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On the determining of the form of congruences in
abstract algebras with equationally definable constant
elements

by
J. Stominski (Torud)

As we know all the homomorphic images of any abstract algebra 4
are determined (up to isomorphisms) by the congruences in 4. Therefore
the knowledge of the form of all congruences in A4 is very important.
For some abstract algebras the form of congruences is already determined,
e.g in any group, ring and hoolean algebra. Let G = (@, ., 1,
R=<(R, +,—, > and B = (B, u, n, "> be any group, ring and boolean
algebra. Every congruence ~ in those algebras has one of the following
forms:

1° for all # and y in @, .~y if and only if x-yte N, where N is
a pormal subgroup of G,

2° for all # and ¥ in R, x~y if and only if 2+ (—y)e I, where I is
an ring-ideal in R,

3° for all # and ¥ in B, x~y if and only if 2 ~ ' v &' ~ yedJ, where
J is a boolean-ideal in B.

The sets N, I and J are whole abstraction classes of congruence ~
in G, R and B determined respectively by the unit ¢ =z-21=y-y1
of G, the zero element 0 = 24 (—z) = ¥+ (—¥) in R and by the boolean
zero X =220 v’ ~no=yny vy ~y in B. Hence it follows that
every congruence ~ in G, R and B has one of the following properties:

1% for all #, ¥ in G, s~y if and only if z-y~1~e,

2% for all », ¥ in R, s~y if and only if z+(—y)~0,

3% for all 4, ¥y in B, 2~y if and only if 2 ~ny'v &’ ~ny~0*%

The properties 1%°, 2°° and 3% are very similar. We see that the ways
of the determining of the form of congruences in G, R and B are analo-
gical. J. Lo$§ has set the following question: Can be determined
the form of congruences in every equationally definable class %, of
algebras with equationally definable constant elements in an analogical
way as in groups? The solution of this problem is negativ (see (5.5)).
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The purpose of this paper is to give the sufficient and necessary con-
ditions for the determining of the form of congruences in such class 9,
in the analogical way as in groups. Those conditions are imposed upon the
set B(A,) of all equations which are valid in every algebra of %,.

& 1. Terms, notations and lemmas. By a k-ary operation on
the set A we understand a function F(z,, &, ..., zz) defined on 4 and
with values in 4. A system 4 = (4,7, Fs, ..., F>, where 4 is a non-
empty set and ¥, are k;-ary operations on .4, is called an algebra of the
type A = {ky, ks, ...y knd. Two algebras of the same type are called similar,
In the sequel we shall denote algebras by 4, B, C, ... and their sets by
A, B, 0, ... Let %A be the clags of all algebras of the type 4. An algebr;
B < is a subalgebra of algebra A e W if B is a subset of 4 and moreover
the operations F; of B and 4 are identical on B. Let 4 ¢ and let 4,
be a non-empty subset of A. The least subalgebra of 4 which contains 4,
will be denoted by {dgla. If {d,}a = 4, then A4, is a set of generaiors
for A and A is also called generated by 4,. Let F and F’ be k-ary opera-
tions on the sety A and B respectively. A mapping & is an homomorphism
of operation F into (onto) operation F' if h(4)C B (h(A) = B) and

WE(yy oy ooy ) = F'(R(ay), (@), ...y B(a))

for all a;, a5, ...y gz in A.

A homomorphism one-to-one is called an ¢somorphism. A mapping »
of A into (onto) B is an homomorphism of the algebra A=A, T, Fy, ..., Fp>
into (onto) algebra B = (B, #y,F;, ..., F,> if h is an homomorphism of
every operations F; into (onto) operation F;, i=1,2,...,n A binary
relation ~ in the set A is a congruence of an operation F(w;, %y, ..., D)
defined on A. if it is symetric, reflexive and transitive, and if a,, a,, ..., az,
Oy Aoy ey A€ A, Gy~a], Ay~as, ..., G ~a; implies

Flay, sy eoey ) ~F (a1, A2y oevy () .

A binary relation ~ defined in set 4 is a congruence in an algebra
{4 =<{A,F, Py, ..., Fyy if ~ is a congruence of every operation F;,
2=1,2,..,n If ~ is a congruence in 4, then 4/~ denotes the set
of all abstraction classes of ~ in 4. By af/~, for a in A, is denoted that
abstraction class to which a belongs (*). Puting for all a;f ~, @of ~, ..., i/ ~
in 4]~
Fi/’""(a'll'\” Bgf ~~y weny Q[ ~) =Filay, gy ooy Or) ~

*) @/~ }s the set of all b in 4 such that a~b and it is called abstraction class
of ~ determined by a. 4/~ is the set of all abstraction classes a/~ with a < 4.
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we obtain a k;-ary operation F;/~ in A/~ and therefore the system
Aj~ = {A| s, Fyf ~, Fy] ~, ..., Faj~" is an algebra in class % A/~ is
the quotient algebra formed by dividing the algebra A by the con-
gruence ~. Let 9, be any subelass of the class % and let € be an arbitrary
set. We shall say that an algebra 4 <% is a free algebra for U, freely
generated by O if it has the following two properties:

1° C is & set of generators for algebra 4,

2° every mapping f of the set ¢ into arbitrary algebra B %, may
be extended to a homomorphism i of 4 into B. :

A is %,-free algebra freely generated by C if A%, and A4 is a free
algebra for %, freely generated by C. Two %,-free algebras freely generated
by sets of the same power are isomorphic (see [4], p. 20). There exists
(up to isomorphism) at most one ¥U-free algebra freely generated by
a set of power m. However, the %,-free algebras do not always exist.
Their existence depends on the class . If U, = %, then there exist such
algebras, i. e. there exist U-free algebras freely generated by sefs of
arbitrary power. %U-free algebras are also called absolutely free of ithe
type 4. For a construction of U-free algebras see my paper (4], p. 21.

