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On upper and lower limits in measure
‘ by
C. Goffman and D. Waterman (U.S. A.)

. 1. In his memoir On convergence in measure of trigonometric series
D. E. Menchoff introduces, and makes essential use of, the upper and
lower limits in measure of a sequence of measurable functions.

The use of the definition given by Menchoff requires a complicated
proof of existence and uniqueness, involving transfinite induction, and
congiderable labor is needed to establish the main properties.

The purpose of this note is to give a new definition which simplifies
the entire matter. We show that our definition of the upper and lower
limits in measure is equivalent to that of Menchoff, that existence and
uniqueness follow immediately, and that it yields simple proofs of the
main properties.

2. We first give the definition of Menchoff; he considers extended
real valued, measurable functions defined on a closed interval [a, b],
i. e, infinite values may be assumed on sets of positive measure.

Let {f,} be a sequence of measurable functions. A function F is called
an upper limit in measure of {f,} if it satisfies the following two conditions:

(i) For every measurable ¢, lim m(8 ~E,) = 0, where E, is the set

N—>00

for which fu(z) > @(2) and 8 is the set for which ¢(x) > F(z).
(ii) If m(8) > 0, then limsupm (S ~ B,) = 0, where  is a measurable
N—00

function, § is the set for which F(x) > y(x), and E, is the set for which

Fal®) >y ().
Let
%arctanw, —o0 < %< +oo,
MO =1 1, a= e,
-1, & = — 00,

Then % is an order preserving mapping of [—oco, -+ oo onto [—1, 1],
with order preserving inverse. Since the above definition involves only
the order relation between fu(z), n=1,2,.., ¢(®), p(»), and F(x), it
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follows that AF is an upper limit in meagure of {if,} if and only if ¥ is
an upper limit in measure of {f,}. There is, accordingly, no loss in generality
in restricting the discussion to functions whose values are in the interval
[~1,1].

3. Let 9/ be the set of equivalence classes of measurable functiong
on [a, b], where, as usual, two functions are equivalent if they are equal
almost everywhere. By the above remark, the range may be taken to
be the interval [—1, 1].

For equivalence classes [f] and [g], by [f] <[g] we shall mean that
f{2) < g(z) almost everywhere if f ¢[f] and g e [g]. Clearly no ambiguity
will result if we denote both [f] and its elements by f, relying on the
reader to make suitable distinction according to the context. For com-
pleteness, we prove the known

LEMMmA 1. N i3 a complete lattice.

Proof. We need only show that every JC has a greatest lower
bound. Let .2 be the set of lower bounds of of. Let

b
k = sup [f f(x) da: fe,@].

For every n =1,2,... there is an f, e .2 for which

b
1
af Ful) o > b .
Now let
In=8UD[f1; .y ful,

n=1,2,..
Then grelyn=1,2,..,80d ¢ < 0 < oo < g < ... Lioh g(z) = lim g (=)
n—00

b
Now geL and fg(z)de=Fk. If there were he 2 with sup(g,’)> g
a

b
then [ sup(g(z), h(x))dz> & and sup(g, k) « 0. Since this is impossible,

a
g =infd.

Let {f,} be a sequence in W, We call % an upper function relative
to {f,} if jim m(8,) =0, where 8, is the set for which fal®) > u(x),
n=1,2,..

Levwa 2. If w and v are upper functions relative io {fa} then so is
inf(u, v).

Proof. Let 8,, 8}, 8/ be the sets for which ful®) > inf (u(x), v(z)),
fal®) > u (%) and fo(x)> v(z), respectively. Then &, C Sw8y, n=1,2,..,
and lmm (8,) glj;nm(S,'z)—i—]jmm(;S’{{) = 0.

N—00
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We let U be the greatest lower bound of the set of all upper funetions
relative to {fn}. The existence of U is assured by the fact that 9 is
a complete lattice. Then U is the upper limit in measure of {f,} in our
gsense. We shall show that it is an upper limit in measure in the sense
of Menchoff.

4. We point out that U need not itself be an upper function relative
to {f»}. For exa,mple., let fu(#) =1/m, n=1,2,.. Then U = 0, so that
m(Sp) = b—a, and il_{n;m(sﬂ) =b~a 0, where S, is the set for which

fn{®) > U (®). Suppose, however, that f(@) > U(z) at almost every point
where U(z) < 1, and f(z) =1 almost everywhere else. We shall denote
this by 7 > U. It is important that such a function, and in particular
U.,=inf[U-¢,1], is an upper function. We first prove

Luyma 3. There is o decreasing sequence {9} of upper functions relative
to {fn} which converges to U, 1. e., ggn(m)~U(m) =0 almost everywhere.

