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Principles of reflection in axiomatic set theory*

by
A. Lévy (Cambridge, Mass.)

It is well-known that the axiom systems for set theory of Zermelo Z
and of Zermelo-Fraenkel ZF are not categorical, even if we rule out any
model which can be considered to be non-standard. Let R denote the
function given by R(a) ﬁﬁz P(R(B)) (1). The sets R(a) with limit-

number a are by all means standard models of Z; the sets R(a) with
inaccessible « are by all means standard models of ZF. Thus the axioms
of Z and ZF, though describing the state of the universe, do not include
statements which establish properties of the universe not shared by sets,
or partial universes. If we start with the idea of the impossibility of
distinguishing, by specified means, the universe from partial universes
we shall be led to the following axiom schemata, listed according to
increasing strength. These axiom schemata will he called principles of
reflection (2) since they state the existence of standard models (by models
we shall mean, for the time being, models whose universes are sets)
which reflect in some sense the state of the universe.
Q will denote any set theory of the ZF-type.

R —The principle of sentential reflection over Q

@ is any sentence of set theory. If ¢ holds then. there ewisis a standard
model of Q in which ¢ holds also.

R2 —The principle of unbounded sentential reflection
over Q ‘

@ is any sentence of set theory. If ¢ holds then there ewist standard models
of ZF of arbitrarily great cardinality (ov, including arbztmr y sets) im which
@ holds. ;

* A part of the material in this paper is contained in the author’s Ph. D. thesis
submitted to the Hebrew University. The author wishes to express his gratitude to
Professor A. A. Fraenkel and Professor A. Robinson for their guidance and kind
encouragement. This paper was written while the author Wvas a Sloan Fellow of the
School for Advenced Study at the M, I.T.

(!) P(x) denotes the power-set of z.

(%) The principles of reflection are closely related to the notions of arithmetical
equivalence and arithmetical extension of Tarski and Vaught [3].
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2 A. Lévy

In order to proceed and formulate stronger principles of reflection
we need the notion of the standard complete model, i. e., & set % which
is a complete set (zeu D C u) and with the set {<wyd;wey.x, ¥ eu}
as e-relation forms a standard model of Q.

Ry —The principle of partial reflection over Q

@@y, ey n) B8 any formula of set theory. If for given m, ...,z
@ (@1, oy Tn) holds then there ewists a standard complete model u of Q such
that @y, ..., %n € % and the relation g of the model holds between them.

Ry —The principle of complete reflection over Q

@@y .y Tn) U8 any formula of set theory. Theve ewists a standard
complete model u of Q such that for each n-tuple x,, ..., an € u the velation ¢
of the model holds between them if and only if the relation ¢ of the universe
holds between them (®).

‘We shall use in this paper the notations and results of [1], some
of which will be reviewed here in short. 8 denotes general set theory
with the axiom of foundation. The notion of standard model will be
that of [1]. Sem%F(u) is the formula stating that « is a standard complete
model (in short: sem) of ZF. SemZF(u) holds if and only if w = R(a),
where « is an inaccessible number— In(a). Rel(u, @) denotes the rela-
tivization of the formula ¢ to the set u. The functions P, a) are defined
by transfinite induction as follows: P,(0) is the first inaccessible number;
Pof-+1) is the first inaccessible nmumber greater than P(8); for limit-
number a, Pyla) _llmPo(ﬁ) P,(f-+1) (respectively P,(0)) is the first

A<

inaccessible number o gTeatel than P,(f8) (respectively the first inaccessible
number) such that for each %' < n o= Py(y) for some limit-number y

The role of the principle of complete reflection is discussed in [1].
Regarding the hierarchy S, ZF, ZM, ZM,, ... described in [1] it has been
proved there that we pass from a theory Q of this sequence to the
theory Q' followmg it by adding to Q the principle of complete reflection
over Q — RY. In the present paper we shall discuss the strength of the
other principles of veflection. This will be done here omly for the case
where Q is ZF, but the situation is very much the same for any other Q
of the above mentioned sequence.

