Hyperarithmetical quantifiers *

by

C. Spector (Columbus, Ohio)

Let HA be the class of hyperarithmetical functions, predicates and sets of natural numbers [4, 5]; let $(Ea)_{HA}P(a) \equiv (Ea)[a \in HA \& P(a)];$ and let "HA" also be an abbreviation for "hyperarithmetical".

From the proof of XXVI [5], it follows that if R is a recursive predicate then there is a primitive recursive predicate P (obtained uniformly from a Gödel number of R) such that

$$(0.1) (Ea)_{HA}(x)R(a,x,a) \equiv (a)(Ex)P(a,x,a).$$

This result is used in [1] and is proved explicitly in [7]. In the latter paper, Kleene asks whether the converse is true; i. e. given a recursive P, can a primitive recursive R be found which satisfies (0.1)? We answer this question in the affirmative (1).

The method of proof involves an analysis of the inductive definitions of the set O of Church-Kleene ordinal notations and of the two-place predicates |a| = |b| and |a| < |b|, where |a| is the ordinal corresponding to a via O and both predicates are taken to be false if either a or b is not in O. The techniques developed by Kleene in [2] and amended in [6] play an important rôle. In particular we shall employ the predicate (x)(Ey)R(a, x, y) defined in § 14 of [2], which Kleene abandons in the amended version [6] (a).

1. C(b) and Q_0 . For each natural number b let C(b) be the set defined in [2] § 13 and V(a, b, x) the primitive recursive predicate such that $a \in C(b) \equiv (Ex)V(a, b, x)$. If $a = 3 \cdot 5^{(a)}$, let $a_n = \Phi((a)_2, n_0)$, i. e. if $a \in O$, then in a manner of speaking, $a_0, a_1, a_2, ...$ is the fundamental sequence whose limit is a. Let $Def(a, n) \equiv [a_n]$ is defined], more precisely $Def(a, n) \equiv (Ey) T_1((a)_2, n_0, y)$.

^{*} Research for this paper was conducted under a grant from the National Science Foundation, U. S. A.

⁽¹⁾ This answer appears as Corollary 2. Kreisel and Mostowski asked similar questions, which are answered by Corollary 1 and [6] Theorem 1.

⁽²⁾ It is recommended that the reader be familiar with [2] through § 14 and [6] through § 20, and have both papers available for reference.

LEMMA 1 (Kleene). If $b \in O$ then $C(b) = \hat{a}[a <_O b]$ and C(b) is well-ordered by the "less-than" relation $x \in C(y)$ with ordinal |b|. (See [2, 6], § 20, for proof.)

When \pm is an equivalence relation on a set S, we say that < is a linear ordering of S relative to \pm if (3):

- (L1) $x, y \in S \rightarrow x = y \lor x \stackrel{.}{<} y \lor y \stackrel{.}{<} x$,
- (L2) $x, y, z \in S \& x < y \& y < z \rightarrow x < z$,
- (L3) $x \in S \to \text{not } x < x$,
- (L4) $u, v, x, y \in S \& x = u \& y = v \rightarrow [x < y \equiv u < v].$

If = is =, then (L4) is automatically satisfied. Note that $x \in C(y)$ as x < y, = as =, and C(b) as S satisfy (L1)-(L3) if $b \in O$, and if $b \notin O$ then only (L2) need be satisfied ((L1) and (L3) are false for suitably chosen C(b)).

We shall define a set Q_0 by amending Kleene's definition of Q to require that C(a) be linearly ordered when $a \in Q$. In place of Kleene's [2] (33) we write

$$a \in Q =: a = 1. \lor . \ a = 2^{(a)_0} \& (a)_0 \in Q. \lor .$$

(1.1)
$$a = 3 \cdot 5^{(a)_2} \& (n) [\operatorname{Def}(a, n) \& a_n \in Q \& a_n \in C(a_{n+1})] \& [C(a) \text{ is linearly ordered by } x \in C(y) \text{ relative to } =].$$

We note that the clause [C(a)] is linearly ordered by $x \in C(y)$ relative to =] does not contain the variable Q and can be written in the form (x)(Ey)P(a,x,y) where P is primitive recursive, since the closures of (L1)-(L3) assume the respective forms $\nabla[\mathfrak{A} \to \mathfrak{A}]$, $\nabla[\mathfrak{A} \to \mathfrak{A}]$, $\nabla[\mathfrak{A} \to \mathfrak{A}]$, $\nabla[\mathfrak{A} \to \mathfrak{A}]$. Following the method of [2], $\S 14$, we obtain a primitive recursive predicate R_0 such that the set $Q_0 = \hat{a}(x)(Ey)R_0(a,x,y)$ is a solution to (1.1). Kleene [6] shows that O is the smallest set Q satisfying (1.1); Q_0 can be characterized as follows:

LEMMA 2. Q_0 is the largest set Q satisfying (1.1).