Proof. Let U be the set of upper functions relative to {fn} and let

b
b=int] [ (@)~ U (2)) do: uex].

Let hy, e be such that

b

[ @) -U@)do<i+l, n=1,2,..

By lemma 2, g, =inf (ky, ..., ) €U n=1,2,.. The sequenece {g,} is

decreasing. Let g(z) = lim g,(z). Suppose g{®) > U(w) on a set of positive
n—00

measure. There is then u e with () < g(z) on a set of positive
measure. Now
Uy =1inf{u, gyl eU, n=1,2,..,

and
b

J (nl®)— T () d < o
a
for » sufficiently large. Hence g(z) = U(z) almost everywhere.
COROLLARY 1. If u » U then u is an upper function relative to {fa}.
Proof. Let ¢ > 0. There is a % such that u(w) = gr(z) on 8§ where
m(CS) < e. Let B, and 8, be sets for which fu(#) > gi(z) and fal@) > u(x)
respectively. Since limm(E,) =0, and 8,C E,u €8, it follows that

N—00

limsupm (S,) < .
n—oo
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5. Krickeberg has given a definition of upper limit in measure (for
a directed system of functions) which is similar to ours. For a sequence
{f.}, Krickeberg's definition is as follows: Let h e if B >h impligg
Tim m(B,) = 0, where B, is the set for which fu(#) > W'(x). Then v =inf¥

>0

is the upper limit in measure according to Krickeberg.

Now he9 if and only if 2’ e for every h' > h. Thus A > u for
every he9f. Hence, v U. Conversely, let 2 » U.. By corollary 1,
he so that B’ > h implies B’ ¢ and thus he')l. But then v < U.

Krickeberg makes no reference to the work of Menchoff, but applies
the limits in measure to the convergence of martingales. Theorems 2
and 3 below are given by Krickeberg as well as by Menchoff. Their
proofs, which are an immediate consequence of our definition, are in-

cluded here.

6. We now prove :
THEOREM 1. U is an uppe‘r'limit in measure of {f,} in the sense of
Menchoff. a
Proof Let ¢ ¢ W and let S be the set for which ¢(z) > U(x). If
we define @ <
PLL), TeD,
u(@) = { 1, xzeCS,

then, by corollary 1, # is an upper function relative to {f,}. Let E, be
the set for which f.(z) > @(z) and E;, the set for which f.(x) > »(x). Then
limm(Ep) =0 and E,~S = E,, n=1,2, .., 50 that imm (&, ~n8) =0,
N—~o0

N0
and U satisfies condition (i). ] o
Let e M be such that m(S)> 0, where S is the set for which
U(x) > w(z). Let .
_ w@), wzeSl,
”W)"{ 1, weCS.

Then v is not an upper funection relative to {f,}. Hence limsupm (&,) > 0,

n—00
where ¥, is the set for which f,(x) > v(z). But m(E, ~ 8) = m(H,), s0
that U satisfies condition (ii).

‘We remark that this constitutes an alternate proof to the one given
by Menchoff that upper limits in measure exist. In the next section we
show that U is the only function satisfying the conditions of Menchoff.
‘We emphasize, however, that our definition alone will be used in develop-
ing the properties of U.

7. Let F be an upper limit in meagure in the sense of Menchoif.
Then F < U. For, let « be any upper function relative to {f,}. If S is
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the set.for which F(z) > u(s), and B the set for which f.(2) > u(z),
then limsupm(S§ ~ E,) <limm(&,) = 0, Hence, by condition (ii),

N0 n—+o0

m(8) = 0. Hence, F < U. Suppose P(z) < U(z) on a set S. Lot

HP@)+U@), =es,

9‘0(13):{ 1, zeCS.

Then, by condition (i), iﬂgm(s n B,) = 0, where E, is the set for which

(@) > @(z). But 8 ~ E, D E,. Hence, ¢ is an upper function, m(8S) = 0,
and F = U. Accordingly, # = U.