The principle of sentential reflection over ZF
RI® 9D (Fu)(Sem?F(u). Rel (u, )
or, equivalently
9D (Ha)(In(a). Rel (R(a), 7))
where @ i8 any senience.
(°) Another principle of reflection which is apparently stronger than RQ has beer.
proved in {1] to be equivalent to RQ,

Principles of veflection 3

Let ZF* denote the theory obtained from ZF by addition of RZ¥.
In ZF*, assuming ¢, we have (Tu){Scm?F(u). Rel(u, ga)) and hence, as is
well-known, we can prove the arithmetical statement asserting the con-
sistency of ZF + {g} — Con(ZF + {¢}). Thus we prove in ZF* ¢ Con (ZF +
=+ {p}) for any sentence ¢, i.e., ZF* is essentially reflexive over ZF
(see [1]) and hence ZF* is an essentially infinite extension of ZF.

We shall now give ZF* a characterization which will be very helpful
when we deal with the problems of the consistency and the power of ZF*.

THEOREM 1. The sentence ¢ is provable in ZF* using not wmore than
n instances of REF 1]‘ and only if ()

(1) (’.E{a,)(qo.a LnVimg.o < n—l:‘(a)(In(a).ae a: D Rel(R(a),(p)})

is provable in ZX.

In discussing this theorem the universe will also be called a standard
complete model (sem). (1) asserts that there are at most # sem’s in which ¢
does not hold. -

Proof. We shall first prove in ZF that every instance of RZF
holds in all the sem’s of ZF except at most one. Assume that
there are two different sem’s of ZF, w, and u,, in which the negation
@ . ~(qu) {Sem?(u). Rel(u, p)) of an instance of R?F holds. One of those
models can be the nniverse but the treatment of that case is completely
analogous to the treatment of the case that both models are sets. Since
#y = R(oy), 4= R(am) and o % a,, we can assume, without loss of
generality, that o > 0,. By assumption we have, for i=1,2,
Rel(u,,q; ~(Hu) (SemZF(u). Rel (u, p))) which is

Rel (u;, @) . ~(Tu) (u e u;. Rel (u;, Sem?F(u)). Rel(us, Rel(x, qa))) .

By wewu; it is easy to prove, using the methods of Shepherdson
[2], that Rel(u;,Sem?¥(u)) = Sem?F(u). Obviously, Rel(u;, Rel(u, )
= Rel (4;. %, p) = Rel (u, ¢) (since % Cu;). Thus we have Rel (u;, ¢)
<~ (Hu) (1 € u;. SemZF(u). Rel(u, @)). For i =1 we get, since u, e %, and
Sem®(u,), ~Rel(uy, p). For ¢ =2 we get Rel(u,, ¢) and thus we have
a contradiction.

Now let ¢ be a sentence which is provable in ZF* from the n instances
Yiy ey n of RET .y, 1€i < 7, is proved in ZF to hold in every scm

n
of ZF except at most one, hence A y; holds in every secm of ZF except
=1

at most n. In every model of ZF in which /7< y; holds ¢ holds also, being
i=1

(%) Boldface digits denote the numbexs of the formal system. n or i denotes the
number of the formal system corresponding to the informal number = or 4, respectively.

1%
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provable in ZF from y,, ..., ¥s, and hence ¢ holds in every sem .of ZF
except at most n.

Let ¢ be any sentence of set theory. We shall prove by induetion
that, assuming ¢ and using #» instances of RY* we can prove in ZF*

n k2
2) (aay) ... (o) ( /A iy € Ui, /_\ISemZF(ui) -Rel (u;, p)) .

We assume it for n and prove it for »n +1. We substitute the conjunction
of  and (2) for ¢ in RY". (2) is proved, by hypothesis, using ¢ and n
instances of RY". Hence, the n+1-th instance of RZ" just mentioned
gives us

n

(Hu)(ScmZF(u) .Rel (u, @ () oo (Httn) [ A Uiy € g

T=2

. 7\ SemZF(u;) . Rel (w, (p))’)
i=1

which iy equivalent to

32 n
(M) (Awy) ... (Huiw) (ié\1 Ui € U. /\0 Uiy € Ug. ST (u). Rel(u, ¢)

i=2

. /n\ Rel (, Sem?*(uy)) . Rel (u, Rel (u;, (p))).

