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Axiomatic characterization of the family of all clusters
in ‘a proximity space
by

S. Mréwka (Warszawa)

In paper [1], 8. Leader introduced the notion of cluster in proximity
spaces. According to his definition a cluster ¢ in a proximity space X is
a class of subsets of X which satisfies the following conditions:

(a) If A and B both belong to ¢, then A is close to B;

(b) if A s close to each B in ¢, then A belongs to ¢;

(¢) if AUB belongs to ¢, then either A or B belongs to c.

The paper quoted above containg an interesting applications of the
notion of clusters.

In this paper necessary and sufficient conditions will be given in
order that a family © of class of subsets of a set X be the family of all
clusters for some proximity relation in X. (%)

We note that each cluster ¢ satisfies the following conditions:

(d) if A belongs to ¢ and A is contained in B, then B also belongs to c;

(e) let p and g both belong to X. If {p} and {q} belong simultaneously to
the cluster ¢, them p = ¢;

(f) if A is a subset of X and A meets each B from ¢, then A also
belongs to c.

A class of subsets of X satisfying conditions (e), (d), (e), (f) will be
called a semi-ultrafilter of X.

() We recall here the axioms of proximity relation:
y if A is close to B, then B is close to 'A;
(Py) A s close to B O if and only if either B or O is close to A;
y A is close to 0 if and only if 4 =0;
) p is dose to q if and only if p=gq (p, ¢ — poinis);
(Py) if for each B either A is close to B or B is close to X\E, then A 1is close to B.
We write “4 6 B” instead of “4 is close to B” and ,,4 5 B instead of “4 is not
close to B, We shall also write “4 € B instead of “4 § X\B”, where X is the space.
Using this notation, the axiom (P;) may be rewritten as follows:
(P} if 4 € B, then there 48 O with 4 €C € B.
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Now, we ghall show some lemmas on clusters.

LeMMA 1. If ¢, ¢ are clusters and ¢Cc', then ¢ =c'.

Proof. If 4 belongs to ¢', then A is close to each B from ¢ and hence,
by condition (b), 4 belongs to ¢. Therefore ¢’ C ¢ and the Liemma holds.

LevMaA 2. If 5 is a maximal centred family, then the class

c={ACX: A5 B for each B in s}

8 a cluster. Moreover, ¢ is the only cluster which contains s.

Proof. We prove first all the conditions for clusters step-by-step.
Condition (a). If 4 6B, then there exists such an HC X that
E3A and X\F 8 B. s being a maximal centred family implies either
Ees or X\Fes.But Fes implies 4 ¢ c and X\ F esimplies B ¢ c. Therefore
A and B cannot simultaneously belong to ¢ and condition (a) is proved.

Condition (b) is obvious.

Condition (c). Supposing that 4 and B do not belong to ¢, there
are E, B’ in s such that A 6B, B B'. Since BE~F ¢s and A (F ~F)
and BS(E ~ E'), by the axiom (P,), (A wB)5(E~F') and thus 4w Béc.

Therefore ¢ is a cluster. ’

‘We shall show that ¢ is the only cluster containing s. Let us suppose
that ¢’ is a cluster and s C¢’. If 4 ¢ ¢’, then 4 § B for each B in ¢". Hence
A é B for each B in ¢ and it follows that 4 e c. Consequently, ¢’ C¢, and
by Lemma 1, ¢ = ¢

Levyma 3. If A is close to B, then there emists a cluster ¢ to which
both A and B belong.

This lemma and its proof is presented in paper [1].

Now we prove the theorems which are crucial for the purpose of
this paper. .

THEOREM 1. Let € be the family of all clusters in a proximity space X.
Then € is a family of semi-ultrafiliers which satisfies the following conditions:

1. Let A and B be arbitrary subsets of X. If for each E C X there is
a member c e € such that either A,Eec or B, X\F ec, then there is ¢,
in € such that A, B ec,.

2. Let ¢, be an arbitrary member from Q. If for each member B from ¢,
there is a ¢ in € such that 4, B ec, then A ec,.
3. Bach centred family of subsets of X is contained in some member of €.

TaEOREM 2. If € is a family of semi-ultrafilters of X which satisfies

conditions 1, 2, 3, then © is the family of all clusters for some prowimity
relation in X.

