iom

Hyperarithmetical quantifiers *
by

C. Spector (Columbus, Ohio)

Let HA be the class of hyperarithmetical functions, predicates and
sets of matural numbers [4, 5]; let (Fa)g,P(c)= (Ha){a e HA & P(a)];
and let “HA” also be an abbreviation for “hyperarithmetical®.

From the proof of XXVI [5], it follows that if R is a recursive
predicate then there is a primitive recursive predicate P (obtained
uniformly from a Godel number of R) such that

(0.1) (Bo)ga(#)E(a, 2, a) = (a)(Ez)P(a, z, a) .

This result is used in [1] and is proved explicitly in [7]. In the latter
paper, Kleene asks whether the converse is true; i. e. given a recursive P,
can a primitive recursive B be found which satisfies (0.1)2 We answer
this question in the affirmative (2).

. The method of proof involves an analysis of the inductive definitions
of the set O of Church-Kleene ordinal notations and of the two-place
predicates |a| = {b] and |a| < |b], where |a} is the ordinal corresponding
to & via O and both predicates are taken to be false if either a or b is
not in 0. The techniques developed by Kleene in [2] and amended in [6]
play an important réle. In particular we shall employ the predicate
(2)(By)R(a, 2,y) defined in § 14 of [2], which Kleene abandons in the
amended vergion [6] (3).

1. C(b) and ¢,. For each natural number b let C(b) be the set
defined in [2] § 13 and V(a, b, @) the primitive recursive predicate such
that @ e O(b) = (Bx)V (a, b, ). Tt a= 3.5, let an = D((a)s,n0), 1. &. if
acQ, then in a manner of speaking, g, @, d, ... i the fundamental
sequence whose limit is a. Let Def(a, #) = [an is defined], more precisely
Det(a, n) = (By) T1((“)2; '”'C’yy)-

* Research for this paper was conducted under a grant from the National Science
Foundation, U. 8. A.

(*) This answer appears as Corollary 2. Kreisel and Mostowski asked similar
questions, which are answered by Corollary 1 and [6] Theorem 1.

() It is recommended that the reader be familiar with [2] through § 14 and [6]
through § 20, and have both papers available for reference.
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Lemuma 1 (Kleene). If be O then C(b) = afa <o b] and O(b) is well-
ordered by the “less-than” velation e C(y) with ordinal |b]. (See [2, 8],
§ 20, for proof.)

When = is an equivalence relation on a set 8, we say that < is
a linear ordering of § relative to = if (3):
(1.1)
(L2)
(13)
{Ld)

z,yelS sz=yve Jyvy <o,

z,Y,2e8 & vy & y<z—»a<a,

zeS —>not 3 <z,

U, 0,2, YeS G ro=u&y=0v>ly=ulr].
I = is =, then (L4) is automatically satisfied. Note that = e C(y)
ag <y, = a8 =, and O(b) as § satisfy (L1)-(L3) if b e O, and if 6¢ 0
‘then ondy (1.2) need be satisfied ((L1) and (L3) are false for suitably
chosen C(b)).

‘We shall define a set §, by amending Kleene’s definition of @ to

require that C(a) be linearly ordered when a ¢ Q. In place of Kleene’s [2]
{33) we write

acQ=:a=1.v.a=2""& (a)eQ.v.
a=23-5& (n)[Def(a, n) & a, cQ & tpe C(@11)] &
[C(a) is linearly ordered by e ((y) relative to =].

(1.1)

We note that the clause [C(a) is linearly ordered by ze C(y)
relative to =] does not contain the variable ¢ and can be written in
the form (z)(Ey)P(a,z,y) where P is primitive recursive, sinece the
closures of (L1)-(L3) assume the respective forms V[H—H], V[H-H],
V[E—V]. Following the method of [2], § 14, we obtain a primitive
recursive predicate R, such that the set @, = a(z)(By)Ry(a, z,y) is
a solution to (1.1). Kleene [6] shows that O is the smallest set Q satis-
fying (1.1); @, can be characterized as follows:

LEmwva 2. Q, is the largest set § satisfying (1.1).