Now using the notion of UA-free algebra we shall give the definitions
of A-term and N-equation. Let X be an arbitrary seb of power x, composed
by the following different elements: @y, L3y <.y Tmy -o5 M < Oy Moreover let

W = <W7 fl:r fﬁs cery f"r\

be a fixed A-free algebra freely generated by X. The elements of the
algebra W are called U-terms, the elements in X as variables are con-
sidered. The pairs {z, 7, where r and & are - terms, are called U - equations.
In the sequel we shall denote the U-terms by &, #, 4% ..., &, 'L, 9, ..,
8, 8, 83y 1y 8,8, 02 1y Ty T T ey @y P PPy oees v, v, ... and an UA-equa-
tion <z, 9 by Tr =21 The set of all 9-equations will be denoted by Ey.
Tet A € %. An A-equation Tz =& 1 is valid in the algebra A if h{z) = h{H),
for every homomorphism % of the algebra W into 4. By A(E), for EC By,
we shall denote the set of all algebras 4 % in which every A -equation
in B is valid, By Ex(%,), for %, C %, will be denoted the set of all A-equa-
tions which are valid in every algebra belonging to class A,. A class
9™, C U is called equationally definable if Uy = U (Bag(%,))- In the sequel
the 9-terms and %-equations will be called briefly terms and equations.
Let z¢ W be a term. The least subset X,C X such that ve{Xow is
called the support of =, it will be denoted by s(r). The support of an
equation Tt =101 is the set 8T =9 = 8(1) v &(#), where s(z) and s(d)
are the supports of terms = and ¢ respectively. The elements in $(z)
and s(Tz =97 are those variables which appear in term 7 and equation

20%
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Fr =907\ The term = with support s (z) = (Zmy, Tmyy ++- s Tmy), Where m; < m,
< oo < my, Will be denoted also bY T(®nyy Tmyy ey Tmy)- The endomorphisms
of W, i. e. the homomorphisms #(W) C W, are called substitutions in W.
If 5 is a substitution in W, then 7 (), for 7 « W, is called % - substitution of .
n(zr) is a substibution of 7z, where the terms #(x) are substituted for
variables @. Lot (T, Cmgy oey Tmy)y PuyPay ..oy By be arbitrary terms.
‘We denote by = (y, ¥, ..., ¥) the #-substitution of ferm v (@n,, Zm,, ..., Tomy)
With 7(@m,) = Oy, 1(Bmy) = Dy oy 9 (Bmy) = Py L0t T (Bnyy Bngy ey Bmy) e
any %-term and 4 an arbitrary algebra in 9. The term v (Zm;; @, «-vy %))
defines in 4 an l-ary operation r, such that for all a;, a;,...,a;, in 4

Ta(ty gy ey 1) = h(f(mmu Lmgy =) wm;)) ’

where h is any homomorphism of W in 4 with A{wm) = a;, for
t=1,2,..,1 74 is called the analyiical operation in A defined by term <.
The following theorems can be easily proved:

(1.1) If ~is a congruence in an algebra A e W, then, for every A-term t,
the relation ~ 18 a congruence of the operation a.

(1.2) If h is a homomorphism of an algebra A U into an algebra B,
then, for every U-term =, the mapping h is a homomorphism of the opera-
tion t4 into the operation tg.

Birkhoff [2] has proved the next theorem

(1.3) If U, CA is equationally definable class, then there exist U-free
algebras freely gemerated by the sets of arbitrary power (2).

The following theorem is known:

(1.4) A is free algebra for W, C U freely generated by a set O if and
only if it has the following properties:

1° C is a set of gemerators for A,

2° for all terms ©,%e¢ W and for every homomorphism h of W into A
with h(s(x)us(@) C C and with hiz) = h(y) for z#£y and 2,y es(v) us (D),
if h(v) = h(9), then the equation "7 =87 is valid in every algebra in U, (3).

The theorem (1.4) may be also expressed in the following form:

(1.5) 4 18 a free algebra for Wy C U freely generated by a set € if and
only if it has the following properties:

1° C is a set of generators for A,

(*) For (1.3) we suppose that 2, has an algebra with at least two element. The
proof of (1.3) is also contained in [3], p. viii-ix, and [4], p. 37-40.

(*) R(s(z) v s(®) is the set of all elements h{z) with x contained in the set
£(r) v 8(9), where s(z) and s(#) are the supports of terms r and #. The theorsm (1.4)
easily results from the form of free algebras in equationally definable classes which is
given e. g. in [4], theorem (8.3), p. 38.
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2° for all W-terms T(Tmy; Ty, ovey Tm)) aANd D@y s Tngy ey Tn,) and for
all ¢yy Cgy onesy Cly Cigay -ovy Crpp 0 G, if

Tal01; Ca) vy 0) = Pal0rp1, Criay seey Clir)

then the equation T T (1, @5, v, B1) = B(Bir1, Tlea, -, Tipe) | belongs to Eu(W),
WhETe By, Loy euey Bly Biy1y ooy Bipr A6 Such variables that i = j if and only
%f Gy = Cj.

