On a class of rings

by

B. Gleichgewicht (Wrocław)

I. In the present paper we use the term ring for any additive Abelian group closed with respect to the product operation such that the two-sided distributive law holds (see e.g. [1], [3]). When the associative law for products also holds, we call the ring an associative ring.

A ring R is called a τ -ring if there exists an element $\tau \in R$ such that for every $a, b, c \in R$ the following equalities hold:

(i)
$$a(bc) = (a(\tau c))b,$$

$$\tau(\tau a) = a.$$

The aim of our note is to give a complete representation of τ -rings. First of all we shall prove that conditions (i) and (ii) are mutually independent.

Let N be the ring of all integers with the usual addition and with trivial multiplication: ab=0 $(a,b\in N)$. It is easy to verify that condition (i) is satisfied for every $a,b,c,\tau\in N$, but N does not satisfy condition (ii).

Further let Q be the ring of all quaternions. Obviously, equality (ii) is satisfied for $\tau=1$.

Now we shall show that there is no element $\tau \in Q$ satisfying (i) for every $a,b,c \in Q$. Suppose the contrary. Setting a=b=c=1 in (i), we get the equality $\tau=1$. Consequently, in virtue of (i), we have the equality

$$a(bc) = a(cb)$$
 $(a, b, c \in Q)$.

Hence follows the commutative law bc = cb $(b, c \in Q)$, which is impossible. Thus (i) is not true for Q.

II. The following statements are a direct consequence of the definition of τ -rings.

(a) τ is not a left divisor of zero in R.

In fact, the equality $\tau a = 0$ implies the following one: $\tau(\tau a) = 0$, whence, by (ii), a = 0.

(b) Every element $a \in R$ can be represented by the product $a = \tau a'$, where a' is uniquely determined by a.

Putting $a' = \tau a$, we have, according to (ii), $a = \tau a'$. Further, from the equalities $a = \tau a'$, $a = \tau a'_1$ it follows that $\tau(a' - a'_1) = 0$, whence, by (a), $a' = a'_1$.

(c) τ is a right unit element of R.

Setting $a = b = \tau$ in (i) we get the equality $\tau(\tau e) = (\tau(\tau e))\tau$. Hence, in virtue of (ii), $e = e\tau$ for every $e \in R$.

We remark that except τ there is no right unit element of R. In fact, if $a = a\xi$ for every $a \in R$, then, according to (ii) and (c),

$$\xi = \tau(\tau \xi) = \tau \tau = \tau$$
.

Consequently, we have the following assertion:

- (d) τ is uniquely determined by conditions (i) and (ii).
- (e) For every $a, b \in R$ the equality

$$\tau(ab) = ba$$

holds.

In fact, substituing $a = \tau$, b = a and c = b in (i) and taking into account (ii), we have the equality

$$\tau(ab) = \langle \tau(\tau b) \rangle a = ba.$$

(f) For every $a, b, c \in R$ the equality

$$(ab) c = a(c(\tau b))$$

is true.

From (i) we obtain the equality

$$c(ab) = (c(\tau b)) a.$$

Consequently,

$$\tau(c(ab)) = \tau((c(\tau b))a).$$

Hence, using (e), we obtain our assertion.

The generalization of the above formula is given by the following one:

(g) For every system $a_1, a_2, ..., a_n \in R \ (n \ge 3)$ the equality

$$\left(\ldots\left(\left(a_{1}\,a_{2}\right)a_{3}\right)\ldots\,a_{n-1}\right)a_{n}=a_{1}\left(\ldots\left(\left(a_{n}(\tau a_{n-1})\right)(\tau a_{n-2})\right)\ldots\,(\tau a_{2})\right)$$

holds.

We shall prove our formula by induction with respect to n. For n=3 our formula is identical to (f). Now let us suppose that it holds

for every n-tuple. Consequently, for the n-tuple $a_1 a_2, a_3, ..., a_{n+1}$ we have the equality

$$\left(\left(\dots\left((a_1\,a_2)\,a_3\right)\dots\,a_{n-1}\right)a_n\right)a_{n+1}=(a_1\,a_2)\left(\dots\left(\left(a_{n+1}(\tau a_n)\right)(\tau a_{n-1})\right)\dots(\tau a_3)\right).$$

Substituing in (f) $a = a_1$, $b = a_2$ and

$$c = \left(\dots \left(\left(a_{n+1}(\tau a_n) \right) (\tau a_{n-1}) \right) \dots (\tau a_3) \right)$$

we obtain our formula for every (n+1)-tuple $a_1, a_2, ..., a_{n+1} \in R$. Formula (g) is thus proved.