Proof. By the remarks above @, is a solution to (1.1). Suppose
the lemma is false, Then there is a set @ satisfying (1.1) and an a <@
such that a¢ Q,. But if a ¢ @, then there is an » such that (y) Bya, , ¥).
Assume a and « have been chogen such that  is minimal. By examination
of Kleene’s (35) taking into account the modifications above, we obtain
an a' € O(a) and an o’ < o such that (y)EBya’, «’,y), which contradicts
the choice of .

In obtaining ¢’ and 2 the only non-trivial case is a = 3- 5, which
we now consider. Since @ < @ and @ satisties (1.1), it follows that C(a)

() =,y €8 is short for z¢8 & yeS.
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is linearly ordered and (n)[Def(a,) & ay, € C{a,.,)]. But a¢ @, and @, also
satisfies (1.1). Hence (En)[as ¢ @, i. e. the clause

1.2) (@) (23) [T((“)zy ()0, 1’3) —(x,) (Eyz)Ro(U(-z’a)y Tyy yz)]

obtained from Kleene’s (35) is false. Choose z,,rs, #, such that

{1.3) T((a)m (®2)o, ma) & (1) Ro(U(ws) A

and let 7 =,. Then @’ = a, = U{x;) and ' = x, are the desired numbers.
Remark. This lemma and its proof suggest that it is possible to
define @, using the method of [2], § 8. This is accomplished by defining @,
as follows.
Q) o#1&a#2"&a+#3.5"5acq,,
(Q2) aeQo & a#0->2"q,,
(@3) a=3-5"&[Def(a,n)VayecQyVane Clanir)]~acfy,
(Q4) @@, only as required by (Q1)-(Q3).
Then @, is recursively enumerable in Def(z,y), z € C(y). Lemma 2
and the classification of ¢, are easily obfained from this definition.

2. 0 in terms of ¢,.

LevMa 3. a€0 = acQ,& (Ea)(@)]|a(@+1) e Cla(a) & a(0) =a]. L. e
ae0 if and only if ae@Q, and C(a) is well ordered.

Proof. The implication to the right follows from Lemmas 1 and 2.
On the other hand assume a¢ 0. If a ¢ §, the lemma is proved. If a e @,
then it is possible to define an infinite descending sequence {Zny1 € C(24))
in Q,— O beginning with z, = @, using the inductive definitions of O
and of @Q,.

8. L and <,. Let §, be a variable which ranges over all subsets
of the natural numbers and let <, =, be two-place predicate variables
(a + 0). We define L(a, Qu, <a, =q) to hold if and only if & =35,
a€Q,, and for every x and y

{3.1) TeQe=0<,aVr=a,

(3.2) w'_“ayE‘v,yeQa&(z)[z<amzz<ay]a

{3.3) <, linearly orders @, relative to =g,

(3.4) 1,8} CQaC 8y,

{3.5) YeQe & xe Cly)—>w <al,

{3.6) 2 < y—(B)zeCly) & v =q7],

(3.7) 2 <qt—>2"<gdt,

(38) ©=3-59¢Q, &y <a0 & (M) <aY]>¥ <aYVE =ay-
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We will not make use of the fact that each of (3.1)-(3.8) happens
to be independent of the others, Let L(a, <,) = L(a, Qay <ay =4) Where
Q, and =, are defined by (3.1) and (3.2); <Y =2 <a¥ VI =g¥;
and for ae0

(3.9) O,=z(lz| <lo|ve =a),
(8.10) x<gy=|2<lyl &z,9c0a,
(3.11) z=y =zl =y &z,¥ye04.

TEMMa 4. If aeO and o = 3- 5, then L(a, Oa, <&, =2).