We note yet the following obvious theorem:

(1.6) Let AeN be an algebra generated by a set C. Then for every
element a e A there exists an U-term T with ﬁ =1 and the different
elements ¢y, €y ..., €1 in O such that

& =7Ta(Cy, Gy ey C1) -

§ 2. The form of congruence generated by a given set.
Let 4 =<4, F,, Fs,...,Fs> be an algebra in %A and let ~4 and ~4 be
the congruences in 4. We say that the congruence ~ is smaller than
the congruence ~y: ~y < ~y, if a~qb implies a~,b for @ and b in A.
Let U be any subset of the set 4 x A. The least congruence ~ in A4 such
that (@, b> ¢ U implies a~> is called generated by U. The purpose of
this paragraph is to give the form of comgruence in A generated by U.
By D will be denoted the set of all pairs (&, a) with a e 4. Let p be any
natural number and moreover let al, a?, ..., a? be arbitrary elements in A.
We shall say that the sequence [a%, a? ..., a%] is a U-chain in 4 with
the length p if there exist the 9-terms of with s(z%) =my, i=1,2, ...,p—-lli,
¢* with s(=cp‘) =ng, 1=2,3,..,0 ayndlﬁhere exist the elements b}, b5,
$=1,2,..,p—1, §=1,2,.,m; %, v, i =2,3,..,p, ] =1,2,..,m,
in A such that

@1  GLEHeUUD for i=1,2,.,p-1 j=1,2,..,m;,

(2) v eUuD for i=2,8,..,p, i=1,2,.,m;,

(3) @t =7k(d1, by ey Bim) +

4) @ =gh(vl, ok, .., vh) =7a(b, bE, .y bRy fOor  i=2,3,..,p—1,
?. y Uzy oeey

(8) P = ohilf, 1B, ...y ¥,)

(6) o (orth, v, .., vtl) = 74(bF, b,y oy b)) for i=1,2,..,p—1.

Let [al, @ ..., a?] be a U-chain in 4. The elements a* and aP are
called the first and the last element of that U-chain. Always is p> 2.

It is easy to verify that

(2.1) [a, a] for all & in A, is ¢ U-chain in A.
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C o+ (2.2) If [, ..., aP] is @ U-chain in A, then also [a?, a?—1, ..., al]
is a U-chain in 4.

(2.3) If [a% a2 ..., aP) and [aP, a?*%, ..., a?] are the U-chains in A,
then [aly a2, ..., @, a?+%, ..., a4] is an U-chain in A.

(2.4) If |a, a2, ..., a%] for §=1,2, .., ki, are U-chains in A, then
the sequence

1 2 % 2
[FAa, Gay vy Ghe)y Fi(03, 02,y coey O))y ooy Falady 03, ooy )]

is « U-chain in A.

(2.5) If[@, ey Cy ooy b1 05 @ U-chain in A, then [a, a, ..
is also a U-chain in A.

(2.6) If <a,bd> e U, then [a,b] is a U-chain in A

The next theorem gives the form of congruence in A4 generated
by set UCAXA.

(2.7) The relation ~ in A such that for all @ and b in A a~> if and
only if there ewists a U -chain in A with first element o and the last element b,
is the comgruence in A generated by U.

Proof. From (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6) it follows
that ~ is a congruence in A such that <{a, d> ¢ U implies ¢ ~b. Let ~;
be any congruence in A such that {a,b) e U implies a~b. Suppose
that a ~b. Then there exists a U-chain [al, ¢?, ..., a?] in 4 with ¢ = a' and
b = a». From the definition of U-chain it follows that o' ~;a%~; ... ~, a7,
or a~b. Thus ~ is the congruence in 4 generated by U and the theorem
is proved.

(2.8) If B is a subalgebra of A and U is a subset of BXxBC A XA
and ~, and ~ are the congruences in B and A generated by U, then ~ < ~.

Proof. This follows easily from (2.7).

.9 €y Cyany by B]

§ 3. v(z,y)-congruences and y(z,y)-normal sets. Let 4
= (A, F;, Fyy ..., P> be aun algebra in A and let p(z,y) be arbitrary
A-term with two different variables 2 and .

(8.1) 4 congruence ~ in A is called a p(z,y)-congruence in A if
it has the following property:
(x) there exists an element ¢ in A such that for all a and b in A,
a~b if end only if pa(a, b) ~wa(c, ¢).
As a simple consequence of (3.1) we obtain

(8.2) If ~ is a y(z,y)-congruence in A, then for all d e A and for
all @, be A, ar~b if and only if pa(a, b)~ypa(d, d).

Proof. By (3.1) the congruence ~ has the property (). Let 4 be
an arbitrary element in A. Since d~d, we have, by (%), wa(d, d) ~wa(c, 6).
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Hence if yala, b)~va(d, ), then paa, b)~ypa(e, ¢} and thevefore, by (),
a~b. Since pald, d)~yale,c) for all ded, pald, d)~pa(b,b) for all d
and b in A. Let a~b. By the theorem (1.1) the conditions a~b and b~b
imply pa(a, b) ~pa(b, b). Thus a~> implies pala, b)~ypa(d, d) and the
theorem is proved.

