideration of the measurable boundaries
of Blumberg.

THEOREM 1. Let X = [0, 1] and let (X, S, u) be the Lebesgue measure
space. If f is any extended real-valued function and U is the sel of all
measurable majoranis of f, then the Blumberg upper measurable boundary
of f belongs to inf[g].

geU

Proof. We first remark that Blumberg has shown, in [1], that hig
upper measurable boundary function, ug, is a measurable majorant of j.
Hengce, if « belongs to inf[g], then f(z) < u(z) < up(x) almost everywhere.

geU

Suppose that f is bounded. Then the upper integral of f is defined, and

Jtau< [uap < [ugdn.
But Blumberg has shown, in [3], that

ffd,u = f’qu[u .
Thus,
fud-‘u = fqu/.L,
whence
[u] = [ug].

The unbounded case follows by applying the order preserving one-one
mapping tan-! to the range of f.

Theorem 1 ig the motivation for the following definition.

:PEFINITION 1. Let (X, d, u) be a totally o-finite meagsure space.
If 7 is an extended real-valued function on X and if w e inf[g], where U

. (
is the set of all measurable majorants of f, then u is called an upper
measurable boundary of f.
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7. In the proof of Theorem 1 we used the fact that for bounded

functions on. the real line, [fdu = fupdu. We now demonstrate the
obvious generalization of this fact.

THEOREM 2. Let (X, S, u) be a totally finite measure space and let f
be a bounded real-valued funciion defined on X. If u is an upper measurable

boundary of f, then f fadu = f udu.
Proof. By definition of the upper integral,

Jtou=mt 3 smp fla)- u(4),

where the infimum is taken over all finite partitions of X into disjoint
measurable sets. Thus, if =: {4;,..,4,} is an arbitrary partition of
X and if M; = sup f(z), ¢t =1, ..., n,, then it is clear that

xed;

s(@) = D) Mixafo)

i=1

is & measurable majorant of f. Hence $(x) > w(z) almost everywhere, and

[udp< [ sap =§Mm(A.-).
=1

It now follows that

Judu<int 3 Mip(4) = [ fau.

F =1

On the other hand, the relation f(z) < u(x) almost everywhere
implies that

[tay < fuaw= [ uwdp,
and the desired equality is proved.

8. As another application of his measurable boundaries, Blumberg
gave a short proof (for the bounded case) of a theorem of Saks and
Sierpinski [6]. We now do this for the general ease.

TarorEM 3. Let (X, S, u) be a totally o-finite measure space and let
s be the inner measure engendered by u. If u is an upper measurable
boundary of a bounded function | defined on X, then for every ¢ > 0,

usl{w: |f(@)—u(@)] >e})=0.
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Proof. Suppose, on the contrary, that there exists a positive number &
such that
al{: [F(2)—u(2)| > e}) > 0.

Then, there is a measurable set F of positive measure on which
lf(2)—u(z)] > e Now, by Lemma 3, f(z) < u(z) almost everywhere, so
that u(xz) > f{z)+¢ for every # in F, a non-null measurable subset of X,
We define the function » as follows:

u(m)—f, if wel;
v(r) =

% (), otherwise.

Obviously, f(@) < v(z) almost everywhere and [v] < [«]. This is impossible,
in view of the definition of [u].

For unbounded functions, the measurable boundary of a real-valued
function can be infinite on a set positive measure as is shown by the
exagmple below.

ExAmprE. Let X =[0,1] and let (X, o§, u) be the Lebesgue measure
space. Let {4,} be a disjoint sequence of non-measurable sets, each of

00

outer meagure one, such that X = G A, If floy= Y nya,(x), and u
=1

=1
is an upper measurable boundary of 7, then f is real-valued but w ig
almost everywhere infinite.

9. The origihal theorem of Saks and Sierpifiski has a real-valued
function as the measurable approximant of a real-valued funetion. Indeed,
their proof goes over to the totally o-finite case. Another proof which
can be given general form is the one in [2]. However, by slightly generaliz-
ing the definition of this paper, a proof can be obtained using upper
measurable boundaries. Since this has independent interest, we proceed
with the discussion.

Let (% s 3, p4) be a totally finite measure space. If 4 is any subset
of X, let 4 denote a measurable cover of A. Let § be an extended real-
valued function defined on K, a subset of X. A measurable majorant
of f is a measurable function g defined on ¥ such that g(x) = f(a) almost
everywhere on E. An upper measurable boundary of f is any # belonging
to inf[g], where [g] ranges over the set of all equivalence classes of measur-
able majorants of f.

TEEOREM 4. Let (X, S, u) be a totally fimite measwre space, let B be

an erbitrary subset of X, and let f be a bounded real-valued function on E.
Then, for every positive e,

#({z: [f(@)—u(@)] <e} ~ B) = u*(E).
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Proof. For every £> 0, let B, = {#: |f(x)—u(x)| < &} ~nE. Suppose
that the theorem iNs false. Then, for some positive number &, @*(E,) < p*(E).
Thus, (B < p(E), and the funetion v given by

v(x) = { u(@)—fe, i = e.E-E‘; ;
(), otherwise,

would then be a measurable majorant of f satisfying [v] < [u].

o

THEOREM 5. Let (X, d, u) be a totally o-finite measure space, and
let § be a real-valued function on X. For every positive number &, there is
a real-valued measurable funetion u such that

ual{m: | () —u(z) >e}) =0.

Proof. Let Y be a measurable subset of X of finite measure. For
every positive integer n, let B, = {z: |f(z)] <n}~ Y, and let B, = B, —
—F8,.. For every m, let u, be an upper measurable boundary of the
restriction of f to B,. Now define « in the following manner:

w(z), it zeBnY;

"y ~ w1,
u@) = Up(®)y, i 2eBpn¥— ) BrnY, n=2,3,..

k=1
Tt is easily seen that u satisfies the required condition for all » in Y.
Since X can be decomposed into a disjoint sequence of measurable sets
of finite measure, the proof may be completed by employing the preceding
argument on each of the members of this sequence.
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