Proof. By the remarks above Q_0 is a solution to (1.1). Suppose the lemma is false. Then there is a set Q satisfying (1.1) and an $a \in Q$ such that $a \notin Q_0$. But if $a \notin Q_0$ then there is an x such that $(y) \, \overline{R}_0(a, x, y)$. Assume a and x have been chosen such that x is minimal. By examination of Kleene's (35) taking into account the modifications above, we obtain an $a' \in C(a)$ and an x' < x such that $(y) \, \overline{R}_0(a', x', y)$, which contradicts the choice of x.

In obtaining a' and x' the only non-trivial case is $a = 3 \cdot 5^{(a)2}$, which we now consider. Since $a \in Q$ and Q satisfies (1.1), it follows that C(a)

is linearly ordered and $(n)[\operatorname{Def}(a_n) \otimes a_n \in C(a_{n+1})]$. But $a \in Q_0$ and Q_0 also satisfies (1.1). Hence $(En)[a_n \in Q_0]$, i. e. the clause

$$(1.2) (x2)(x3) [T((a)2, (x2)O, x3) \rightarrow (x4)(Ey2) R0(U(x3), x4, y2)]$$

obtained from Kleene's (35) is false. Choose x_2, x_3, x_4 such that

(1.3)
$$T((a)_2, (x_2)_0, x_3) \& (y_2) \overline{R}_0(U(x_3), x_4, y_2)$$

and let $n = x_2$. Then $a' = a_n = U(x_3)$ and $x' = x_4$ are the desired numbers.

Remark. This lemma and its proof suggest that it is possible to define Q_0 using the method of [2], § 8. This is accomplished by defining \bar{Q}_0 as follows.

- $(\bar{Q}1)$ $a \neq 1 \& a \neq 2^{(a)_0} \& a \neq 3 \cdot 5^{(a)_2} \rightarrow a \in \bar{Q}_0$
- $(\overline{Q}2)$ $a \in \overline{Q}_0 \& a \neq 0 \rightarrow 2^a \in \overline{Q}_0$,
- $(\overline{Q}3) \quad a = 3 \cdot 5^{(a)_2} \& [\overline{\operatorname{Def}}(a, n) \vee a_n \in \overline{Q}_0 \vee a_n \in C(a_{n+1})] \to a \in \overline{Q}_0$
- $(\overline{Q}4)$ $a \in \overline{Q}_0$ only as required by $(\overline{Q}1)$ - $(\overline{Q}3)$.

Then \overline{Q}_0 is recursively enumerable in $\operatorname{Def}(x,y)$, $x \in C(y)$. Lemma 2 and the classification of Q_0 are easily obtained from this definition.

2. O in terms of Q_0 .

LEMMA 3. $a \in O \equiv a \in Q_0 \& (\overline{E}a)(x)[a(x+1) \in C(a(x)) \& a(0) = a]$. I. e. $a \in O$ if and only if $a \in Q_0$ and C(a) is well ordered.

Proof. The implication to the right follows from Lemmas 1 and 2. On the other hand assume $a \in O$. If $a \in Q_0$ the lemma is proved. If $a \in Q_0$ then it is possible to define an infinite descending sequence $(x_{n+1} \in C(x_n))$ in $Q_0 = O$ beginning with $x_0 = a$, using the inductive definitions of O and of Q_0 .