From (3.1) and (3.2) the following theorem results

(8.3) 4 congruence ~ in A is p(z,y)-congruence in A if and only
if @ has the following property:

(%) for all d,a and b in A, a~b if and only if vala, b)~pald, d).

Proof. If the condition (sx) holds, then also the condition (x) holds
and therefore by (3.1) ~ is a y(z, ¥)-congruence in 4. If ~ is a y(z, ¥)-
congruence in 4 then by (3.2) the congruence ~ has the property (s+).
This finishes our proof.

Other characterization of u(z, y)-congruence is given in the next
theorem.

(3.4) A congruence ~ in A ig y(z,y)-congruence in A if and only
if it has the following property:

(%*)  there exists an abstraction class N of ~ such that for oll o and b
in A, a~>b if and only if pa(a,b)eN.

Proof. Suppose that ~ is a p{z,y)-congruence in 4. By (3.2)
wale, 6)) ~ = pa(d, &)/ ~ for all ¢, d ¢ A. Let pub N =ypalc, ¢)] ~. By (3.2)
for all a, b e 4, a~Db if and only if pa(a, b) ~pale, ¢) or a~d if and only
i pa(a, b) ¢ N. Therefore the congruence ~ has the property (*¥¥) for
N = ypalc, 6)] ~ and the necessity of (%) is proved. Now we shall prove
the sufficiency of (%*). Suppose that & congruence -~ in 4 has the
property (%*). Always is d~d. Hence by (%), pald, d) e N for all deA.
Since N is an abstraction class of ~ and ya(d, d) e ¥, N =vu(d, &) ~,
for deA. Therefore, by (%), e~b if and only if vala, b)~vpald, d)
or the congruence ~ is a w(x, y)-congruence in A and the theorem is
proved. From the proof of the theorem (3.4) it follows that for every
y(z, y)-congruence ~ in A there exists one and only one abstraction
class N of ~ which fulfils the condition (%#). That class N is determined
by any element yalc, ¢), for ¢ ¢ A. Therefore the subsets of A which are
the abstraction classes of y(z, y)-congruences in 4 determined by the
elements wa(c, ¢), are called y(w, y)-normal in 4. Thus ¥ C A is & p(x, y)-
normal set in 4 if N = wale, ¢)/~, where ¢¢ 4 and ~ is a w(z, y)-con-
gruence in A. Let N be a y(z, y)-normal set in 4. Then the relation ~
in A such that a~b if and only if ya(a, b} ¢ N, is a p{z, y)-congruence
in 4. Tt is called induced by N. The algebra 4/~ will be denoted also
by A/N and the abstraction class e/~ by a/N. The correspondence of the
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w{w, y)-congruences o p(z,y)-hormal sets is one-to-ome. From the
properties of v(z, y)-congruence the following theorem resulfs:

(3.8) A set NCA is p(w,y)-normal in A if and only if it has the
following properties:

(8.5.1) wala,a)elN for all a in A,

(3.5.2) yala,b)eN for all @ and b in N,

(8.5.3) for all be N and for all a e A, if pa(a,vab,b)) ¢ N, then a be-
longs to N,

(3.5.4) for all a,be A if pala, b) e N, then pa(b, a) ¢ N,

(8.8.3) forall a,b,ce A if pala,b) e N and pa(b, ¢) e N, then pa(a, o) e N,

(3.5.8) for all 1==1,2,..,n and for all Gy, Gay ey Gryy Dyy by ooy by in A

if pala;,by) e N, for j=1,2, .., k, then

WA(F'E(“U Gy ey Org)s Filbyy boy ooy bkc)) eN.

Proof. Tt N has those properties, then the relation ~ in A4 such
that a~b if and only if wa(e,b)e N, iz by (3.5.1), (3.5.4), (3.5.5) and
(3.5.6) a congruence in 4. By (3.5.2) and (3.5.3) N is an abstraction
class of ~ and therefore by (3.4) ~ is a y(w, y)-congruence in 4. If
N =yp4(c, ¢)] ~, where ~ is & y(2, ¥)-congruence in A, then obviously ¥
has the properties (3.5.1)-(3.5.6). This finishes our proof.

It is eagy to prove that the y(x, y)-normal sets have the following
properties which are analogical to properties of normal subgroups in
groups: ’

(3.6) The intersection of arbitrary family of w(w, y)-normal seis in A
s also a iz, y)-normal set in A.

(8.7) If B is a subalgebra of A and N is a p(z, y)-normal set in the
algebra A, = {N u Bla, then Ny = N ~ B is y(x,y)-normal set in the
algebra B and ihe algebras A|N and B/N, are isomorphic.

(3.8) If h 4s & homomorphism of A onto B and N is a y(z, y)-normal
set in B, then the set B(N) is p(z, y)-normal in A.

(3.9) Let N be a yp(z,y)-normal set in A. Then the natural homo-
morphism h(a) = a/N of A onto A/N mapps one-to-one the w(x, y)-normal
sets in A containing N onto the y(x, y)-normal sets ¢n A[N.

