

Maximal *n*-disjointed sets and the axiom of choice

by

C. C. Chang (Los Angeles, Cal.)

This note contains a generalization of a result of R. L. Vaught [1] concerning the equivalence of the existence of maximal disjointed sets with the axiom of choice. Our generalization arises naturally when the notion of a disjointed set is considered as a special case (namely, when n=2) of the notion of an n-disjointed set.

Let n be an integer greater or equal to 2. A set x is said to be n-disjointed if any n distinct elements of x has an empty intersection. An n-disjointed subset y of x is said to be a maximal n-disjointed subset of x if y is not properly contained in any n-disjointed subset of x. Notice that if y is an n-disjointed set then y is an n-disjointed set for each m greater or equal to n; also, if y is an n-disjointed set then every subset of y is an n-disjointed set.

Consider the following two sentences:

 ξ_n : Every n-disjointed subset of a set x can be extended to a maximal n-disjointed subset of x.

vn: Every set x contains a maximal n-disjointed subset.

It is quite clear that for each n the sentence ξ_n implies the sentence ν_n . We shall now show that the sentence ξ_2 is equivalent with the sentence ν_2 . Let y be a 2-disjointed subset of x, and let z be the set of those elements t of x such that t does not intersect any member of y, i.e.,

$$z = \{t; t \in x \text{ and, for each } s \in y, t \cap s = 0\}$$
.

By v_2 , there exists a maximal 2-disjointed subset w of z. We assert that $y \cup w$ is a maximal 2-disjointed subset of x containing y. Clearly, $y \cup w$ is 2-disjointed and $y \subseteq y \cup w \subseteq x$. Suppose that $t \in x$ and $y \cup w \cup \{t\}$ is also 2-disjointed, then $t \in z$, $w \cup \{t\} \subseteq z$ and $w \cup \{t\}$ is 2-disjointed. Since w is maximal in z, $t \in w$ and $t \in y \cup w$. This proves the maximality of $y \cup w$ in x. While the above argument for the case when n = 2 is quite simple, we do not know at present whether v_n implies ξ_n for any $n \ge 3$.

Our generalization is contained in the following

THEOREM. For each $n \ge 2$, the sentence ξ_n is equivalent with the axiom of choice.

Proof. Suppose that some integer $n \geqslant 2$ is chosen. The fact that ξ_n follows from the axiom of choice is a simple exercise involving an application of Zorn's lemma. Let us therefore assume the statement ξ_n . Let F be a 2-disjointed family of non-empty sets p,q,r,..., we shall prove the axiom of choice by showing the existence of a choice set Z for the family F.

Let $F_1 = \{\{p\}; p \in F\}$ and $F_2 = \{\{p, q\}; p, q \in F\}$. Clearly F_1 is an n-disjointed subset of F_2 . By ξ_n , we extend F_1 to a maximal n-disjointed subset X of F_2 . We first show that X satisfies the following condition:

(1) All but at most n-2 elements p of F have the following property
(P): there are exactly n-2 distinct elements q of F, q different from p, such that {p, q} ∈ X.

In the case n=2, (1) is obvious; therefore assume $n \geqslant 3$ and assume, to the contrary, that

(2) there are at least n-1 distinct elements p_1, \ldots, p_{n-1} of F not enjoying the property (P).

Since X is an n-disjointed subset of F_2 , for each p_i there can not be more than n-2 distinct elements q of F different from p_i such that $\{p_i,q\} \in X$. For otherwise, together with the set $\{p\}$, there will be at least n distinct sets of X which have a non-empty intersection. Thus, since each p_i does not enjoy property (P), we have

(3) for each p_i , there are no more than n-3 distinct elements q of F different from p_i such that $\{p_i, q\} \in X$.

From (2) and (3), we see that for the element p_1 , for instance, there is at least one p_j , $j \neq 1$, such that $\{p_1, p_j\} \notin X$. Now consider the set $X \cup \{p_1, p_j\}$, which we shall show to be n-disjointed. Suppose there are n-1 distinct elements x_1, \ldots, x_{n-1} of X different from $\{p_1, p_j\}$ such that $x_1 \cap x_2 \cap \ldots \cap x_{n-1} \cap \{p_1, p_j\} \neq 0$. Then either $x_1 \cap \ldots \cap x_{n-1} = \{p_j\}$ or $x_1 \cap \ldots \cap x_{n-1} = \{p_j\}$. In either case we see that condition (3) can not be satisfied. Thus $X \cup \{p_1, p_j\}$ is n-disjointed; since $\{p_1, p_j\} \notin X$, this contradicts the maximality of X. Hence (2) is disproved and (1) holds.

Let $F_3 = X - F_1$, and $F_4 = F_3 \cup \{\{p, \{t\}\}; t \in p \in F\}\}$. (Cf. Vaught's original argument in [1]; in case n = 2, $X = F_1$ and $F_3 = 0$.) Clearly F_3 is an n-disjointed subset of F_4 , thus using ξ_n once more, we extend F_3 to a maximal n-disjointed subset Y of F_4 . First of all, we see that F_3 is an (n-1)-disjointed subset of F_4 . For, if n-1 distinct elements of F_3 yield a non-empty intersection, then that intersection must include some $\{p\}$ of F_1 which belongs to X. Next, we show that the set Y satisfies the following condition:

(4) for each element p of F having the property (P), there exists a unique t ∈ p such that {p, {t}} ∈ Y.