4. Main theorem. Let 3 be a variable which ranges over all two-place
number-theoretic predicates, and let o = 3.5 Then

(4.1} ac0 = (Bf)naL(a, p) = (EB)L(a, f)-

The proof of this theorem will be postponed until § 6. The solution
to Kleene's question is a covollary of this theorem.

5. Properties of <,. Throughout this section we assume

(5.1) a=3-3"&aeQ, &La, Qs <a, =d-

Two sets § and T of natural numbers are said to be isomorphic,
written § = T, if there is a 1-1-correspondence Ry whose domain is §
and whose range is T such that

(5.2) uRzr & vRy —[ueC(w)=weC(y)].

A segment of 8 is a set of the form C(b) ~ § where b e 8. From the
classical theory of ordinals, if § and T are well-ordered by x e C(y), then
either 8§ =~ T or one of § and 7 is isomorphic to a uniquely determined
segment of the other. (The crucial reasons for a step in a proof are in-
dicated at the end of the step between parentheses.)

Lemas 5. If @ =,9, then C(z) = O(y).

Proof. Assume & =,%. Then z,7 <Q, C @, ((3.2), (3.4)), and there-
fore C(z) and O(y) are linearly ordered (@, satigfies (1.1)). The cor-
respondence uRv =ue¢C(z) & ve C(y) & 4 =,v has domain C(») and
range C(y) ((3.5), (3.6)). Assume also uBs, vRt, and » ¢ C(v). (To show
8 e C(t).) Then s =,u% <a¥ =41t by (3.3); hence s <.t by (3.3). Now &
and ¢ are elements of the linearly ordered set C(y). The only way &
and ¢ can be related in that ordering consistent with s <,¢, (3.5), and
(3.3) is s € C(1). Ete.

Levma 6. If o <,y then C(x) is isomorphic to a segment of C(¥y).

Proof. Let u e C(y) such that # =;u (see (3.6)). Then O(z) == C(u)
by the previous lemma. :
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Lentva 7. If aeO then z <,y <2, o c
a Y and & =gy-—>r= see
(3.9)-(3.11)). “ a¥ ¥

Proof. I # and y are elements of 0, and of Qa, then they are related
the same way in one ordering as they are in the other ISy virtue of
Lemmas 1, 5, 6. Hence it is sufficient to show that 0, C Q,.

Assume y e O, and by hypothesis of induection that ~6"(3/) C@,. (To
show that y e Qs.) The case that y =1, y = q, or ¥ = 29 j5 taken care
of by (3.4) and (3.7). Assume also y =3-5%" £ 4 Let ze((a) such
that le| = [y] < |a[. Then z<,a (see (3.5)), (n)}[yn € Q,] (hypothesis of
induetion), and (n)[yn<z<]. By the remark at the beginning of the
proof (n)[Yn <4 2]; therefore y <, 2 (see (3.8)) and ¥ <@, (see {3.1), (3.3)).

Levua 8. If aeO then Q,CO0,.

Proof. Assume ac0, weQq, #3a Choose yeC{a) such that
@ =qy (see (3.1), (3.6)). Then C(#)=:C(y) (Lemma 3). But Oly) is
well-ordered and ze@,. Hence #¢0 (Lemma 3) and || = y| < lal,
i.e. ze0,.

The next lemma follows from Lemmas 4, 7, 8:

Levya 8. If a e O then <G s the unique relation <, such that L{a, <<,).

Leyva 10. If a€ O then O0CQ,, and for ye0, v <,y = x| < |y]
and =,y = |o] = |yl

Proof. Assume ¢¢0 and yeO. To show yeQ, assuming also
C(y) C Q. (hypothesis of induection). If y =1 or y= 2% then y eQ,
((3.4), (8.7)). Assume y =3.5%"c 0. For each n, let n(n)e C(a) such
that 5(n) =z ¥» ((3.6) substibuting a for ¥ and y, for x). Then C (n(n))
== C(y,) (Lemma 5) and is therefore well-ordered. Now #{n) =g ¥
<a¥Ynt1 =a(n+1), i e. n(n) <zn(n+1). Hence n(n) e C(n(n-+1)) since
C(a) is linearly ordered by u e C(v), and (3.3). Let § be the union of
the C(n(n)). Then §C C(a) and S is well-ordered by u < C{z). Thus &
cannot exhaust all of C(a) since the latter is not well-ordered. Let
weC(a)— 8. Then §C C(w) and therefore y, =, (1) <qw < a. Henee
Y < w (8ee (3.8)) and yeQ,. Thus 0CQ,.