(3.10) Let N be a yw(z,y)-normal set in A and let h{a) = a/N be the
natural homomorphism of A onto B = A[N. If V is a y(w, y)-normal set
in B, then M =k~ (V) is w(z, y)-normal in A and the algebras B[V and
A[M are isomorphic.
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Let h be a homomorphism of 4 onto B and moreover let —~ be
a congruence in B. Then the relation ~~* in 4 such that
Oy ~"Laty

it and only if  A{a;) ~h(ay),

is a congruence in 4.

The congruence ~-! is called the k™ '-image of ~. Now prove the
following theorem:

(8.11) Let h be a homomorphism of 4 onto B and moreover et ~ be
a congruence in B. Then ~ is a w(z, y)-congruence in B if and only if ~~t
is a w(w, y)-congruence in A, where ~1 is the k™ '-image of ~.

Proof. If ~ is a y(z,y)-congruence in B, then from (8.8) it follows
that ~-%is a p(xz, ¥)-congruence in 4. Now suppose that ~~1is a p(w, ¥)-
congruence in 4. Henee by (3.1) ~* has the following property:

(k) ihere exisits ce A such that for all a; and a, in A
@y ~"La, if and only if pa(a,, @) ~"1palc, €).

We shall prove that for all b, and b, in B we have
(m) by~b, if and only if yu(bs, b)) ~pa(h(e), k().

In fact, let wg(bl,bz)NwB(h(c),h(c)) and let b, = h(a), bs = hiay),
where ay, ¢, € A. Therefore pa(h(a), k() ~a{h{c), h(c)}. Hence by (1.2)
we obtain h(pa(ay, as)) ~h{pa(c, ¢)) and thus, by the definition of ~,
wa(@y, @) ~-1pa(e, ¢). Henee by (k) we have a,~"1a, and therefore, by
the definition of ~=1, h{a)~h(as) or b ~b,. Conversely, let b, ~b, and
let by = h(ay), by = h(as), where a,,a, ¢ 4. Therefore h{a,)~h{a,). Hence,
by the definition of ~~1, we have ay~~ta, and thus, by (k), we obtain
vy, ag) ~Tpale, ¢) or  h(pa(as, ) ~F(pale, ¢)). Hence, by (1.2),
va(h(as), 1(as) ~ua(h(c), h(e)] o pa(by, b) ~pu(h(c), h(c)) and the lemma
(m) is proved. From (m) and (3.1} it follows that ~ is a yp(x, ¥)-congruence
in B and the theorem (3.11) is proved.

Let h be a homomorphism of an algebra A onto B. The relation ~nz
in A such that for all @ and b in 4

a~yh if and only if  h(a) = A(b)

is a congruence in 4. It is called induced by h. Obviously the algebra B
ig isomorphic to 4/~jy. But it is not always that there exists a yp(@,¥)-
normal set N in 4 such that B is isomorphic to 4/N. We have only the

following obvious theorem:
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(3.12) If h is a homomorphism of A onto B and the congruence ~y
induced by b is a w(xz, y)-congruence in A, then the algebra B is isomorphic
to A{N, where N is the p(z, y)-normal set in A such that N = ypa(c, )]~y
with ce 4.

To the mext paragraph we shall give the necessary and sufficient
conditions for to be each congruence in 4 a p(®,y)-congruence. If 4
fulfils those conditions, then each homomorphic image of 4 is isomorphie
to 4/¥, where N is some y(x, y)-normal set in A.

§ 4. On the determining of the form of congruences by
terms. Lot 4 = (A, 7y, Fy, ..., Fu> be an algebra in % and let y(z, y)
be an arbitrary %-term with two different variables z and #.

(4.1) We shall say that the term (z,y) determines the form of con-
gruences in A if every congruence tn A is a y(x, y)-congruence n A.

From (3.11) the following theorem results:

Tunorey 1. If the term y(z,y) determines the form of congruences
in A and b is a homomorphism of A onto B, then the term (2, y) determines
the form of congruences in B.

Proof. Let ~ be an arbitrary congruence in B and let ~ be the
h~limage of ~. ~1 is a congruence in 4. Henee by the hypothesis
of theorem ~~1is a p{x, ¥)-congruence in 4. Thus by the theorem (3.11)
~ i8 @& (@, y)-congruence in B and the theorem 1 is proved.

If the equation Tw(z, ) = p(y,y) ! is valid in 4,i.e. if for all a
and b in A we have wa(a, a) = wa(b, b), then we say that this equation
defines a constant element in A. If the equation Ty(x, z) = w(y,y)} is
valid in every algebra 4 belonging to a class U, C A, then we say that
this equation defines a constant element in class W,. In order that the
form of congruences in A be determined by the term y({x, ¥) it is necessary
but not sufficient that the equation Mw(z, ) = (y,y) ' defines a con-
stant element in 4. This follows from the next theorem:

THEOREM 2. The term w(z,y) determines the form of congruences in
algebra A if and only if the following conditions ave satisfied:

(4.2)  wpa(e, a) =pab,b) for all a and b in A,

(4.3)  a~*b for all @ and b in A, where ~* is the congruence in A
generated by the set (<pa(a, b),vals, a))) CA x 4.

