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Mappings into normed linear spaces
by

V. Klee* (Copenhagen and Seattle)

We contribute a few new fragments to a still fragmentary theory—
that of the topological structure of infinite-dimensional normed linear
spaces. § 1 is concerned with a problem of Fréchef [6] and Banach [1]:
Are all infinite-dimensional separable Banach spaces homeomorphic?
Kaded [7, 8] recently obtained an affirmative answer for the case of
reflexive spaces. With the aid of a mapping theorem of Whyburn [29],
we are able to extend the reasoning of [8] to cover all infinite-dimensional
separable conjugate spaces. §2 beging with some remarks on linear
transformations of spaces Is, extending a result of Banach and Mazur [2].
In conjunction with a theorem of Bartle and Graves [3], this leads to
some interesting corollaries such as an embedding theorem of Dowker [5]
and the fact that every metric space of cardinality < c¢ admits a binnique
continuous map onto some totally bounded metric space (). Ao example
in § 2 substantiates a conjecture in Michael's selection theory [24]. A few
other results are obtained and some ungolved problems are stated.

§ 1. The theorem of Kadeé. A subset X of a metric space will
be called a ZTchebycheff sel provided each point of the space admits
a umque pearest point in X. An admissible norm for a normed linear
space is one which generates the same topology as the given norm.

Kadet first proved [7] that all infinite-dimensional separable wuni- .
formly convex Bamach spaces are homeomorphie, then later observed [8]
that the relevant consequences of uniform convexity can be obtained
in more general spaces. By careful analysis of his reasoning, one arrives
at the following conclusion.

1.1. TumorkEM (Kaded). Two infinite-dimensional normed linear
spaces B, and B, are homeomorphic if (for ¢ =1,2) there exist on ad-
missible norm || || for B, o linear subspace I'; of the conjugate space Bf,
and o lineorly independent sequence [, in F; such that the following three
ctowdz'tiom are satisﬁed:
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() Added in proof: A simpler proof of this fact has been communicated to the
author by Professor H. H. Corson.
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1° the umit cell (@ e By |l <1} s compact in the topology o(By, Fy);
9 with Ly = (@ e B 0 = fiz = ... = [}, (Y Ln = {0} and each Ly is
1

a Tchebycheff set in By;

3 if @, is a sequence in By, ek, el —>llll, and foa—fz for all
feF;, then |@,— x|-0.

The following corollary of 1.1 may be of interest in connection with
the problem of Fréchet and Banach. Notice that a priori it does not
seemn obvious even that F is separable.

1.2, COROLLARY. Suppose that E is an infinite-dimensional linear
subspace of B, topologized by means of a norm which satisfies the following
two conditions:

1° the unit cell {& = (2, 27, ...) € B: ||zl < 1} is compact in the topology
of pointwise convergence;

2° if w, is a sequence in B, z ¢ B, |.~{zl, and ar—a" for each m,
then |jw,— x||—0.

Then the space B is homeomorphic with Hilbert space.

Proof. Tt is evident that Hilbert space satisties the conditions of 1.1.
We wish to prove the same for the space B. For n=1,2,.., let the
linear functional g, on B be defined as follows: ga(2?, 27, ...) == @™ From 1°
it follows that Eﬂ\]lg |gn@] = Bp < oo, wWhence g» is continuous for the

|ldl<:

norm topology. Let F' denote the linear extension of {ga)}7, 50 that F C B*.
For each zel, let

@ = X @ miBae] "
1
Then ( ) is a norm for B and ( ) < || |, so the funetion (( )), with