=1

. . | n

Since Sem?¥(u), » is complete and hence A w;, €u; and wu, € w imply
T==2

n—1

A %i € u, which can be omitted. Also Rel(u, Scm?™ (ug)) = Sem?F(u;) and

=1

Rel (u, Rel(u;, ¢)) = Rel (w.u;, p) = Rel(u;, p); and thus we have
{Foe) (Taay) .. (Ht) (s € 1o A\ sy € u;. Sem?¥ (u). Rel (u, @)
=2

n
- A Sem?F(u;). Rel (u;, @) .
=]

We replace the bound variable u by s, and get
Nn+1 n+1
(Ha) oo (Ttimy) (A 4y €' /\ SemF(ay). Rel (u;, ¢)) .
=2 i=1

Now assume that it is provable in ZF that @ holds in all the sem’s
of ZF except at most . Assume ~g. Using n instances of RZ" we prove
(2) with ¢ replaced by ~@. Thus ~g holds in the universe and in » other
sem’s, i. e., ~p holds in at least » +1 sem’s and we have a contradiction.
Thus we proved ¢ in Z¥* from # instances of RZF.

Principles of reflection 5

CorOLLARY 1. We can derive a contradiction in ZE* from n instances
of RZ¥ if and only ¢f we can prove ~(Hﬁ)(ﬂ = Po(n-—l)) in ZF. Hence
ZF* 45 consistent if and only if every formula (HP) (ﬂ = Pyn)), n=0,1, ...,
@8 consistent with ZT.

Proof. If we can prove in ZF ~(Hp)(f = Py(n—1)) then there
exist at most » scm’s of ZF, namely, the universe, Py(0), ..., Py(n—2).
Thus the formula () (v # ) holds in all the sem’s of ZF except at most n
and by Theorem 1 it is provable from = instances of RZT.

On the other hand if (z) (% # %) is provable in ZF* from » instances
of RZ" it can be proved in ZF that (z)(z # ) holds in all the sem’s of ZF
except at most ». Assume in ZF (FB)(p = Po(n——l)); hence there exist
at least w41 sem’s of ZF, namely, the universe, P,(0), ..., Py(n—1),
and at least in one of them ()(x s z) holds, which is a contradiction.
Thus ~ (df) (8 = Py(n—1)) is proved in ZF.

CoroLLARY 2. We can prove in ZF* (HB)(f = Pyn)), n = 0,1, ...,
but if ZF* is consistent we cannot prove in it (AB)(F = Pyw)).

Proof. o and the function P, can easily be seen to be absolute with
respect to standard complete models of ZF (by the methods of Shepherd-
son [2]). Hence, the first part of this Corollary follows directly from
Theorem 1.

Given any finite » we cannot prove in ZF that (UB)(8 = Py(w))
holds in all the sem’s of ZF except at most #, since if (HB)(8 = Pyw))
holds in any of the n+1 sem’s Py0), ..., Py(n) we have a contradiction
which proves (in ZF) ~(Fp)(f = Py(n)), and this is, by Corollary 1,
contrary to the assumption that Z¥F* is consistent.

Let 4 and M be any definite ordinal numbers, which are absolute
(in ZF) with respect to sem’s of ZF. We note that the sem’s of ZF in which

(HB) (B = P 4)) D (AB) (B = Py A +M))
does not hold are exactly the sem’s R (PyA+4p)), 0 < u< M. Hence
we have:

COROLLARY 3. In ZF* we can prove, using n instances of RZ¥
the formulac (AP){B = Po(A)) D (HB)(B = PA+n), n=1,2,. If
(AB) (B = Py(A)) is consistent with ZF* then we cannot prove (AB)(B= Py 4))
D(HB) (B = Py A+ ) in ZF*

The principle of unbounded sentential reflection over ZF

RE® D (Hu)(z e u.Sem? (u). Rel (u, ¢))

or, equivalently
¢ (@a)(a> f.In(a). Rel (R(a), ¢))
where ¢ 18 any sentence.
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Let ZF** denote the theory obtained from ZIF by the addition of
RZ". We shall now give ZF** a characterization similar to that which
we gave ZF.

Given a topological space 4 we call a subset B of 4 a discrete set
it every « B has a neighbourhood € such that C-B = {#}. For B C 4
we define the internal derivative of B, Id(B), to be the set of all the
members of B which are accomulation points of B, i e. (%), xeld(B)
= :xe¢B.3 e €B—{#}). Obviously B is discrete if and only if [d(B) = 0.
This can be generalized as follows:

Leymva. In the topological space A which satisfies the separability
condition Ty (. e., for every point x, {x} is a closed set) a subset B of A is
the union of n discrete sets if and only if IA(B)=0 (whore 1d" is the n-th
iteration of the operation Id).