3. L and $<_a$. Let Q_a be a variable which ranges over all subsets of the natural numbers and let $<_a$, $=_a$ be two-place predicate variables $(a \neq 0)$. We define $L(a, Q_a, <_a, =_a)$ to hold if and only if $a = 3 \cdot 5^{(a)x}$, $a \in Q_0$, and for every x and y

$$(3.1) x \in Q_a \equiv x <_a a \lor x = a,$$

(3.2)
$$x =_a y \equiv x, y \in Q_a \& (z)[z <_a x \equiv z <_a y],$$

(3.3)
$$<_a$$
 linearly orders Q_a relative to $=_a$,

$$(3.4) \{1,a\} \subseteq Q_a \subseteq Q_0,$$

$$(3.5) y \in Q_a \& x \in C(y) \to x <_a y,$$

(3.6)
$$x <_a y \to (Ez)[z \in C(y) \& z =_a x],$$

$$(3.7) x <_a a \rightarrow 2^x <_a a,$$

(3.8)
$$x = 3 \cdot 5^{(x)_2} \in Q_0 \& y <_a a \& (n)[x_n <_a y] \to x <_a y \lor x =_a y .$$

⁽⁸⁾ $x, y \in S$ is short for $x \in S \& y \in S$.

We will not make use of the fact that each of (3.1)-(3.8) happens to be independent of the others. Let $L(a, <_a) \equiv L(a, Q_a, <_a, =_a)$ where Q_a and $=_a$ are defined by (3.1) and (3.2); $x \leqslant_a y \equiv x <_a y \lor x =_a y$; and for $a \in O$

$$(3.9) O_a \equiv \hat{x}(|x| < |a| \lor x = a),$$

(3.10)
$$x <_a^{\circ} y \equiv |x| < |y| \& x, y \in O_a,$$

(3.11)
$$x =_a^\circ y = |x| = |y| \& x, y \in O_a.$$

LEMMA 4. If $a \in O$ and $a = 3 \cdot 5^{(a)2}$, then $L(a, O_a, \langle \stackrel{\circ}{a}, = \stackrel{\circ}{a})$.

4. Main theorem. Let β be a variable which ranges over all two-place number-theoretic predicates, and let $a=3\cdot 5^{(a)}$. Then

(4.1)
$$a \in O = (E\beta)_{HA}L(\alpha, \beta) = (E\beta)L(\alpha, \beta).$$

The proof of this theorem will be postponed until § 6. The solution to Kleene's question is a corollary of this theorem.

5. Properties of $<_{a}$. Throughout this section we assume

(5.1)
$$a = 3 \cdot 5^{(a)_2} \& a \in Q_0 \& L(a, Q_a, <_a, =_a).$$

Two sets S and T of natural numbers are said to be isomorphic, written $S \cong T$, if there is a 1-1-correspondence xRy whose domain is S and whose range is T such that

(5.2)
$$uRx \& vRy \to [u \in C(v) \equiv x \in C(y)].$$

A segment of S is a set of the form $C(b) \cap S$ where $b \in S$. From the classical theory of ordinals, if S and T are well-ordered by $x \in C(y)$, then either $S \cong T$ or one of S and T is isomorphic to a uniquely determined segment of the other. (The crucial reasons for a step in a proof are indicated at the end of the step between parentheses.)

LEMMA 5. If
$$x =_a y$$
, then $C(x) \cong C(y)$.

Proof. Assume $x =_a y$. Then $x, y \in Q_a \subset Q_0$ ((3.2), (3.4)), and therefore C(x) and C(y) are linearly ordered (Q_0 satisfies (1.1)). The correspondence $uRv \equiv u \in C(x)$ & $v \in C(y)$ & $u =_a v$ has domain C(x) and range C(y) ((3.5), (3.6)). Assume also uRs, vRt, and $u \in C(v)$. (To show $s \in C(t)$.) Then $s =_a u <_a v =_a t$ by (3.5); hence $s <_a t$ by (3.3). Now s and t are elements of the linearly ordered set C(y). The only way s and t can be related in that ordering consistent with $s <_a t$, (3.5), and (3.3) is $s \in C(t)$. Etc.

LEMMA 6. If $x <_a y$ then C(x) is isomorphic to a segment of C(y). Proof. Let $u \in C(y)$ such that $x =_a^* u$ (see (3.6)). Then $C(x) \cong C(u)$ by the previous lemma. LEMMA 7. If $a \in O$ then $x <_a y \rightarrow x <_a^\circ y$ and $x =_a y \rightarrow x =_a^\circ y$ (see (3.9)-(3.11)).

Proof. If x and y are elements of O_a and of Q_a , then they are related the same way in one ordering as they are in the other by virtue of Lemmas 1, 5, 6. Hence it is sufficient to show that $O_a \subset Q_a$.