(@) = l=ll+ (@) ,

is an admissible norm for E. It can be verified that the unit cell
{weE: (x) <1} is compact in the topology of pointwise convergence
and that if @, is a sequence in B, « e B, ||z, is bounded, and ai—a" for
each n, then (z,—x)->0. . .
Sinee both || || and ( ) satisfy condition 1°, it follows that both are
lower semicontinuous for the topology of pointwise convergence, whence
(C )) iz lower semicontinuous and satisfies condition 1°. Consequently,
the unit cell {z ¢ B: ((#)) <1} is compact in the topalogy o(Z,F). Now
consider a sequence z, in E and a point x ¢ ' such that ((aba))» ((2)) and
fre—fz for all f e F. Then of course [z,]|+ (@) —{l +(2), and az—a" for
all n. Clearly [z is bounded and consequently (z,—x)—0, whence
{@a)~{(2) and |jz|—>{z]. Thus from 2° it follows that |®.— 2|—0 and
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hence ((w.—z))—>0. We have proved that the triple (E, () ,F) satisties

conditions 1° and 3° of 1.1. .
Now it is easy to produce a subsequence f, of g, such that f, is linearly

independent over E and such that if In={rxeE: 0 =fiz=..= fao},

then (ILa = {0}. To complete the proof it remains only to show that
1

each In iz a Tchebycheff set in . Consider an arbitrary point y ¢ & and
let U= {weE: (@) <1} From compactness of U (in the topology of
pointwise convergence) and the special form of Ly, it follows that the
set (y+tU) ~ Ly is also compact for every ¢z 0. Thus there exists
2 smallest value £, of { among those for which the intersection is nonempty.
But it is easy to verify that the norm ( ) is strictly convex, whence (( ))
is also strictly convex and the set {# ¢ B: ((2)) = 1} cannot contain any
line segment. Consequently the set (y-1f,U) ~ Ln consists of a single
point of Ly, and the set L, must be a Tchebycheff set. It now follows
from 1.1 that E is homeomorphic with Hilbert space.

Although Kadeé considers only pointwise convergence over the entire
interval [0, 1], his reasoning in [8] actually establishes the following result:

"1.3. TemoroyM (Kaded). In the space C[0,1], let the norm | || be
defined as follows:
1 oo
_ & 12 o~k . el
lpll = max lrptl+[nf¢] +k§~ lfﬁfﬁml‘p’ 8| .
Then || || is @ strictly convex admissible norm for C[0, 1] which satisfies
the following two conditions: ‘

Kt —for each set M of measure 1 on [0,1], the wnil cell {peC[0,1]: |lgll
< 1} is elosed (in CO[0,1]) in the topology of poimtwise convergence on M;

K2 —if M is a set of measure 1 on [0,1], ¢a is & sequence in C[0,1],
e 0[0,1), llodl—~lpll, and @.t—gt for each te M, then [p.—opl—0.

Since ([1]) every separable Banach space is linearly homeomorphic
with a linear subspace of C[0, 1], there results

1.4, CoroLIARY (Kaded). Hvery separable Banach space admits
a strictly convex novm || || such that whenever ®, s & sequence in B, xeE,
o] —&ll, and @, is weakly convergent to @, then |j,— || —0.

Trom 1.1 and 1.4 it follows that all infinite-dimensional separable
reflexive Banach spaces are homeomorphic. In order to sharpen that
result, we derive the following consequence of 1.3.

1.5. CorOLLARY. If B 48 a Banach space whose conjugate space E*
is separable, then there is an admissible norm for B such that the corresponding
norm in B* is striotly convew and such that whenever [ is a sequence in B*,
f e B¥ Ifall==lfll, and f. is w*-convergent to f, then ||fo—fll—0.
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Proof. Let D be the set of all dyadic rationals in [0,1]. By a well-
known type of construetion, there exists a set M of measure 1 in [0, 1]
and a continuous map  of [0,17 onto itself such that {M = D. (See, for
example, [21], p. 48-50.) Let U demote the unit cell of B, U** that of
the second conjugate space E**, and 7 the canonical embedding of I
into E**. Then tU is a w*- dense subset of the w*- compact convex set U**.
Sinee B* is separable, the space (U**,w*) must be homeomorphic with
the Hilbert parallelotope ([10], p. 31). In particular, the space (U**, w*}
is a Peano continuum, and by a mapping theorem of Whyburn ([29], p. 31)
there exists a continuous map # of [0,1] onto (U™, w*) such that
7D C=U. .

