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Algebras which are independently generated
by every » elements

by

S. Swierczkowski (Wroctaw)

1. Preliminaries and results

By an algebra s{ we mean a pair (4, F) where 4 is a set and F is
a family of functions of finitely many variables defined on A and 4 -valued.
F is called the class of fundamental operations. The class of algebraic
operations is, by definition, the class of operations A generated by F,
i. e. the smallest clagy 4 such that 4 contains F, all identity operations
belong to 4 and A is closed with respect to composition. The subclass
of all algebraic operations of u variables will be denoted by A"™. The
above definitions are given in a more detailed form in [3]; we use here
the same notation. '

Following B. Marczewski [3] we say that N C 4 is a set of independent
dlements if, for each sequence of n different elements ..., an ¢ N and
for each pair of operations f, g« A™, the equality

FlOyy ooy @) = glay, .ny n)

implies that f and g are identical in «l.

We shall eall the identity operations also trivial operations. More
exactly: An operation f(a, ..., %) is called trivial if, for a certain 1<k,
we have j(@,,..,az) =& for all values of =z, .., o II all algebraic
operations are ftrivial then the algebra will be called trivial. For
A =1{a, .., a} and F = {f} we shall write (ay,...,as;f) instead of
(4, F). Two algebras, (4, F;) and (4, Fy), having the same class of all
algebraic operations will be treated here as identical.

We say that a set BC 4 generates s{ if each @ ¢ A is the result of
an algebraic operation applied to some elements in B. Let § denote
the cardinal of the set S. We then say that the algebra is independently
generated by every w elements if each set BC A satisfying B=mn is
a set of independent elements and B generates s{. In this paper we
show some properties of those algebras. The results were announced
in paper [4].
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TeHEOREM 1. If all elements of an algebra ol are independent and

A+ 2, then <l is & trivial algebra. There exists a non-trivial two-element
algebra Wi all elements of which are independent.

The algebra W has been found by E. Marczewski. It is evident thag
all elements of a trivial algebra are independent. Hence, if the trivial
algebra has n elements, we obtain an example of an algebra which is
independently generated by every = elements. If » > 3, then there are
no other algebras of this kind since we have

THEOREM 2. Let n > 3. If <l is an algebra such that A > n and ol is
independently generated by every n elements, then <l 4s the {rivial algebra
with n elements.

The assumption # > 3 is essential in this theorem. For n =3 we
consider the following:

Let us put <f, = (a, b, ¢, d; f,) where f, = fo(z, y, 2) is the operation
which associates with every three distinet elements of the set {a, b, ¢, d}
the remaining one and satisfies identically

foles 2, y) = fol@, ¥, @) = fyly, =, @) = y.

TurorEM 3. The algebra ol, is independently generated by every three
elements.

THEOREM 4. «f, is the unique algebra which is non-trivial, has at
least three elements and is independenily generated by every three elements.

There exist non-trivial algebras which are independently generated
by every two elements. An example is the algebra W considered in
Theorem 1. Another kind of example gives the following theorem, which
was communicated to me by A. M. Macheath.

THEOREM 5. Let K be a field, let A be the set of all elements of K and
let F be the class of all operations f(@y, @) = Mg, +(1—A)y; Ae K. Then
the algebra o = (A, F) is independently generated by every two elements.

It follows from this theorem that there is, for every number p¥
{p prime, k natural), an algebra with p* elements which is independently
generated by every two elements. Also the converse of this result is true:

TEROREM 6. If ol is o finite algebra which is independently generated
by every two elements, then 4 is a power of a prime.

In view of Theorems 5 and 6 (ef. also [5]) one might suspect that
each algebra which is independently generated by every two elements
is defined, as in Theorem 5, by a corresponding field. This, however,
is not true and the simplest counter-example is the algebra M of
Theorem 1.

For every set A there is a class of operations F such that o = (4, F)
is an algebra which is independently generated by every element. To prove
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this we introduce in A a group addition so that 4 is an Abelian group.
We associate with every a « A the operation f,(z) = a4+ 2 and we denote
by F the class of all those operations. Then ¢{ is generated by every
element. Moreover, every element is independent since f, are the only
operations of one variable.

2. Algebras with all elements independent

In this section we shall prove Theorem 1. Denote by % the cardinal
of A. The theorem is trivial for n = 1. We assume therefore that n > 3
and we have to show that every algebraic operation f(z, ..., @) is a trivial
one. We consider the possibilities: ¥ < » and % > n (the latter obviously

only for finite #).

For k < n it is convenient, for a further application, to derive the
result from the weaker assumption A > n. So we first prove the following:
(2) If A =n and every n elements of sl are independent, then A®

for each k <<n, only trivial operations.