Proof. Suppose that the conditions (4.2) and (4.3) are satisfied.
Let ~ be any congruence in A and let ¢e 4. By the theorem (1.1) the
conditions a~b and b~b imply wpa(a,b)~wa(db,d) or a~b implies
wala, b)~pab, b). But, by (4.2), pa(b, b) = vale, ¢). Hence a~b implies
pa(6, b)~ya(c, 0). Now let pa(a,b)~palc,c). Then, by (4.2), pala,b)
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~ya(a, a). By (4.3) a~*b. Since ~*< ~ and a~*b, we have a~b
or the condition wa(a, b)~pale, ¢) implies a~b. Therefore ~ is a p(x, ¥)-
congruence in 4. Thus the sufficency of the conditions (4.2) and (4.3)
is proved. Now we shall prove the necessity of those conditions. Suppose
that the term v(z,y) determines the form of congruences in 4. The
relation of identity = in 4 is a y(r,y)-congruence in 4. Hence it
follows (4.2). Let a,d ¢ 4 and let ~* be the congruence in 4 generated
by the set ((pa(a, b),pala,a)) C4dx4. By the supposition ~* is
a p(2, y)-congruence in 4. Since pa(a, b)~*p4(a, a), by (3.2) we obtain
a~*b and therefore the condition (4.3) is also satisfied. Thus the
theorem 2 is proved. From the theorem 2 and the theorem (2.7) the
following theorem resulfs.

TREOREM 3. The term p(x, y) determines the form of congruences in A
if and only if the following eonditions ave satisfied:

(4.4)
(4.3)

wa(a, a) =pa(b, b) for oll @ and b in 4,

for all a,bed there exists a ({pala, b}, pala, a)>)-chain in 4
with the first element a and the last element b.

Pro‘of. This follows from the theorems 2 and (2.7).
Ags a simple consequence of the theorem 3 we obtain the next.

THEOREM 4. If the term w(z,y) determines the form of congruences
in every subalgebra of A generaled by two different elements, then the term
w(z,y) determines the form of congruences in A.

Proof. Let a, b « 4. By the supposition the term y(z, y) determines
the form of congruences in {(a, b)}s. Hence, by theorem 2, we have
yala, a) = pa(b, ) and a~}h, where ~f is the congruence in {(a, b)}a
generated by the set ({pa(a,d),yala, a,)’)). Let ~* be the congruence
in A generated also by that set. By the theorem (2.8) we have ~F <~
Hence sinee a~#b, also a~*b. Therefore the conditions (4.2) and (£.3)
are satisfied by 4. Thus by the theorem 2 the term v(z, y) determines
the form of congruences in 4 and the theorem 4 is proved.

From the theorem 4 the following theorem immediately results:

THEOREM 5. If m =2 is any cardinal number and the term v(x,y)
determines the form of congruences in every subalgebra {Bla of A with
9 < B < m, then the term y(x, y) determines the form of congruences in A.

Proof. The hypothesis of the theorem 5 implies one of the theorem 4.
Hence by theorem 4 we obtain the theorem 5.

Tf the term w{z,y) determines the form of congruences in every
algebra in 9%, C 9, then we say that the term y(z,y) determines the form
of eongruences in Wg.
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THEOREM 6. If A is a free algebra for Wy C U freely generated by a set C
with 0 =2 and the term p(x,y) deiermines the form of congruences in A,
then the term w(x,y) delermines the form of congruences in Up.

Proof. Let D be any algebra in %,. Moreover let {B}p be an arbitrary,
subalgebra of D generated by a set B with B < (= m. Since 4 is a free
algebra for U, freely generated by C, {B}p is a homoemorphic image of 4.
Hence, by the theorem 1, the term y{z, y) determines the form of con-
gruences in {B}p. Thus, by the theorem 5, the term y(», y) determines
the form of congruences in D and the theorem is proved.

From the theorem 6 results

TaEoREM 7. Let Wy CU be a class which has an Wy-free algebra A
freely gemerated by a set O with C > 2. Then the term y(x,y) determines
the form of congruences in W, if and only if the term y(x, y) determines the
form of congruences in A.

Proof. If the term w(z,y) determines the form of congruences in 4
then, by the theorem 6, the term %(»,y) determines the form of con-
gruences in %. Conversely, if the term u(z,y) determines the form of
congruences in Uy, then since 4 €90;, by the definition, the term y(z, )
determines the form of congruences in 4. This finishes our proof. Let
W, CU be an equationally definable class. Then by the theorem (1.3)
there exist ,-free algebras freely generated by the sets of arbifrary
power. Hence and from the theorem 7 the next theorem results:

TEROREM 8. Let W, C A be an equationally definable class. Then the
term (@, y) determines the form of congruences in Uy if and only if there
exists an Uy-free algebra A fredly gemerated by O with C > 2 such that the
term y(x,y) determines the form of congruences in A.

Proof. This follows from the theorem 7 and (1.3).

By P will be denoted the set of all pairs (&, #), where ¢ is an -term.
Let %, be any subclass of 2.