Now assume ¥ € O and z <, y. Then C(x) is isomorphic to a segment
of C(y) (Lemma 6). Hence [z} < |y| (Lemma 3).

On the other hand, assume 7¢O and mnot z<gy. Then either
Y=g, Or ¥y <, Henee C(y) is isomorphic to C(z) or to a segment of
O(x). In either case |z} < |y| is impossible. The last part of the lemma
follows similarly.

6. Proof of the theorem. Assume a ¢ 0 and a = 3- 5“7 (see § 4).
Then (E!B)L(a,p) (Lemmsa 9). Hence « <3y = (Ef)[L(a,p)& zBy]
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= ()[L(a, B)—>2fy]. But L is certainly arithmetical, and therefore
<geHA. ’ . ‘

On the other hand, suppose 2¢O and a=3-5"7 If a¢ @, then
L(a, B) is false for all g. If a ¢Q,— 0 and L(a, ) then Oy is recursive
in g for each be0O (Lemma 10). Using also [10] or [9], Th.eorem 2,
together with the funetion defined in the proof of [§], Satz 9, it follows
that every HA predicate is recursive in 8. Hence f is n(?t HA. Further-
more S cannot be unique by the argument at the beginning of the proof.

Remark. The restriction that o be a limit notation is easily
eliminated. One way would be to redefine I by modifying (3.7) to read
2 <q(@)y—2° <50 when o is 2 successor notation. Or one could reduce
the stecessor case to the limit case using a primitive recursive function z
such that (3-5Y) = 3 5Y and #(2") = m(y). By either method we obtain
the following (o is a function variable):

CoroLLARY 1. There is an arithmetical predicate A such that a €O
= (Ba)gsA(a, a)=(Ela)4 (e, a).

Levya 11, If H(a) is HA then there is a primitive recursive predicate P
such that H (a)=(Ha)(z)P(@(®), )= (Ela) (@) P(a(2),a)=(Ba)gaP (a(z), a).

Proof. Assume H(a) is HA. Then by a theorem proved indepen-
dently by Addison, Grzegorezyk, Kuznecov, and Myhill (see [1], § 3.3),
the representing function of H(a) can be obtained as a solution o, fo
a system B of equations which contains n function symbols and has

a unique solution o, ds, ..., da. That ay, a5y ..., an satisty £ can be written
in the form

(6.1) (#y) ... (wk)[s(mly weey By Opy veny )]

where § is primitive recursive and a, ..., @) are the individual variables

of E. Bmploying suitable 1-1 primitive recursive functions mapping
(g, ..., %) 10 @ and (ay, ..., an) to a together with the inverse mappings

we can write
(6.2) H(a) = (Ba)(@)[8(@, s Tty Gay ore Gn) & ay(a) =01,
and also with (Bla) or (Ba)ga in place of (Ha). The predicate P is now
easily obtained using Kleene's normal form (see [8], § 24).
Levya 12. If H(a, a) is hyperarvithmetical, then there is a primitive
recursive predicate P such that
H(a, a) = (Ep) () P(a, a, B, z) = (B')(2) P (q, a, §, x).

Proof. The proof is similar to that of the previous lemma except
that we now introduce a funetion symbol in B corresponding to the free
variable a, and relativize the arguments above with respeet fo the
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function o. See [5], § 7, for the relativized concepts needed for this proof.
Note that if B exists, it is HA relative to «.