For each f ¢ E*, leb uf be the function in C[0, 1] defined as follows:

(uf)t = (nét)f ,

where of course ¢ ¢ [0, 1] and 5{t e I'**. Then u is a linear homeomorphism
of E* into C[0, 1] under which the w* topology in E* corresponds to the
topology in C[0,1] given by pointwise convergence on the set g7 )
O M. For each f ¢ B*, define ||f|| = ||ufll, where the second || || is Kade®’s
norm for [0, 1). Property K* in 1.3 implies that the unit cell {f ¢ E*:
If1 < 1} is w*-closed, whence the norm for E* is generated by an admissible
norm for E. The other properties claimed in 1.5 follow at onece from
the corresponding properties of Kadeé’s norm.

We may now establish the principal result of the present section.

1.6. THEOREM. Suppose that S is a normed linear space and Z is .
infinite-dimensional separable linear subspace of S* which is closed in the
w*-topology. Then Z is homeomorphic with Hilbert space.

Proof. Let 2, be a sequence dense in Z, and for each j let ) be
a sequence in the unit cell of § for which Lm 2i(w}) = |lz;|l. Let F denote

the closed linear extension of the set of all points w! and let B denote
the subset of F* copsisting of all # e F* such that # iy the restriction to F
of some member of Z. Then F is isometric with Z and is a w*-closed sub-
space of F*. Clearly there exists a sequence f, in F which is linearly

. o
independent over ¥ and such that [ {xeE: fuo = 0} = {0}, where we
1

make the usnal identification of F with a subspace of B*. Now let £ be
given the sort of norm described (for E) in 1.5 and let {( )) be the cor-
responding norm for F*. It is eagy to verify that conditions 1°-3° of 1.1
are satistied by the space H, the norm (( )), the subspace X' of I*, and
the sequence f, in F. Thus the desired conclugion follows from 1.1,

1.7. CoroLrARY. All infinite dimensional separable conjugote spaces
are homeomorphic.
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§ 2. Linear mappings of Ix. The algebraic dimension and density
character of a normed linear space ¥ will be denoted by dx and dg re-
gpectively. It is well-known that card® = dz when dg > ¢, cardE = ¢
when 1< dg < ¢, dg > ¢ when dg > %, and E is complete, and 6z < du
when dy > 8,. (See, for example, [17] and {18], p. 159.) For a set Z, we
denote by 1% the linear space of all real-valued functions ¢ on Z for which
flpll < o0, where lipll = _5_; lpe]; IpZ is the linear subspace of IZ consisting

el

of all ¢ € I1Z such that ¢z = 0 for all but finitely many z € Z. For a cardinal
number &, Is will denote (somewhat ambiguously) a space 1Z such that
cardZ = 8, and Ipx the corresponding subspace. Spaces PPs and 7% are
similarly defined.

Banach and Mazur observed that every separable Banach space is
a continmous linear image of the space Is, ([2], p. 111). We may extend
this result as follows:

9.1, PROPOSITION. Suppose that B is a normed linear space of dimension
dp =, and density character dg. Then for the existence of a continuous
linear tramsformation which—

carries Lps biuniguely onto B, it is necessary and sufficiont that 8§ = dg;

is open and carries lps onto B, it is sufficient that s > card B,

is open and carvies I onto B 1t is necessary that s > dg, (when B is
complete, this s also sufficient);

carries In biuniguely onto a dense subspace of B, it is sufficient thot H
38 complete, O =8y, ANd 8y K L C

Proof. Let Z be a seb of cardinality . For all 2 € Z and &' « Z~{2},
set g2 = 1 and @2’ = 0. Then every map ¢ of the set {g.: 2 €Z} onto
a bounded subset B of E generates a continuous linear trangformation
T, of the space Iy Z onto the linear extension of B. (Continuity of T, follows
from. subadditivity and positive homogeneity of the norm in F, in
conjunction with the special form of the norm in 1Z.) For the first as-
sertion above, let B be a bounded Hamel basis for E and let ¢ be biunique.
For the second, let B be the unit cell of E. For the third, let B be a dense
subset of the unit eell in B, with card B < , and observe that when I
is complete the transformation 7', admits a continuous linear extension %
to 1Z. As in [2], it can be verified that %(1Z) = E. That w is open can
be verified directly or deduced from the open mapping theorem [1].