Proof. We prove the Lemma by induction on #. Assume it for #—1.

w
Let By, ..., Bn be discrete subsets of A, B = Y B;. Let « < Id"(B). Since
=1
Id"(B) C B, we can assume, without loss of generality, that e By.
Since B, is discrete, there exists an open set ¢ such that C- B, = {x}.
We ghall now prove that if D is an open set and F is any set
then D-Id(B)= Id(D-E). Obviously Id(D-E) C D-Id(E). Now let
2z e D-Id(E), hence z e € (B — {2}). We want to show that z ¢ €(D - E— {2}).
Assume z¢ €(D-E— {2}). Then, by 2z¢ D, z¢ €(D-E— {z})+ (4 — D). But
C(D-B—{2})+(4A—D) is a closed set containing F-— {2}, contradicting
2 ¢ €(F—{z}). Thus we proved D-Id(E) = Id(D- E). By iterating we get
D-IdYB) = Id(D- B).
Since ® € Id"(B), « « ¢ and C is open, there is a point y, y 7, y « ¢
and y e Id* (B). By the condition Ty, {«} is closed and hence O-— {x}
is open. Thus we have, by substituting C— {x} for D, B for ¥ and n—1
for n in D-Id"B) = Id"(D-B) (C—{a}) - Id""(B) = Id"*((0— {x})- B).
n--1

Since C-B, = {z}, we have (C—{&}) B = Y (0—{x})-B;, and since
i=1
—{#})-Byy i=1,..,n—1, are obviously discrete, we have, by the
agsumption of the induction,
IEH(C—{z})-B) =0,
contradicting
C—~{x}))- Id" ' (B) = Id""‘(((}— {x})- B).
On the other band if Id"(B) = 0 then B-Id(B) is obviously discrete.
By the assumption of the induction, Id" NId(B)) = Id“(B) = 0 implies
that Id(B) is a union of n—1 discrete sets, which completes the proof.

(®) €(X) is the topological closure of X.

Principles of reflection. 7

We shall now regard the ordinal numbers, with the class On of all
the ordinal numbers added ds the largest ordinal number, in the order
topology. We shall see how to write in the langmnage of set theory that
the property Rel (R(a), @) holds for all the inaccessible ordinals a (On is
taken as an inaccessible number, R(On) as the universe and hence
Rel(R(On), ¢) is @) exeept for a family which is the union of # discrete
families. First we shall define by induction formulae ®n(a), n=0,1, ...,
asserting that « is in the »th internal derivative of the family of the
inaccessible numbers which do not satisfy Rel(R(a), ¢) (Id°(X) = X}.
For an ordinal number «

@y(a) = :In(a). ~Rel (R(a), g} ,
Bufa) =:T < ~Rel (R(a), ¢).(B) (£ < aD (@) (8 < ¥ < a.as(v)))

Dy(On) =

Do On) = : ~¢~(/3)(33/) (> B.@usly)) -
By the Lemma to say formally that the property Rel (R(a), ¢} holds
for all inaccessible numbers except for the muembers of a family which
is the union of n discrete families is to say ~(Ha)Dy(a). ~Dp{On).

THREOREM 2. The sentence ¢ is provable in ZF** from wmot more than n
anstances of RZ if and only if

“The family of the ordinals « for which ¢ does not hold in the sem R(a)

of ZF is a union of n discrete families”
is provable in ZF.

Proof. We shall prove first that every instance of RZ" holds in
every sem E(a) of ZF except for a discrete family of inaccessible.ordinals a.
We have to prove that if

Rel(R(y), ~[p C (3)(Ea)[a> f.Ta(o) Rel (B(a), )
holds for a set d of ordinals y it does mot hold for its Limit 4.
Rel(R( ) (¢D(ﬂ)(ﬁla) (a>ﬂ In(a). Rel (R(a ,¢))))
= :Rel (R(»), 7). Rel (R (»), ~(/3)(E[a)(a>ﬂ.In(a).Rel(R(a),qz))) )
It can be seen, as we have already mentioned earlier and noting that

the ordinal numbers of the scm R(§) are the ordinal numbers smaller
than § (see Shepherdson [2]), that

Rel (R((S), N((pD (8)(Ha) (a> B.In(a). Rel (R(a),¢)))
= :Rel (R(9), ) . (FP) (/3 <6.(0)(f < a<8.In(a): D ~Rel (R(a), tp))) )


Artur


icm

But this ig in contradiction to the fact that & is the limit of the set d of
the 9’s and the »’s satisfy Rel (R(y), ¢). The proof is the same if ¢ is On.

