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Maximal u-disjointed sets and the axiom of choice
by
C. C. Chang (Los Angeles, Cal.)

This note contains a generalization of a result of R. L. Vaught [1]
concerning the equivalence of the existence of maximal disjointed sets
with the axiom of choice. Our generalization arises naturally when the
notion of a disjointed set is considered as a special case (namely, when
n = 2) of the notion of an »-disjointed set.

Let » be an integer greater or equal to 2. A set-z is said to be
n-disjointed if any n distinet elements of x has an empty intersection.
An n-disjointed subset ¥ of » is said to be a maximal = -disjointed subset
of z if y is not properly contained in any »-disjointed subset of x. Notice
that if ¢ is an n-disjointed set then y iz an m-disjointed set for each m
greater or equal to »; also, if y iy an n-disjointed set then every subset
of % is an «-disjointed set.

Congider the following two sentences:

En: Bwery n-disjointed subset of a set x can be extended to « maxvimal
n-disjointed subset of x.

ve:  Ewery set x contains a mawimal n-disjointed subset.

It is quite clear that for each » the sentence &, implies the sentence v,.
We shall now show that the sentence &, is equivalent with the sentence »,.
Let y be a 2-digjointed subset of 2, and let z be the set of those elements ¢
of « such that ¢ does not intersect any member of y, i. e.,

2= {t;tex and, for each sey,t ~ns=0}.

By v, there exists a maximal 2-disjointed subset w of 2. We assert that
yww is a maximal 2-disjointed subset of # containing y. Clearly, y v w
is 2-disjointed and y Cy v w C . Suppose that tex and ywww {i} is
also 2-digjointed, then ¢ e, ww {{} Cz and w  {t} is 2-disjointed. Since
n is maximal in 2, tew and t ey o w. This proves the maximaliby of
¥ w w in . While the above argument for the case when n = 2 is quite
simple, we do not know at present whether », implies & for any = 2 3.

Our generalization is contained in the following

THEOREM. For each n = 2, the sentence &, is equivalent with the aziom
of choice.
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Proof. Suppose that some integer n =2 is chosen. The fact that
&y follows from the axiom of choice is a simple exercise involving an
application of Zorn’s lemma. Let us therefore assume the statement &,.
Let F be a 2-disjointed family of non-empty sets p,q,r, .., we shall
prove the axiom of choice by showing the existence of a choice set Z
for the family F.

Let Fy = {{p};p eF} and F,={{p,q}; p,qeF}. Clearly F, is an
n-disjointed subset of Fy. By &,, we extend F, to a maximal »-disjointed
subset X of F,. We first show that X satisfies the following condition:

(1) Al but at most n—2 elements p of F have the following properiy
(P): there are exactly n—2 distinct elements q of F, q different from p,
such that {p, q} ¢ X.

In the case n =2, (1) is obvious; therefore assume n > 3 and assume,
to. the comtrary, that

(2) there are at least n—1 distinet elements Py, ..., Pu_y of F not enjoying
the property (P). -

Since X is an n-disjointed subset of F,, for each p; there can not be more
than n—2 distinet elements ¢ of F different from p; such that {p;, q} ¢ X.
For otherwise, together with the set {p}, there will be at least n distinet
sets of X which have a non-empty intersection. Thus, since each p; does
not enjoy property (P), we have

(8) for each p;, there are no more than n—3 distinct elements q of I
different from p; such that {p;, ¢} ¢ X.

From (2) and (3), we see that for the element p,, for instance, there is
at least one p;, j#1, such that {p,,p;}¢ X. Now consider the seb
X v {p, p;}, which we shall show to be n-disjointed. Suppose there

are n—1 distinet elements @y, ..., ®,, of X different from {p,, p;} such’

that @y~ @~ oo A Buey A {py, p7} # 0. Then either @, A ... ~ &y = {p1}
Or By A ..o A By = {py}. In either case we see that condition (3) can not
be satisfied. Thus X u {p;, p;} is x-disjointed; since {p1, ps} ¢ X, this
contradicts the maximality of X. Hence (2) is disproved and (1)
holds.

Let Fy=X—F,, and F,=F, o {{p, {t}};tepelf’}. (Cf. Vaught's
original argument in [1]; in case # = 2, X = ¥, and F, = 0.) Clearly 7'y
is an n-disjointed subset of F,, thus using &, once more, we extend Iy
to a maximal n-disjointed subset ¥ of F,. First of all, we see that I, is
an (n—1)-disjointed subset of F,. For, if #n—1 distinet elements of Fy
yield a non-empty intersection, then that intersection must include some

{p} of P\ which belongs to X. Next, we show that the set Y satisfies
the following condition:
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(4) for each element p of F having the property (P), there exists a unique
tep such that {p, {t}) Y.