Under the hypotheses for the fourth assertion, B is an infinite-
dimensional separable Banach space. From [12], p. 193, it follows that E
admits a bounded gquasi-basis—that is, a bounded sequence whose
linear extension is dense in E and such that whenever a, and b, are

=] 00 X
sequences of real numbers with > ;= 213 b;@;, then a; = b; for all j.

1
Let I denote the unit cell of the conjugate space (1Z)*. Then in the
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usual way, U may be identified with the set of all real-valued functions &
on Z for which sup |£2| < 1—that is, with the product space [—1, 112
2€Z

It is easily verified that the w:*-topology for U coincides with the product
topology. Since % < ¢, a theorem of Marczewski ([19], p. 139) imphes
the existence of a countable sequence f, which iy w*-dense in U. Clearly

fi fi'0 = {0}, and f, admits a linearly independent subsequence g, such

that ﬁ g7 10 = {0}. For each ¢ elZ, let
1

Ty = Z,‘Z‘"(gncp)a;n el.

1

T§ sup [on) = M < oo, it can be verified that [Tyl < Mllpl, and hence T

is continuous. Since the sequence g, is linearly independent, it follows -

that T'(17) contains the linear extension of {&,}, hence is dense in F.
And the strong linear independence of x, (from the definition of quasi-
basis) implies that T is biunique. The proof of 2.1 is complete.

We next state a consequence of a theorem of Bartle and Graves
{[3], p. 404). It was proved also by Michael [22, 23].

2.2. TEEoREM (Bartle-Graves). If B and F are Banach spaces

~and v is a continuous linear transformation of F onto E, then there ewists
a continuous map v of B into F such that wwe = x for every x e E.

2.3. CorOLLARY. Let G denote the kernel =10 of u, and for each y ¢ F
let by = (uy,vuy—y) e B X G. Then h is a homeomorphism of F onto B x G.

The proof of 2.2 is based on the fact that every metric space is
paracompact (A. H. Stone [28]). From 2.1 and 2.3 we obtain a new proof
of an embedding theorem of Dowker ([5], p. 939), whose proof used
paracompactness directly. While the proof is more complicated than
Dowker’s, it may nevertheless be of interest.

2.4. CoroLLARY (Dowker). If a meiric space is of density character
<N, then @ can be topologically embedded in the space Is.

Proof. It suffices to consider the case & > &,. Consider a metric
space (M, ¢) hdving a dense subset D of cardinality < s. Choose g, e M,
and for each geM let the real-valued fumetion ¢, on M be defined
as follows:

PP =P, 0)— 0P, %) (peM).

For each g e M, let vq = g, ¢ CM (the space of all bounded continuous -

real-valued functions on M, with [j&| = sup |£#]). Then 7 is an isometric
xeM

embedding of (M, o) into CM, due essentially to Kuratowski ([16], p. 543).
Let I denote the rational linear extension of the set tD, and let B denote
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the closure of L. Then card L < and E is a complete linear subspace
of CM, so it folows by 2.1 that the space Is admits & continuous linear
transformation onto F. The desired conclusion now follows from 2.3.

Dowker actually embedded in s rather than I, but the two spaces
are homeomorphic under Mazur’s mapping [20] which. sends the function
@ e’ into the function (sgne)e®els.

2.5. COROLLARY. For a metrie space X, the following three assertions
are equivalent: :

1° X is of cardinality <c;

2° X admits o biunique conlinuous map into a compact metric space
(that is, onto a totally bounded melric space);

3° there is a sequence G, of open subsets of X such that whenever p
and q are distinct points of X, then for some i, p e G;C X ~{q).

Proof. It is easily verified that 2° implies 1° and 2° implies 3°.
To prove that 1° implies 2° it suffices, in view of 2.4, to show that the
space l¢ admits a biunique continuous map into a compact metric space.
But by 2.1, Ic must admit a biunique continuous map into Hilbert space
1’8y, and of course Hilbert space is homeomorphic with a subset of
the (compact) Hilbert parallelotope. It remains only to show that 3°
implies 2°,

Let ¢ be a bounded metric for X and let @, be a sequence of open
sets as deseribed in 3° For each z ¢ X and each positive integer », let

fuw =+ inf o(@,y).
n yeX~Gy
Then set oz = (f,%, fo2, ...) € ¥%,. Clearly ¢ is biunique. It is easy to see
that ¢ is continuous and pX lies in a compact subset of I*,. The proot
of 2.5 is complete.