In analogy to Theorem 1 we have that if @ is provable in ZF**
trom n instances of RZT we can prove in ZF that ¢ Dolds in all the sem’s
R(a) except for a family of inaccessible numbers o which is the union
of n discrete families.

Given a formula ¢(a) (pe)@(a) will denote the smallest ordinal o
such that y(a), if there exists such an ordinal at all. Given any formula ¢
we define the functions P} as follows:

8 A. Lévy

PY(0) = (na) (In(a). Rel (R(a), ¢)) ,
PYB+1) = (pa)(a > PYB). Tn(a). Rel (E(a), 7))
and, for limit-number g,
Pi(p) = iggf’%’(y);
P45(0) = (pa) (Tn (). (oy) [y is @ Limit number. « = Pi(y)) . Rel (B(a), (p)) ,

PLa(f+1) = (pa){a> PLia(f).In(a).(Fy) [y s o limit number
.a = Pi(»)).Rel (R(a), ¢))
and, for limit-number 8,

Pr(B) = sap PRoa(y) .
r<B

We shall now see that in ZF** we can prove ¢ O (y)(d3) (6 = P_i(y)).
using # instances of Ri”. For n =1, we have, by R*, ¢ D (8)(da)(a> f
.In(a).Rel (B(a), ¢)), hence (v)(H) (s = P3y)). Assume that ¢ D (y)(Ho)
(6 = Pi_o(y)) is provable in ZF** by using n—1 instances of R .

Substituting (y)(&d) (8 = Ph_s(y)) for ¢ in RE" we obtain

(7) (@8) (8 = PE-a(y)) 2 (A)(Ea) (> B.Tn(e). () (y < &2 (@) (8 <
0 =Py

(here we use the facts that the relativizations of (y) and (H8) to R{a)
“are (y) (¥ < a2 and (d) (6 < a., respectively, and also that the function
Pf._ i3 absolute with respect to sem’s of ZF'; these facts can be easily
proved by the methods of Shepherdson [2]). Since the antecedent is
proved from ¢ by using n—1 instances of R%*, we prove the consequent
from ¢ by using » instances of RZ¥. From the consequent it follows that
(BY(Ha) {a > B.In(a). Ph—o(a) = a) and hence (y)(Hd) (8 = Ph_i(y)} .

Principles of reflection e

Now we assume that we can prove in ZF that ¢ holds in all the
sem’s R(a) of ZF except for a family of inaccessible numbers « which
is the union of » discrete families. We shall prove ¢ from # instances
of RET by contradiction. Assume ~g. By what we have just proved we
have, by » instances of RZ¥, (y)(H)(8 = Pi_s(y)). Let B be the family
of the inaccessible ordinals a such that Rel (R(a), ~¢) holds. It is easy
to see that Id'(B), 0 < i< =, is the family which consists of On and the
members of B which are in the range of P%, and that Id"(B) is the family
congisting of the single member Oxn. But, by assumption, we can prove
in ZF that Id"(B) = 0 and thus we have a contradiction.

In analogy to Corollaries 1-3 we have

COROLLARY 4. We can derive a contradiction in ZF** from n instances
of REF if and only if we can prove ~{a)(IP)(f = Pn-(a)) in ZF. Hence
ZF** s consistent if and only if every formula (a)(dB) (ﬁ = P,,(a)),
n=0,1,.., is consistent with ZF.

COROLLARY 5. We can prove in ZF** (a)(dp) (8 = P,,(a)), n=20,1,..,
but if ZEF** is comsistent we cannot prove in it (IB) (ﬁ = P,(0)).

CorOLLARY 6. We can prove in ZF**, using n instances of REF, the

formula (a)(AB) (B = Pa(a)) D () (FB) (B = Pasnl(a)). If (a)(FB)(f = Pala))
is consistent with ZEF** we cannot prove in ZF* (a)(dF) (;3 =PA(a)}

D (HB) (B = Paral0)} -
The principle of partial reflection over ZF
REF @D (Hu) (@1, .-y @n € w.Sem™ (). Rel(u, ¢))
or, equivalently
92 (Ha) (21, ..., o ¢ B(a).In(a). Rel(R(a), ))
where ¢ is a formula with no free variables except Xy, ..., Zn.