Suppose that

(3) there ewists a p in F with the property (P) such that {p, {t})é Y for
each t e p.

In this case, we pick a p in F and a ¢ in p satisfying
(6) {p, 1)} ¢ Y.

Consider the set Yu{p,{t}]. Let 41, .; ¥ny be any a—1 distinet

elements of Y different from {p, {#}}, and consider y, ~ ... A ¥p-1 {p, &}
If this intersection is non-empty, then either

(7) [

or

A Yo = {P}

(8) ' N nYpa= {{t}} .

Since p has property (P), at least one of the y’s, say ¥;, must be of the
form {q, {s}} with s e g e F. By (6), ¢ # p. By the 2-disjointedness of F,
{s} #p and {s} # {f}. Therefore, both (7) and (8) fail. Hence (5) does
not hold. Now suppose that

(9) there exists a p in F with the property (P) such that there are
C{p, @} e X and {p,{s}} e ¥ with t £5 and t,s ¢ p.

In this case, there are exactly n—2 distinet elements g, ..., go—s 0f ¥
all different from p such that

P}, s Py Gaate X

By the 2-disjointedness of ¥, for each ¢, {p,¢;} {p,{t}} and {p, ¢}
# {p, {s}}. Thus, there will exist at least # distinct elements of ¥ whose
intersection is {p}, which is a contradiction. Hence, (9) also does not hold.
Condition (4) is now proved.

To conclude the proof, the set Z is defined as follows. Let Z,
= {t; [p, {t}} €Y and p having property (P)}. Clearly, in view of con-
dition (1), & set Z, can be defined which will contain exactly one element
from each p of F not having property (P). The set Z = Z; « Z, is obviously
a choice set for F. The proof is complete.

Since we have already shown that the sentence &, is equivalent
with the sentence »,, we obtain the
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CororLARY (Vaught). The sentence v, is equivalent with the amiom.
of choice.

It is an open problem whether or not each »,, with ¢ = 3, is equi-
valent with the axiom of choice.
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Measures in homogenous spaces
by

A. M. Macbeath (Dundee) and S. Swierczkowski (Wroctaw)

1. Notation. Generally our notation will follow that of Weil [W]
and Halmos [T]. Let & be a locally compact topological group, H a closed
gubgroup. Let G/H be the homogeneous space of cosets xH with the usual
topology so that @ acts, by left translation, as a transitive group of
homeomorphisms of G/H. The natural mapping G—G/H will be denoted
by ¢ but sometimes we shall use the shorter notation Z instead of ¢(z)
for the projection #H of z in G/H. We shall also use T to denote a generic
element of G/H. We use dz, df to denote integration with respect to
the THaar measures in @, H, and 4(z), §(£) to denote the modular
functions in G, H ([W], p. 39).

For any topological space X, L{X) denotes the class of continuous
real-valued functions with compact support and L, (X) denotes the sub-
class consisting of non-negative functions. Similarly B(X) denotes the
class consisting of all extended real-valued Baire functions on X, B, (X)
the non-negative ones. (Extended real numbers include the values oo
as well as the ordinary real numbers.)

A set @ CX will be called an LB-set (locally Baire) it @ ~ E is
a Baire set whenever F is a Baire set. A function which is measurable
with respect to the ring of LB-sets will be called an LB-function. It is
convenient to extend the notion of a set of measure zero to LB-sets as
follows. If @) is an LB -set and x is 2 Baire measure we say that u(@) = 0
provided that u(@ ~ B) = 0 for each Baire set E. If u(@) = 0 then we
say that almost every x in X belongs to X—@. If f, g are LB-functions,
N is the set {2: f(a) # g(2)}, we say.that f = g[u] if u(N)=0. These
definitions do not introduce anything new if X is a o-compact space.

All measures we consider are non-negative Baire measures in the
sense that they are defined on the ring of all Baire sets; our usage of
the term ‘“Baire meagure’” differs thus from that of Halmos [H], where
a Baire measure ig assumed to be finite on compact sets.

2. Definitions and main results. A Baire measure x4 on G/H
is called (following Weil) relatively imvariant with factor h(z) if p(zE)
= h{x)u(H) for each Baive set F and xeG. Then h(zy) = h(z)h(y)
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