COROLLARY 2. Zlhere i @ primitive recursive predicate P such that
ae 0 = (Ba)ma(@) P (@ (), a) = (Blq) (#)Pla(x), a}, and likewise jor any
predicate (¢)Bla, a) (B arithmetical ) in place of ae 0.

Proof. Let 4 be the predicate obtained in Corollary 1. Then ap-
Plying Lemma, 12, A(a’ a) = (E/s)(-”)l)(.a’ a, 189 r) = (E,B)(m).P(a, a, B, x),
where P is primitive recursive. For a given value of o consider the pairs
(o, B) such that (2)P(a,a, B, s). Among these pairy there is at most
one f corresponding to each a. Henge (Ba)A(a, o) is equivalent to the
existence of a unique pair (e, 5) such that (#)P(e,a,f,z). Thus if a € 0,
there is & unique pair (a, §) satistying (2)P(a, a, 8, x), and both a and g
are HA. If a¢ 0 and (x)Pl(a, a, f, ), then a is not HA, and therefore
the contraction of (a, f) to a single function is not HA. Yn this way
the desired expression for @ ¢ O is obtained. The corresponding expression
for (a)B(a, @) is obtained by applying [6] Theorem 1.

Remarks. It is known that every predicate H(a) expressed as
in Lemma 11 must be HA. In fact the eondition that a be unique can
be omitted (see the second paragraph of this paper). Thus Lemma 11
can be used to characterize the class of HA predicates similarly to [1]
for functions. Kleene [7] has obtained some results on the least segment
of HA4 that will suffice for the range of o in H(a) = (Be)(z) P (a(z), a),
where H(a) is an arbitrary fixed HA predicate, thereby strengthening
our (Fa)gs. Kleene does not obtain (Fla), but there does not appear to be
any difficulty involved in adding uniqueness to his treatment.
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Sur la compactification des espaces métriques

par
R. Engelking (Warszawa)

Dans leur travail [1], J. de Groot et B. H. McDowell ont introduit
la notion de {P.)er-compactification pour un espace métrique T,
{D}er étant une famille de transforniations de X dans X. On appelle
ainsi un espace métrique compacte X, dont X est un sous-ensemble
dense, s'il exis"ﬁwe une famille {3’5,},511 de prolongements des &, sur X
4 valeurs dans X. Tls ont aussi prouvé que pour chague espace X métrique
séparable et chaque famille dénombrable {@;} il existe ume {P;}-com-
pactification; de plus, si dimX <0, on peut supposer dimX < 0. On
& posé dans [1] le probléme de trouver une {®;}- compactification »-di-
mengionnelle pour un espace X de dimension n et une famille {D;}
dénombrable. Le présent fravail donne ume solution de ce probléeme.
Nous nous proposons de prouver le théoréme suivant:

TedoREME. X éant un espace mélrique séparable de dimension <n
e {®;} une famille de transformations de X dans X, il existe une {®;}-com-
pactification X de X telle que dim X < n, «

Démonstration. On peut supposer que les fonetions superposées
D;9; et lidentité I de X appartiennent aussi & {&;}. Admettons dans X
une métrique ¢ totalement bornée telle que les fonctions &; soient
uniformément continues dans p (cf. [1]).

Pour chaque m =1,2,... nous définissons par induction wn re-
couvrement () %, = {U7, ..., Ur,} de X tel que:

(a') B(U:n) < l/m (7' =1, eey km)’

(b) rang Un <,

(c) pour chague l<m et s<kyil existe un r < kp—y tel que

(UM CUrT

et une famille de fonctions f7, ..., fz, satisfaisant aux conditions

(@) f5":X-=[0,1],

(*) Le mot ,recouvrement” signifie tonjours ,,reconvrement fini et ouvi ; > ‘Un
recouvrement 2 est contenu dans ¥, (ou 9, contient %) si pour chaque U/ ¢ il existe
un U; ¥, tel que U c U,.
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