From (e) and (g) the following statement follows:

(h) For every system $a_1, a_2, ..., a_n \in \mathbb{R}$ $(n \geqslant 3)$ we have the equality

$$\tau\Big(\Big(\dots\big((a_1a_2)a_3\big)^{\intercal}\dots a_{n-1}\Big)a_n\Big)=\Big(\dots\big(\big(a_n(\tau a_{n-1})\big)(\tau a_{n-2})\big)\dots (\tau a_2)\Big)a_1.$$

III. Let us consider an associative ring R_0 with the unit element. Further, let us suppose that R_0 is a ring with *involution*, i. e. for every $a \in R_0$ an element a^* , called the *adjoint* of a, is defined such that the conditions

$$(a+b)^* = a^* + b^*, \quad (a^*)^* = a, \quad (a \circ b)^* = b^* \circ a^*$$

are satisfied, where \circ denotes the product operation in R_0 .

An element $a \in R_0$ is called *selfadjoint* or *Hermitian* if $a = a^*$. Obviously, the unit element of R_0 is Hermitian (see [4], chap. II and V).

In the sequel we shall denote by $\mathcal{K}(R_0)$ the set R_0 with the usual addition and multiplication defined as follows:

$$ab = b^* \circ a.$$

If R_0 is the ring of real square matrices of fixed order, then $\mathcal{K}(R_0)$ coincides with the ring of *cracovians* introduced by T. Banachiewicz (see [2]), who has applied it widely to problems in astronomy.

In general, we shall call $\mathcal{K}(R_0)$ the cracovian ring generated by R_0 .

THEOREM 1. If R_0 is an associative ring with involution and having the unit element, then $\mathcal{K}(R_0)$ is a τ -ring.

Proof. To prove our theorem, it suffices to show that in $\mathcal{K}(\overline{R_0})$ the two-sided distributive law and equalities (i) and (ii) are true.

Using (1), we have the equalities

$$a(b+c) = (b+c)^* \circ a = b^* \circ a + c^* \circ a = ab + ac$$
,
 $(b+c) a = a^* \circ (b+c) = a^* \circ b + a^* \circ c = ba + ca$.

Moreover, denoting by e the unit element of R_0 , we have the equalities

$$e(ea) = (ea)^* \circ e = (ea)^* = (a^* \circ e)^* = a,$$

$$a(bc) = a(c^* \circ b) = (c^* \circ b)^* \circ a = (b^* \circ c) \circ a = b^* \circ (c \circ a) = (c \circ a)b$$

$$= ((c \circ e) \circ a)b = (a(c^* \circ e))b = (a(ec))b.$$

Consequently, equalities (i) and (ii) are satisfied for $\tau=e.$ The theorem is thus proved.

Now we shall give the complete representation of τ -rings. Namely, we shall prove the following

THEOREM 2. Every τ -ring is equal to the cracovian ring generated by an associative ring with involution and having the unit element.

Proof. Let R be a τ -ring and let R_0 denote the set R with the usual addition and \circ -multiplication defined by the formula

$$a \circ b = b(\tau a).$$

Now we shall prove that R_0 is an associative ring having the unit element with involution

$$a^* = \tau a.$$

Using (2), we obtain the distributive laws:

$$a \circ (b+c) = (b+c)(\tau a) = b(\tau a) + c(\tau a) = a \circ b + a \circ c,$$

$$(b+c) \circ a = a(\tau(b+c)) = a(\tau b) + a(\tau c) = b \circ a + c \circ a.$$

Further, according to (e), we have the equality

$$(a \circ b) \circ c = (b(\tau a)) \circ c = c(\tau(b(\tau a))) = c((\tau a)b).$$

Hence, using (i), we obtain the associative law

$$(a \circ b) \circ c = (c(\tau b))(\tau a) = (b \circ c)(\tau a) = a \circ (b \circ c).$$

The element τ is the unit element of R_0 . In fact, by (ii) and (c),

$$a \circ \tau = \tau(\tau a) = a$$
, $\tau \circ a = a(\tau \tau) = a$.

From (3) and (e) follow the equalities

$$(a+b)^* = \tau(a+b) = \tau a + \tau b = a^* + b^*,$$

$$(a^*)^* = \tau(\tau a) = a,$$

$$(a \circ b)^* = \tau(a \circ b) = \tau(b(\tau a)) = (\tau a)b = b^* \circ a^*.$$

Thus R_0 is an associative ring with involution and having the unit element. Finally, we have the equality

$$b^* \circ a = (\tau b) \circ a = a(\tau(\tau b)) = ab,$$

which implies $R = \mathcal{K}(R_0)$. The theorem is thus proved.

References

- A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), p. 552-593.
 - [2] T. Banachiewicz, Rachunek krakowianowy, Warszawa 1959.
- [3] А. Г. Курош, Современное состояние теории колец и алгебр, Успехи Мат. Наук VI, Вып. 2 (1951), р. 3-15.
- [4] L. H. Loomis, An introduction to abstract harmonic analysis, Toronto, New York, London 1953.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 16.6.1959