Assume $y \in O_a$ and by hypothesis of induction that $C(y) \subseteq Q_a$. (To show that $y \in Q_a$.) The case that y = 1, y = a, or $y = 2^{(y)_0}$ is taken care of by (3.4) and (3.7). Assume also $y = 3 \cdot 5^{(y)_2} \neq a$. Let $z \in C(a)$ such that |z| = |y| < |a|. Then $z <_a a$ (see (3.5)), $(n)[y_n \in Q_a]$ (hypothesis of induction), and $(n)[y_n <_a^2 z]$. By the remark at the beginning of the proof $(n)[y_n <_a z]$; therefore $y \leqslant_a z$ (see (3.8)) and $y \in Q_a$ (see (3.1), (3.3)).

LEMMA 8. If $a \in O$ then $Q_a \subset O_a$.

Proof. Assume $a \in O$, $x \in Q_a$, $x \neq a$. Choose $y \in C(a)$ such that $x =_a y$ (see (3.1), (3.6)). Then $C(x) \cong C(y)$ (Lemma 5). But C(y) is well-ordered and $x \in Q_0$. Hence $x \in O$ (Lemma 3) and |x| = |y| < |a|, i. e. $x \in O_a$.

The next lemma follows from Lemmas 4, 7, 8:

LEMMA 9. If $a \in O$ then $<_a^\circ$ is the unique relation $<_a$ such that $L(a, <_a)$. LEMMA 10. If $a \notin O$ then $O \subset Q_a$, and for $y \in O$, $x <_a y \equiv |x| < |y|$ and $x =_a y \equiv |x| = |y|$.

Proof. Assume $a \in O$ and $y \in O$. To show $y \in Q_a$ assuming also $C(y) \subseteq Q_a$ (hypothesis of induction). If y=1 or $y=2^{(y)a}$, then $y \in Q_a$ ((3.4), (3.7)). Assume $y=3 \cdot 5^{(y)a} \in O$. For each n, let $\eta(n) \in C(a)$ such that $\eta(n) =_a y_n$ ((3.6) substituting a for y and y_n for x). Then $C(\eta(n)) \cong C(y_n)$ (Lemma 5) and is therefore well-ordered. Now $\eta(n) =_a y_n <_a y_{n+1} =_a \eta(n+1)$, i. e. $\eta(n) <_a \eta(n+1)$. Hence $\eta(n) \in C(\eta(n+1))$ since C(a) is linearly ordered by $u \in C(v)$, and (3.5). Let S be the union of the $C(\eta(n))$. Then $S \subset C(a)$ and S is well-ordered by $u \in C(v)$. Thus S cannot exhaust all of C(a) since the latter is not well-ordered. Let $w \in C(a) - S$. Then $S \subseteq C(w)$ and therefore $y_n =_a \eta(n) <_a w <_a a$. Hence $y \leq_a w$ (see (3.8)) and $y \in Q_a$. Thus $O \subset Q_a$.

Now assume $y \in O$ and $x <_{\alpha} y$. Then C(x) is isomorphic to a segment of C(y) (Lemma 6). Hence |x| < |y| (Lemma 3).

On the other hand, assume $y \in O$ and not $x <_{\alpha} y$. Then either $y =_{\alpha} x$ or $y <_{\alpha} x$. Hence C(y) is isomorphic to C(x) or to a segment of C(x). In either case |x| < |y| is impossible. The last part of the lemma follows similarly.

6. Proof of the theorem. Assume $a \in O$ and $a = 3 \cdot 5^{(a)}$ (see § 4). Then $(E!\beta) L(a,\beta)$ (Lemma 9). Hence $x <_a^{\circ} y \equiv (E\beta) [L(a,\beta) \& x\beta y]$

 $\equiv (\beta)[L(a,\beta)\rightarrow x\beta y]$. But L is certainly arithmetical, and therefore $<_a^{\circ} \in HA$.

On the other hand, suppose $a \in O$ and $a = 3 \cdot 5^{(a)2}$. If $a \in Q_0$ then $L(a, \beta)$ is false for all β . If $a \in Q_0 - O$ and $L(a, \beta)$ then O_b is recursive in β for each $b \in O$ (Lemma 10). Using also [10] or [9], Theorem 2, together with the function defined in the proof of [8], Satz 9, it follows that every HA predicate is recursive in β . Hence β is not HA. Furthermore β cannot be unique by the argument at the beginning of the proof.