Proof of Theorem 1. Of eourse, each cluster is a semi-ultrafilter.
Condition 1 follows from axiom (P,) and from Lemma 3. Condition 2
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directly follows from Lemma 3 and from the definition of cluster, con-

dition (b). Finally, condition 3 follows from Lemma 2 and thus Theorem 1
holds.

Proof of Theorem 2. Let & be the relation between subsets of X
defined. by the condition

A 8 B if and only if there is a ¢ in € to which both A and B belong.

It is not hard to verify that 6 is really a proximity relation. We ghall
show that that each member of € is a cluster (with respect to 4). In fact,
condition (a) directly follows from the definition of the relation .
Condition (b) is simply condition 3, written in terms of the relation .
Finally, condition (c) immediately follows from Lemma 2.

There remains the most essential part of the proof, namely to show
that each cluster with respect to 4 is a member of §. Let ¢, be a cluster.
Let s, be the family of all members 4 of ¢, which satisfies the following
condition:

there is @ B im ¢, such that B € A.

We shall show that s, is a centred family. Indeed, suppose that
4y, A; belong to s, and 4; ~ A,= 0. Then there are B, and B, from o
with B, € 4, and B, € 4,. Since A1~ A= 0, 4;C X\A,, whence B, € X\ 4,
and thus B, § 4,. Therefore B, § B, which contradicts the definition of
clusters. :

Now, let s be a maximal centred family which contains s,. We shall
show that s is contained in ¢,. Indeed, let 4 ¢s and B be any member
of ¢, and let A3 B. Thus A€ X\B. By axiom (P}), we can find ¢C X
with A €CEX\B. Then X\CE€B, whence, by the definition of s,,
X\Cesy, and moreover 4 6(X\(). Consequently A ~(X\C)=0, which
leads to a contradiction.

Therefore we have shown that A é B for each B in ¢, and it follows,
by condition (b) on clusters, that 4 ¢, and finally sC ¢,.

By condition 3 there is a member ¢ « € which contains s. But we
bave actually shown that each member of € is a cluster and it follows
that ¢, and ¢ are clusters containing the maximal centred family s.
Therefore, by Lemma 2, we obtain ¢, = ¢ and thus ¢, is 2 member of .
This completes the proof of Theorem 2.

According to Theorems 1 and 2 the notion of cluster may be adopted
as the primitive notion of the theory of proximity spaces. This point
of view leads to the following definition of proximity spaces:

A proximity space is an abstract set X with a distinguished family ©
of semi-ultrafilters of X, named ex definitione clusters, which satisfies
conditions 1, 2, 3.
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The reader may easily verify that, starting with the above definition,
many theoremsg on proximity spaces, in particular, the compactification
theorem, may be proved without the help of the axiom of choice.
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On upper and lower limits in measure
‘ by
C. Goffman and D. Waterman (U.S. A.)

. 1. In his memoir On convergence in measure of trigonometric series
D. E. Menchoff introduces, and makes essential use of, the upper and
lower limits in measure of a sequence of measurable functions.

The use of the definition given by Menchoff requires a complicated
proof of existence and uniqueness, involving transfinite induction, and
congiderable labor is needed to establish the main properties.

The purpose of this note is to give a new definition which simplifies
the entire matter. We show that our definition of the upper and lower
limits in measure is equivalent to that of Menchoff, that existence and
uniqueness follow immediately, and that it yields simple proofs of the
main properties.

2. We first give the definition of Menchoff; he considers extended
real valued, measurable functions defined on a closed interval [a, b],
i. e, infinite values may be assumed on sets of positive measure.

Let {f,} be a sequence of measurable functions. A function F is called
an upper limit in measure of {f,} if it satisfies the following two conditions:

(i) For every measurable ¢, lim m(8 ~E,) = 0, where E, is the set

N—>00

for which fu(z) > @(2) and 8 is the set for which ¢(x) > F(z).
(ii) If m(8) > 0, then limsupm (S ~ B,) = 0, where  is a measurable
N—00

function, § is the set for which F(x) > y(x), and E, is the set for which

Fal®) >y ().
Let
%arctanw, —o0 < %< +oo,
MO =1 1, a= e,
-1, & = — 00,

Then % is an order preserving mapping of [—oco, -+ oo onto [—1, 1],
with order preserving inverse. Since the above definition involves only
the order relation between fu(z), n=1,2,.., ¢(®), p(»), and F(x), it
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