8. We define the lower limit in measure of {fa} as the least upper
bound L of the set . of lower functiong relative to {fz}, where le.2 if
limm(8y) = 0, 8, being the set for which fulm) < U{x). We may define

N—+00

L. =sup(L—e, —1) for &> 0. Clearly it hag properties analogous to
those of U,. Now, if 4 e, Ie.2 then clearly 1< u. It then follows
that L < U.

9. We now prove

TanoREM 2. The sequence {f,} eonverges in measure to 1 if and only
if U=1L, and then f= U = L.
Pr-oof. Suppose U = L. Let &> 0. Then if 8, and T, are the sets
for which fu(®) > Ugp(#) and fo(z) < Lys(x), respectively, then Hm m(S8,)
T—>00

=ltmm(T,) = 0. Bubt |ful2)—U(z)| <e, except possibly on S,w T, so

T—>00

- that {f,} converges in measure to f = U = L.

Suppose, conversely, that {f,} converges in measure to f. Then
int{f(x) +e, l) is an upper function for every s> 0. Hence U<
Similarly, L>f. Thus, /<LK U<}, and f = U = L.

10. Tt is of interest to compare the upper and lower limits in measure
with the customary limit superior and limit inferior.

THEOREM 3. For every {fn}, liminf f(z) < L(z) < U(s) < imsupf,(z)
almost everywhere. e » o

Proof. Clearly, inf{limsupfa(z)+¢, 1] is an upper function for every
£> 0, Hence Ul(z) < linjﬁlo;p fal®) almost everywhere. Similarly, L(x)

. . k5
> liminf f,(x) almost everywhere.

T~>00

11. We give one additional Tesult which further elucidates the
relation hetween upper and lower limits in measure and the usual Limit
superior and limit inferior. It should be noted that part of Theorem 2
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is an immediate consequence of this theorem. The proof is of particular
interest in view of its simplicity as compared with that of Menchott,
‘We first prove

LuMma 4. If {an} converges in measure to zero, then {fn} and {f,+ oy}
have the same wpper and lower limils in measure.

Proof. Let U be the upper limit in measure of {f,}. For every &> 0,
U, is evidently an upper function relative to {f,+a.} so that, if T’ is
the upper limit in measure of {f,-+a,}, then U’ << U. By the same
token, U< U'.

THEOREM 4. For every {f.}, there are {h,} and {a,} such that

fo="hn+an, n=1,2,..,
U(x) = limesup hy(x),

=00

L{x) = liminf h,(z) ,
N0

and {a,} converges in measure to zero.
~ Proof. Clearly, U, > L,, for every ¢> 0. Let

Uple), I fol#) = Uyn(a),
(i) =1 ful@), i Lya(®) < fal@) < Uyal@),
Lujn(®) , i fu{@) < Lywle),

and let an(a) = fu(@) —hal2), 0 =1,2, ...

Let e > 0. Let 8, be the set for which |a,(w)| > &. Let T, and T, be
the sets for which fu(@)> U.iym(®) and fo(x) < Leggym(®), respectively.
Clearly

Sp=TpuT,.

If B, and E, are the sets for which f,(#)> U,w) and fu(z) < L(),
respectively, then 7, C B, and 7% C E,. But

lim m (B,) =Lim m(&,) = 0.

=200 N0

Hence, {a,} converges in measure to zero. Now,

limsup i, () < lmsup Uyp(z) = U ()
00 N~+00
and
limint ko) 2 Hminf Ly(z) = D(x) .

n—o00 n—>00
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But, by Lemma 4, U and L are the upper and lower limits in measure
of {h,}, respectively. Hence, by Theorem 3,

limsup k,(2) > U(x)

and
Limint b, (x) < L(x).

12, Finally, we define an equivalence relation for sequences of
measurable functions. Let {f,} be equivalent to {ga} it {fn—gn)} converges
in measure to zero. This relation is evidently reflexive, symmetric, and
transitive. By Lemma 4, sequences belonging to the same equivalence
class have the same upper and lower limits in measure. Moreover, in
proving Theorem 4, an equivalent sequence of functions was constructed
whose limit superior and upper limit in measure are the same, and whose
limit inferior and lower limit in measure are the same. By Theorem 3,
we thus have

THROREM 5. For every sequence {f,}, the upper and lower limits in
measure are given by
U(») = mt[limsupg,(z): {g,} e F]
and
L(x) = sup[Umint h,(z): {h,} 5]
N0

where F 45 the equivalence class {o which {f,} belongs.
Indeed, this property could well be taken as the definition.
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