Parhomenko [25] has treated some related problems, characterizing
topological gpaces which admits biunique continuous maps onto certain
types of spaces. Still open is Banach’s problem of characterizing those
metric spaces, and especially those Banach spaces, which admit a biunique
continuous map onto some compact metric space. Aspects of his problem
have been treated in [9], [11], [13], [27]. It is known that the space (),
every separable conjugate space, and the space (m) all admit biunique
continuous maps onto the Hilbert parallelotope. Does the space I¢c admit
such a map? Does l¢ admit a homeomorphism into (m) or a biunique

" continuous map onto Ixg? It can be seen that Ipc admits a biunique

continuous map onto 2 compact metrie space, while Ips, does not.
Now consider a set S and the corresponding produet space 8", where

# i3 & positive integer. In [12] we defined a cross-section of 8" to be a snbset

Cu of 8" such that if (a,, ..., @a) € On, then the x;’s are all distinet, and
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sueh that whenever 4, ..., ¥» are n distinet points of §, there is exactly
one permutation z, ...,z of the y's for which (a;, ..., 2) € Cy.

2.6. COROLLARY. If 8 is a metric space of cardinality <c, then §"
admits a cross-seckion which is the union of a countable family of closed sets.

Proof. Let & be a biunique continuous map of S into a compaet
metric space K, and for (@, ..., #u) ¢ 8" define (@, ..., ¥n) = (&3, ..., E2n)
¢ E*. By [12], p. 191, theve is an F, crosg-section (), for K", and then
the set 57(Cn ~ 58") is an F, cross-section for 8™

Now from 2.6 and [12], p. 196, we deduce

9.7. CorROLLARY. Suppose that B is o normed linear space of cardinality
¢ (or, equivalently, of dimension <c). Then @n the unit spheve {x e B:
llell = 1} there is a countable sequence of closed sets whose union includes
exactly one point from each antipodal pair.

Corollary 2.7 should be compared with the antipodal point theorems
of Lyusternik and Schnirelmann, and Borsuk [4]. I have no satisfactory
results concerning extension of 2.6 and 2.7 to spaces of higher cardinality.
With the aid of 2.6, some of the results of [12] can be extended. In par-
tieular, ,,separable metric spaces’’ may be replaced by ,,metric spaces of
cardinality <¢” in 2.1 of [12].

We wish, finally, to apply 2.1 to prove a conjecture of Michael [24].
For this purpose, we introduce two additional definitions. A separable
metric space is sirongly infinite-dimensional provided each of its non-
empty open subsets is infinite-dimengional. A normed linear space I is
accessible provided it admits a Hamel basis B such that whenever JC B
and cardJ < card B, then the linear extension of J is closed in K. Clearly
every N,-dimensional normed linear space is accessible, as is every
space Igs. :

2.8. PROPOSITION. Suppose that X is a separable metric space which
is strongly infinite-dimensional and Y is a closed subset of X which can De
topologically embedded in an accessible normed linear space. Then Y is of
the first category in X.

Proof. The statement i obvious for all finite-dimensional normed
linear spaces. Suppose it is known for all spaces of dimension < s, and
congider an ~-dimensional normed linear space B with Hamel basis B.
Let B be well-ordered by a reflexive velation - such that for each be B,
the set Py = {deB: d 3 b} is of cardinality < ». Consider a strongly

infinite-dimensional separable metric space X, a closed subset ¥ of X,

and a homeomorphism % of ¥ into E. For each b ¢ B, let I, denote the
linear extension of Py; then I, is a closed subspace of B and is itself an
accessible normed linear space. For each b, let S, denote the set
PRIy~ hT). Then Y =bg} 8, each set 8y is closed, and b -2 b’ implies
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8, C 8y. By a well-known property of sel)ardble metric spaces ([15], p. 146)
there must exist a countable sequence b, <b, < .. in B such that

\J 8o =1J 8p,. But each set Sy is of the first category in X by the

€ i=1
li)nguctive hypothesis, so the same must be true of their union, the set Y.
The proof is complete. ‘

Since Hilbert space I8, is of the second category in itself, 2.8 may
be regarded as an extension of Kunugui’s result [14] that 28, cannot
be topologically embedded in Jix,.