Let ZF** denote the theory obtained from ZF by the addition
of RE™.

THEOREM 3. In ZI*** we can prove:

“Let T be a function whick is defined on oll the ordinal numbers, the
values of which are ordinal numbers and which is strictly increasing and
continuous; let F be absolute with respect to sem’s of ZF (4. 6., 4f Sem?F(u)
and a,Bew then p=F(a) if and only if Rel (u,ﬁ = F(a))); then F has
o fized point at an inaccessible number’.

Proof. By using RZ¥ with respect to the formula (y)(ds)(d = F(y))

we get (Ha) (In(a).(y) (y < a2 (Hé)(é < a.Rel(R(a), 6= F(y))))). Since

we have, for y,d<a, Rel(R(a),d=F(y)=8=PF(y), we have
(1) [y < aD @) (5 < a.6 = F(y))), i.e., for y<a, F(y)<a, hence by
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continuity F(a) < a. On the other hand, since F is strictly increasing,
we have (1) (F(n) = 7), hence F(a) = a.

The axiom M (see [1]) which is equivalent to RZ ig like the formula
in Theorem 3 only that the condition that F is absolute with respect
to sem’s of ZF is omitted in M. This accounts for the great stremgth of
RZ¥, since in many proofs in which M is used the functions used turn
out to be absolute with respect to sem’s of ZF, as we shall see in the
following corollary (°).

CorROLLARY 7. In ZF*™* we can prove (n)(e)(dB)(B = Pa)),
(a)(AB) (B = Q(a)) (and also (n)(a)(dp)(B = Qy(«)) and *“There ewist ar-
bitrarily great Q*-nwuimnbers”, ete.).

Proof. These formulae can be proved in ZM (see [1]). In their proot
the axiom M is used with respect to certain funetions F. Those functions
can be easily shown (in ZF) to be absolute with respeet to sem’s of ZI¢
and hence we can use Theorem 3 and prove these formulae in ZEF***,

We note that in contrast to RZ® and R any finite number of
instances of RZ¥ can be replaced by a single instance of RZ". Let v be
the conjunction of the instances v, ..., ¢, of RZT corresponding to the
formulae ¢, ..., ¢n Wwith no free variables except =, ...,2n. Let ¢ be

m n
the formula \ #,4, =i.¢;. The instance of RZ' corresponding o @
i=1

implies y, since y; follows from it by substituting i for a,.,.
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Maximal u-disjointed sets and the axiom of choice
by
C. C. Chang (Los Angeles, Cal.)

This note contains a generalization of a result of R. L. Vaught [1]
concerning the equivalence of the existence of maximal disjointed sets
with the axiom of choice. Our generalization arises naturally when the
notion of a disjointed set is considered as a special case (namely, when
n = 2) of the notion of an »-disjointed set.

Let » be an integer greater or equal to 2. A set-z is said to be
n-disjointed if any n distinet elements of x has an empty intersection.
An n-disjointed subset ¥ of » is said to be a maximal = -disjointed subset
of z if y is not properly contained in any »-disjointed subset of x. Notice
that if ¢ is an n-disjointed set then y iz an m-disjointed set for each m
greater or equal to »; also, if y iy an n-disjointed set then every subset
of % is an «-disjointed set.

Congider the following two sentences:

En: Bwery n-disjointed subset of a set x can be extended to « maxvimal
n-disjointed subset of x.

ve:  Ewery set x contains a mawimal n-disjointed subset.

It is quite clear that for each » the sentence &, implies the sentence v,.
We shall now show that the sentence &, is equivalent with the sentence »,.
Let y be a 2-digjointed subset of 2, and let z be the set of those elements ¢
of « such that ¢ does not intersect any member of y, i. e.,

2= {t;tex and, for each sey,t ~ns=0}.

By v, there exists a maximal 2-disjointed subset w of 2. We assert that
yww is a maximal 2-disjointed subset of # containing y. Clearly, y v w
is 2-disjointed and y Cy v w C . Suppose that tex and ywww {i} is
also 2-digjointed, then ¢ e, ww {{} Cz and w  {t} is 2-disjointed. Since
n is maximal in 2, tew and t ey o w. This proves the maximaliby of
¥ w w in . While the above argument for the case when n = 2 is quite
simple, we do not know at present whether », implies & for any = 2 3.

Our generalization is contained in the following

THROREM. For each n = 2, the sentence &, is equivalent with the aziom
of choice.
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