Remark. The restriction that a be a limit notation is easily eliminated. One way would be to redefine L by modifying (3.7) to read $x <_a (a)_0 \rightarrow 2^x <_a a$ when a is a successor notation. Or one could reduce the successor case to the limit case using a primitive recursive function π such that $\pi(3 \cdot 5^y) = 3 \cdot 5^y$ and $\pi(2^y) = \pi(y)$. By either method we obtain the following (a is a function variable):

COROLLARY 1. There is an arithmetical predicate A such that $a \in O \equiv (Ea)_{HA} A(a, a) \equiv (E!a) A(a, a)$.

LEMMA 11. If H(a) is HA then there is a primitive recursive predicate P such that $H(a) \equiv (Ea)(x) P(\bar{a}(x), a) \equiv (E!a)(x) P(\bar{a}(x), a) \equiv (Ea)_{HA} P(\bar{a}(x), a)$.

Proof. Assume H(a) is HA. Then by a theorem proved independently by Addison, Grzegorczyk, Kuznecov, and Myhill (see [1], § 3.3), the representing function of H(a) can be obtained as a solution a_1 to a system E of equations which contains n function symbols and has a unique solution a_1, a_2, \ldots, a_n . That a_1, a_2, \ldots, a_n satisfy E can be written in the form

(6.1)
$$(x_1) \dots (x_k) [S(x_1, \dots, x_k, \alpha_1, \dots, \alpha_n)]$$

where S is primitive recursive and $x_1, ..., x_k$ are the individual variables of E. Employing suitable 1-1 primitive recursive functions mapping $(x_1, ..., x_k)$ to x and $(a_1, ..., a_n)$ to α together with the inverse mappings we can write

(6.2)
$$H(a) = (Ea)(x)[S(x_1, ..., x_k, a_1, ..., a_n) \& a_1(a) = 0],$$

and also with (E!a) or $(Ea)_{HA}$ in place of (Ea). The predicate P is now easily obtained using Kleene's normal form (see [6], § 24).

LEMMA 12. If H(a, a) is hyperarithmetical, then there is a primitive recursive predicate P such that

$$H(\alpha, a) \equiv (E\beta)(x)P(\alpha, a, \beta, x) \equiv (E!\beta)(x)P(\alpha, a, \beta, x).$$

Proof. The proof is similar to that of the previous lemma except that we now introduce a function symbol in E corresponding to the free variable a, and relativize the arguments above with respect to the

function a. See [5], § 7, for the relativized concepts needed for this proof. Note that if β exists, it is HA relative to α .

COROLLARY 2. There is a primitive recursive predicate P such that $a \in O \equiv (Ea)_{HA}(x)P(\overline{a}(x),a) \equiv (E!a)(x)P(\overline{a}(x),a)$, and likewise for any predicate (a)B(a,a) (B arithmetical) in place of $a \in O$.

Proof. Let A be the predicate obtained in Corollary 1. Then applying Lemma 12, $A(\alpha, \alpha) \equiv (E\beta)(x)P(\alpha, \alpha, \beta, x) \equiv (E\beta)(x)P(\alpha, \alpha, \beta, x)$, where P is primitive recursive. For a given value of a consider the pairs (α, β) such that $(x)P(\alpha, \alpha, \beta, x)$. Among these pairs there is at most one β corresponding to each α . Hence $(E\alpha)A(\alpha, \alpha)$ is equivalent to the existence of a unique pair (α, β) such that $(x)P(\alpha, \alpha, \beta, x)$. Thus if $\alpha \in O$, there is a unique pair (α, β) satisfying $(x)P(\alpha, \alpha, \beta, x)$, and both α and β are HA. If $\alpha \notin O$ and $(x)P(\alpha, \alpha, \beta, x)$, then α is not HA, and therefore the contraction of (α, β) to a single function is not HA. In this way the desired expression for $\alpha \in O$ is obtained. The corresponding expression for $(\alpha)B(\alpha, \alpha)$ is obtained by applying [6] Theorem 1.

Remarks. It is known that every predicate H(a) expressed as in Lemma 11 must be HA. In fact the condition that a be unique can be omitted (see the second paragraph of this paper). Thus Lemma 11 can be used to characterize the class of HA predicates similarly to [1] for functions. Kleene [7] has obtained some results on the least segment of HA that will suffice for the range of a in $H(a) \equiv (Ea)(x)P(\overline{a}(x),a)$, where H(a) is an arbitrary fixed HA predicate, thereby strengthening our $(Ea)_{HA}$. Kleene does not obtain (E!a), but there does not appear to be any difficulty involved in adding uniqueness to his treatment.