(4.6) We shall say that the class W, fulfils the condition (S) if it has
the following properties:

8,) the equation Ty(x, x) = p(y, y) ! belongs to By(W,);

(8,) there ewists a matural number p and there ewist the terms ¥ with
s(xh) =my, 1=1,2,..,p—1, the terms ¢* with s(¢*) =, 1= 2,3, ,p,
the terms 0%, 97, i = 1, 2,y p—1, 7=1,2,...,my;, and the ierms 6,, 6,,
1=2,3, ,p,j—l,.l, .y By, such that

1° <’97': ﬁi> € (<"P(w7 y), v(, m)>) wP, for i=1,2,..
2’ ey Mgy .

2° (85,67> € ((’P(wyy)ﬂﬂ(maw») v P, for i=2,8,..

yp—1, =1,

Py T=1,2,.., 0,
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3° the following equations belong to Ey(Uy):

(21) o= Tl(’ﬁ}: ‘9;1 Y] 19'11:!1)’] ’
(82)  TQ(8L, 83y weey 80) =704, 85, oo, 0507, Jor i=2,3, ..., p—1,
() My = 971’(6?3 6?7 vy 65,;)—15

‘H-l {+1 z+1 {41 PO R
(22) T¢ (67, 0 vy Onga) =T(9, B, o,

Now we prove the following theorems.

THEOREM 9. If a class e C A fulfils the condition (S), then the term
p(®,y) determines the form of congruences in U,.

Proof. Let 4 be any algebra in %;. From (S,) it follows that ya(a, a)
= ya(b, b), for a, b e 4, or the condition (4.4) is fulfilled by 4. Let now a
and b be arbitrary elements in 4 and let & be any homomorphism of W
into 4 with h(z) =a and h(y) =05 (W is the algebra of all %U-terms).
From (2,), (a), (23) and (a,) it follows that the sequence

» O}y ooy BAPP ST, BB, ey SR0)) 5 )]

is a ((w,,(a, b), vala, a)))-ehain in 4 with the first element a = h(®)
and the last element b = h(y). Thus the condition (4.5) is fulfilled by A.
Therefore, by the theorem 3, the term v({z,y) determines the form of
congruences in 4 and the theorem 9 is proved.

TrEEOREM 10. Let Ay CUA be a class which has an W,-free algebra A
freely generated by a set O with C = 2. Then the term vw(z,y) determines
the form of congruences in Wy if and only if Wy fulfils the condition (D).

Proof. The suffiency follows from the theorem 9. Suppose that the
term w(x,y) determines the form of congruences in %,. Since A4 ey,
the term u(w,y) determines the form of congruences in 4. Let ¢ and 4
be any different elements in €. By the theorem 3 the conditions (4.4)
and (4.5) are fulfilled by A. Hence by (4.4) we have pa(c, ¢) = ya(d, d).
Since A4 is U,-free algebra freely generated by € and c¢,d are ftwo
different element in ¢, from the theorems (1.4) and (1.5) it follows
that the equation My(x, z) = ¢(y,y)") belongs to Ey(%,) and thus A,
hag the property (S,). Similarly we prove that 2, has the property
(8. In fact, the condition (4.5) is fulfilled by 4. Therefore there exists
a (Cpale, d), palc, ¢)>)-chain in A4 with the first element ¢ and the last
element d. From the definition of U-chain and from the properties
of U,-free algebras given in the theorems (1.4) and (1.5) and from the
theorem (1.6) it follows that 9, has the property (8, or %, fu]ﬁls the
condition (S). Thus the theorem 10 is proved.

)T, for i=1,2,...,p—1.

[h (2), h(‘Pz(é?: 5%5
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Let 9, C ¥ be an equationally definable class. Then by (1.3) there
exist the 90,-tree algebras freely generated by the set of arbitrary power.
Hence by the theorem 10 we obtain the following

TeROREM 11. The term y(x, y) determines the form of congruences in
an equotionally definable class Wy C W if and only if the class Wy fulfils the
condition (S).

Proof. This follows from (1.3) and the theorem 10.

Let A and A be the classes of all algebras of the fype
A= CTyy ks ey bony and A" =y, kay ooy Bny Kng1y ooey By Where m = n. Let
A =<A Fy, Fyy ooy Fyy Frpry ..., Fd be an algebra in A'. The algebra
(A, Fy, Fyy oy Fu> will be denoted by A4'|4 and it belongs to U Let
A, C Y. The class of all algebras A'|4d with 4’ Uy will be denoted by
As|4. Let w(z,y) be an A-term with two different variables, it is also
an U'-term.

Now we prove the following theorem:

THEOREM 12. If the term w(z,y) determines the form of congruences
in Wyld, then the term y(z,y) determines the form of congruences in UAj.

Proof. Let A’ ¢ W} and let ~ be an arbitrary congruences in A’
Then ~ is & congruence in A'|4. Hence by the hypothesis of our theorem ~
is a p(x, ¥)-congruence in A'|4. From the detinition of y(z, ¥)- congruence
it follows that ~ is also a u(»,y)-congruence in 4’ and the theorem
is proved.

§ 5. Applications. Now we shall see as the condition (8) is realized
in the equationally definable classes mentioned in introduction of this
paper.

I. Groups. Let A be the class of all algebras of the type (2,1)
with the operation signs - and —1. Let %, C U be the class of all groups.

(5.1) The term -y~ determines the form of congruences in the class
of all groups A.

Proof. As we know to Fux(,) belong the following equations:

(89 Toeat=y.y™1,
(a3) Tz =(z-y7%)-y7,
(a3) My=y7,

(al) Ty =(z-a7)-y 1.