Suppose that

(5) there exists a p in F with the property (P) such that $\{p, \{t\}\} \in Y$ for each $t \in p$.

In this case, we pick a p in F and a t in p satisfying

$$\{p,\{t\}\}\notin Y.$$

Consider the set $Y \cup \{p, \{t\}\}\$. Let $y_1, ..., y_{n-1}$ be any n-1 distinct elements of Y different from $\{p, \{t\}\}\$, and consider $y_1 \cap ... \cap y_{n-1} \cap \{p, \{t\}\}\$. If this intersection is non-empty, then either

$$(7) y_1 \cap \dots \cap y_{n-1} = \{p\}$$

or

(8)
$$y_1 \cap ... \cap y_{n-1} = \{\{t\}\}.$$

Since p has property (P), at least one of the y's, say y_i , must be of the form $\{q, \{s\}\}$ with $s \in q \in F$. By (6), $q \neq p$. By the 2-disjointedness of F, $\{s\} \neq p$ and $\{s\} \neq \{t\}$. Therefore, both (7) and (8) fail. Hence (5) does not hold. Now suppose that

(9) there exists a p in F with the property (P) such that there are $\{p, \{t\}\} \in Y \text{ and } \{p, \{s\}\} \in Y \text{ with } t \neq s \text{ and } t, s \in p$.

In this case, there are exactly n-2 distinct elements q_1, \ldots, q_{n-2} of F all different from p such that

$$\{p, q_1\}, \ldots, \{p, q_{n-2}\} \in Y.$$

By the 2-disjointedness of F, for each i, $\{p, q_i\} \neq \{p, \{t\}\}$ and $\{p, q_i\} \neq \{p, \{s\}\}$. Thus, there will exist at least n distinct elements of Y whose intersection is $\{p\}$, which is a contradiction. Hence, (9) also does not hold. Condition (4) is now proved.

To conclude the proof, the set Z is defined as follows. Let $Z_1 = \{t; \{p, \{t\}\} \in Y \text{ and } p \text{ having property (P)} \}$. Clearly, in view of condition (1), a set Z_2 can be defined which will contain exactly one element from each p of F not having property (P). The set $Z = Z_1 \cup Z_2$ is obviously a choice set for F. The proof is complete.

Since we have already shown that the sentence ξ_2 is equivalent with the sentence ν_2 , we obtain the

14

C. C. Chang

COROLLARY (Vaught). The sentence r_2 is equivalent with the axiom of choice.

It is an open problem whether or not each n, with $n \ge 3$, is equivalent with the axiom of choice.

References

[1] R. L. Vaught, On the equivalence of the axiom of choice and a maximal principle, Bull. Amer. Math. Soc. 58 (1952), p. 66.

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CAL., U.S.A.

Reçu par la Rédaction le 8.8.1959

Measures in homogenous spaces

by

A. M. Macbeath (Dundee) and S. Świerczkowski (Wrocław)

1. Notation. Generally our notation will follow that of Weil [W] and Halmos [H]. Let G be a locally compact topological group, H a closed subgroup. Let G/H be the homogeneous space of cosets xH with the usual topology so that G acts, by left translation, as a transitive group of homeomorphisms of G/H. The natural mapping $G \to G/H$ will be denoted by φ but sometimes we shall use the shorter notation \bar{x} instead of $\varphi(x)$ for the projection xH of x in G/H. We shall also use \bar{x} to denote a generic element of G/H. We use dx, $d\xi$ to denote integration with respect to the Haar measures in G, H, and $\Delta(x)$, $\delta(\xi)$ to denote the modular functions in G, H ([W], p. 39).

For any topological space X, L(X) denotes the class of continuous real-valued functions with compact support and $L_+(X)$ denotes the subclass consisting of non-negative functions. Similarly B(X) denotes the class consisting of all extended real-valued Baire functions on X, $B_+(X)$ the non-negative ones. (Extended real numbers include the values $\pm \infty$ as well as the ordinary real numbers.)

A set $Q \subset X$ will be called an LB-set (locally Baire) if $Q \cap E$ is a Baire set whenever E is a Baire set. A function which is measurable with respect to the ring of LB-sets will be called an LB-function. It is convenient to extend the notion of a set of measure zero to LB-sets as follows. If Q is an LB-set and μ is a Baire measure we say that $\mu(Q) = 0$ provided that $\mu(Q \cap E) = 0$ for each Baire set E. If $\mu(Q) = 0$ then we say that almost every x in X belongs to X - Q. If f, g are LB-functions, N is the set $\{x: f(x) \neq g(x)\}$, we say that $f = g[\mu]$ if $\mu(N) = 0$. These definitions do not introduce anything new if X is a σ -compact space.

All measures we consider are non-negative Baire measures in the sense that they are defined on the ring of all Baire sets; our usage of the term "Baire measure" differs thus from that of Halmos [H], where a Baire measure is assumed to be finite on compact sets.

2. Definitions and main results. A Baire measure μ on G/H is called (following Weil) relatively invariant with factor h(x) if $\mu(xE) = h(x)\mu(E)$ for each Baire set E and $x \in G$. Then h(xy) = h(x)h(y)