Michael congidered transformations ¢ (called carriers) which map
a topological space X into the class of nonempty subsets of a topological
space Y. A selection for ¢ is a continuous map f of X into ¥ such that
fz e g for all » « X. Michael proved ([22], [23]):

Me. If X is a paracompact T, -space and @ is a lower semicontinuous
carrier mapping X into the class of monempty closed convew subsets of
o Banach space Y, then ¢ admits a selection.

From MP° he deduced the result 2.2 above. He showed by example
([23], p. 374) that M°® may fail when Y is not complete. In [24] he con-
sidered continuous carriers, and conjectured ([24], p. 389) that even
when ¢ is continuous, M° may fail if ¥ is not complete. He also conjectured
that 2.2 may fail in the absence of completeness. Now of course 2.2 can
fail in a trivial way-—use 2.1 to produce a biunigue continuons linear
map % of the space lyc onto a separable Banach space and observe that
w~t i discontinuous. But then #~* is also not a continuous carrier in
Michael’s sense. Now consider an arbitrary infinite-dimeunsional separable
Banach space E. By the second part of 2.1, there exists a continuous
open linear transformation » of Ipc onto B, and the carrier %~ is con-
tinuous in the sense of [24], p. 377. The carrier 4~ does not admit a con-
tinuous selection (and the transformation « does not admit a continuous
inverse in the sense of 2.2) because such a selection would be a hemeo-
morphism of E into lpc, and by 2.8 no such homeomorphism exists.

Note that in 2.2, the transformation » must be open by the open
mapping theorem [1]. If it be assumed, on the other hand, that F is
a Banach space and » is a continunous open linear transformation of ¥
onto the normed linear space H, then completeness of E follows from
a theorem of Ptak ([26], p. 70).
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Arithmetization of metamathematics in a general setting
by
S. Feferman * (Stanford, Calif.)

1. Introduction

The method of arithmetization, as developed by Gédel [10], exploits
the possibility of defining within a formal theory G, or in arithmetical
theories closely related to G, various syntactical and logical notions
concerning ‘G. In broad terms, ‘the applications” of the method can be
classified as being extensional if essentially only numerically correct
definitions are needed, or intensional if the definitions must more fully
ewpress the notions involved, so that various of the general properties
of these notions can be formally derived.

The following are some results of extensional type: incompleteness
theorems (Gddel’s first underivability theorem [10] Satz VI, Rosser [29]
Theorem IIL); non-definability of predicates in formal theories (Tarski [31],
Kleene [15] Theorem XTII); undecidability of various theories {Rosser [29]
Theorem IIT, Tarski, Mostowski and Robinson [32]); and degrees of
ungolvability of various theories (Myhill [25], our [7]). Among the in-
tensional results we have the following: unprovability of consistency
statements (Godel’s second underivability theorem [10] Satz XI), com-
parison of theories by relative consistency proofs (Novak [26], Wang [36],
[37], Shoenfield [30]); and ordinal logies (Turing [33], our [8]). A result
of mixed character is the arithmetization of Gédel’s completeness theorem

* The results reported in this paper were obtained while the author was a student
of Professor Alfred Tarski at the University of California, Berkeley. A more complete
presentation of them has been given in the author's thesis [4]; announcement of the
results has also been made in [5] and [6).

We are indebted to Professor Tarski for a number of helpful suggestions regarding
this resedreh; a8 well a8 to Professor Leon Henkin for his kind guidance ‘during the
period 1955-56 when Professor Tarski was on leave. We wish also to thank Professors
John Myhill and Georg Kreisel, both for a number of stimulating conversations, and
also the latter for his helpful comments on a draft of this paper.

Finally, thanks are dune to Professor Steven Orey for his interest in widening the -
range of application of our work, as will be evidenced at various points in the text.

This paper was prepared under Contract DA-04-200-ORD-997 for the Office of
Ordnance Research, U.S.A.
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