Hence it follows that %, fulfils the condition (8) for » =2 and
T(@,y)=a-y, =0y, =y, & =w-07, 0 =y and ¢" =y, &=y,
8 = 9. Thus by the theorem 11 we obtain (5.1). From (5.1) it follows
that a subset N of a group G is z-y~*-normal in G if and only if it is
@ normal subgroup of G.
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II. Rings. Let A’ be the class of all algebras of the type A’
=(2,1,2) with the operation signs -+, — and -. Let A, C ¥’ be the
class of all rings. As we know the algebras in class W[ <2, 1> are groups
with the operation signs + and —. By the theorem (5.1) the term z+ (—¥)
determines the form of congruences in %;]¢2, 1*.. Hence by the theorem 12
we obtain the following theorem:

(5.2) The term x+(—y) determines the form of congruences in the
class of all rings UAP.

IOI. Boolean algebras. Let U be the class of all algebras of the
type {2, 2,1) with the operation signs v, ~, ’. Let %, C U be the class
of all boolean algebras with zero element definable by. an equation.

(5.3) The term (wny'}w (#' ~y) delermines the form of congruences
in the class of all boolean algebras %,

Proof. To Eu(¥,) belong the following equations:

(81) Mamna)o @ ns)=Fny)vl ~y)7T,

(@) Te={E~y)v@aPlnytu{lzny)v@~pl ~ylt,
(a4) Ty=y71,

(a) Ty={zna)Vw@na)]lny}o{lzns)o(@ )] ~y}T

Hence it follows that U, fulfils the condition (8) for p =2 and

Mz, y) =@ny)o@ny), f=@ny)v@ny), =y,

I=(@nt)o (@ ), =Yy, o=y, =y, dt=y.

Thus by the theorem 11 we obtain (5.3). From (5.3) it follows that
a set ¥ is [{(#~ ¥y') v (@ ~y)]-normal in an boolean algebra B if and
only if N is an ideal in B.

Now let A, CA be the class of all boolean algebras with the umib
element definable by an equation.

(5.4) The term (x ~y) v (&' ~y') determines the form of congruences
in the class of all boolean algebras Ae.

Proof. To Hy,) belong the following equations:
(81)

(a1)

Tezns)o@ n2y=Uny)o @ ny)T,

Feg={(znz)u (@ na)]nal,

(a%) M@ny)u @ ny)lns=[Ezny) @ ny)]lnyT,
(ag Ty=[@na)vE@ n2)lnyl,
(ay MEaz)w @ nz)lne=[Zrz)w (@ nz)na?


Artur


340 J. Stominski
and
(a¥ Menaz)w(@ na)]ny=[(znz)old ~na')ny

Hence it follows that A, fulfils the condition (8) for p =3 and

for Wz, y) =z, Y) =0 AY, 0= (mnm) (@' v a'), % =ua, 19;_ i
By =05, 1= (@AY v wf\(‘/))'ﬁz ﬁ'/:'ﬁl=(mf\“’) (& mm), 792——’!/,
oz, y) = 973(“77 f’/)—mf"y: &= (By) v (@ "y)’ 62—517’ 51 ———(.’L‘nm)

u{E ~ '), bi=un Si=@no)u (e ~a) & =1, 8 = 8, 82 =y,

Thus by the theorem 11 we obtain (5.4). Moreover we remark that
from (5.4) it follows that a set N is (z~y)w (@' ~ny’)-normal in an
boolean algebra B if and only if & is a filter in B.

IV. Now we shall give an example of an equationally definable
class of algebras with one constant element definable by equation for
which the form of eongruences is not determined by any term. Let A
be the class of all algebras of the type (2, 1) with the operation signs -
and -~ Let %, CYUA be the class of all algebras in which the following
equations are valid:

(1) Co-(y-2) = (z-9)-77,
2) To-gt=y. g1,

Let y(z,y) be any A-term with two different variables 2 and y.
We have the following theorem:

(B8.8) There exists no ferm yw(x,y) which determines the form of con-
gruences in W

Proof. It i easy to see that in By(,) is not any equation of the

form Mz = 7%, where v * x. Hence and from the theorem 11 (see con-
dition (8)) it follows the theorem (5.5).

V. Finally we give a simple sufficient condition for to be the form
of congruences in equationally definable class U, C A determined by the
term (2, ¥).

(5.6) Let M, CUA be an arbitrary equationally definable class of algebras
which fulfils the following condition (R):
{R) to Eg(U,) belong the following equations
(3) Ty(z, o) =p(y,9)7,
{(af) MTo=1 ("/’(m; Y, f‘/)—]
where v 8 some W-term with two different variables. Then the term y(z,y)
determines the form of congruences in U,

Proof. From (R) it follows that to E.,;(‘ZI,,) belong also the following
equations:
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(af) fy=y7
(%) Ty = (v, 2),)

From (S3), (a.l), () and (af) results that the condltlon (S) is
fuolfilled for p -.;, T=1, h=9yp(@,y), h=y, 9 =y(@,z), ¥ =y and
¢=1y, 8= 8 = y. Thus by the theorem 11 the term {2z, y) determines
the form of congruences in the class U, and the theorem (5.6) is proved.
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