References

[1] A. Grzegorczyk, A. Mostowski and C. Ryll-Nardzewski, The classical and the ω-complete arithmetic, The Journal of Symbolic Logic 23 (1958), p. 188-206.

[2] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, American Journal of Mathematics 66 (1944), p. 41-58.

[3] — Introduction to metamathematics, New York and Toronto, Amsterdam and Groningen 1952.

[4] — Arithmetical predicates and junction quantifiers, Transactions of the American Mathematical Society 79 (1955), p. 312-340.

[5] — Hierarchies of number-theoretic predicates, Bulletin of the American Mathematical Society 61 (1955), p. 193-213.

[6] — On the forms of the predicates in the theory of constructive ordinals (second paper), American Journal of Mathematics 77 (1955), p. 405-428.

[7] — Quantification of number-theoretic functions, Compositio Mathematica 14, p. 23-40.

320

[8] W. Markwald, Zur Theorie der konstruktiven Wohlordnungen, Mathematische Annalen 127 (1954), p. 135-149.

[9] C. Spector, Recursive well-orderings, The Journal of Symbolic Logic 20

(1955), p. 151-163.

[10] — Strongly invariant hierarchies, Notices of the American Mathematical Society 5 (1958), p. 851.

THE OHIO STATE UNIVERSITY

Recu par la Rédaction le 11.5.1959

Sur la compactification des espaces métriques

par

R. Engelking (Warszawa)

Dans leur travail [1], J. de Groot et R. H. McDowell ont introduit la notion de $\{\Phi_{\tau}\}_{\tau \in T}$ -compactification pour un espace métrique X, $\{\Phi_{\tau}\}_{\tau \in T}$ étant une famille de transformations de X dans X. On appelle ainsi un espace métrique compacte \widetilde{X} , dont X est un sous-ensemble dense, s'il existe une famille $\{\widetilde{\Phi}_{\tau}\}_{\tau \in T}$ de prolongements des Φ_{τ} sur \widetilde{X} à valeurs dans \widetilde{X} . Ils ont aussi prouvé que pour chaque espace X métrique séparable et chaque famille dénombrable $\{\Phi_{i}\}$ il existe une $\{\Phi_{i}\}$ -compactification; de plus, si $\dim X \leq 0$, on peut supposer $\dim \widetilde{X} \leq 0$. On a posé dans [1] le problème de trouver une $\{\Phi_{i}\}$ -compactification n-dimensionnelle pour un espace X de dimension n et une famille $\{\Phi_{i}\}$ dénombrable. Le présent travail donne une solution de ce problème. Nous nous proposons de prouver le théorème suivant:

THÉORÈME. X étant un espace métrique séparable de dimension $\leqslant n$ et $\{\Phi_i\}$ une famille de transformations de X dans X, il existe une $\{\Phi_i\}$ -compactification \widetilde{X} de X telle que $\dim \widetilde{X} \leqslant n$.

Démonstration. On peut supposer que les fonctions superposées $\Phi_i \Phi_i$ et l'identité I de X appartiennent aussi à $\{\Phi_i\}$. Admettons dans X une métrique ϱ totalement bornée telle que les fonctions Φ_i soient uniformément continues dans ϱ (cf. [1]).

Pour chaque m=1, 2, ... nous définissons par induction un recouvrement (1) $\mathfrak{A}_m = \{U_1^m, ..., U_{m_n}^m\}$ de X tel que:

- (a) $\delta(U_i^m) \leq 1/m \ (i = 1, ..., k_m),$
- (b) rang $\mathfrak{A}_m \leqslant n$,
- (c) pour chaque l < m et $s \le k_m$ il existe un $r \le k_{m-1}$ tel que $\varPhi_l(U^m_s) \subset U^{m-1}_r$

et une famille de fonctions $f_1^m, \dots, f_{k_m}^m$ satisfaisant aux conditions

(d) $f_s^m: X \to [0, 1],$

⁽¹⁾ Le mot "recouvrement" signifie toujours "recouvrement fini et ouvert". Un recouvrement $\mathfrak A$ est contenu dans $\mathfrak A_1$ (ou $\mathfrak A_1$ contient $\mathfrak A$) si pour chaque $U \in \mathfrak A$ il existe un $U_1 \in \mathfrak A_1$ tel que $U \subset U_1$.