Proof of («). Let & < n and let f e A®, Congider k different elements
ay, ..., ap € A. The elements ay, ..., a;, @z = f(ay, ..., @) are obviously
not independent. Thus they cannot be different, by k41 < », and we have

Ha, ..

From. the independence of the a; it follows that we have identically
f(@y ey Be) = 27, 80 that f is a trivial operation. Hence («) is proved.
Nowlet & = n, f e A® and let ay, ..., az ¢ A. Suppose that the element
Qo1 = f(@y, ..., &) is different from all a;, 7 < k. Then, if » is the number
of distinct elements ay, ..., a; occuring in the sequence (g, ..., &), We

contains,

, ) =aq; for gome I<k.

- infer that all ay, ..., a;, ar., are different and thus independent. This is

impossible since ay.., is the result of an algebraic operation on a;,, ..., a;,. S0
(*) f(al’ ey ak’) ==

for some u < k. Let § = {1, ..., k} and let A(a,, ..., @) be the subset of
all u e § satistying (x). We shall show that f is a trivial operation if we
prove that there is a number « such that () holds for that » and for
arbitrary aq, ..., a4z € 4. Rquivalently, we have to show that the inter-
section of all sets 4(a,, ..., az) is non-empty.

Suppose we have a one-to-one mapping of 4 onto itself. Let a’ denote
the image of a. It follows from the independence of all elements of <7
(ef. [3], sec. 2 (ii)) that (x) holds with the same numbers u for a,, .., o
and af, ..., @. Thus 4(a,, ..., a;) depends only on the decomposition 4
of the set of indices § in the disjoint sets .Dy, ..., D containing indices
of equal a; (so that a; = a; if and only if 4,j belong to the same D,
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whence m < n = f) Evidently 4(a,, ..., a) is one of those sety Dy and
since it depends only on the decomposition 8, it will be denoted by .
We observe that every decomposition of § into not more than # subsets
is realized by some sequence {a,, ey Qg

DEriNITION. For any decompositions &, 6" we write & < & if, for
each set D; of ¢, there is a set .D; of ¢ which containg 7T,

Let ws prove that & < 4 implies 96 C @d'. Indeed, if 6 < & and
“fyy ey @ 18 a sequence that determines the decomposition d, then
there is & mapping of 4 into itself such that the sequence {aj, ..., a),
which is the image of {(a,, ..., a;>, determines the decomposition 4. From
the independence of the elements of < it follows ([3], sec. 2, (ii)) that
if () holds for some » and ay, ..., o, then it holds for the same % for
@1y ..y @, Thus ¢d C @d’. ’

We have to prove that the intersection of all @0 is non-empty. Thig
tollows from the lemma

(B) If we have a fimed nwmber n > 3, 8 is a finite set, ond to every de-
composition 8 of 8 in not more than n disjoint subsets corresponds
a set ¢ of that decomposition so that § < o' implies @b C pb’, then
the ntersection of all @b is non-empty.
Proof of (B). The assumption n > 3 means that the correspondence
6->pd is defined for all decompositions in 1ot more than three subsets.
Tt is sufficient to verify that, for any &', 8" the set pd’ ~ s is also
a pd. We prove first that ¢é’ and ®6"" are not disjoint. Consider the de-
compositions 4§,, 6, ’

B=¢s'vB, S=puC,
where B and ¢ are uniquely determined. We have § < 0y, 8" < 6, and
this implies ¢d, = @6, @d, = ¢d”. Suppose that @6’ and @é’’ ave disjoint.
Then the decomposition §*
S =g ogd oD

satisfies 6% < d;, 6* << 8,. @0* is contained in both @6, and @d,, which
contradiets ¢o; ~ gdy = ¢b’ ~ b’ = @ (@ is the empty set).

Now counsider the decomposition ¢ defined by

N = (g0~ gb"”) U (g0 — ") U B.

From 6 < 4, follows @6 C #0, = @’ and thus ¢d = B. Since two sets
8, 6" are never disjoint, we have @0 = ¢d" ~ pd"”’. This completes the
proof of (B) and of the first part of Theorem 1.

Let M = (a,b; f) where f=1Ff(z,y,7) is the operation defined on
{a, b} so that identically

Ha, oy y) =@, 0, 2) =y, 2, 2) = . .
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Hence f is non-trivial and thus the algebra 9 is non-trivial. All
elements of 97 are independent, since, for any algebraic operations g, b
of two variables, the equality g(a,b) = h(a, b) implies g(b, a) = h(b, a)
because of symmetry and g(x, #) = & = h(w, 2) holds since there is no
non-trivial operation of one variable in Y.

3. Algebras which have more than three independent generators

‘We shall now prove Theorem 2. The result follows by Theorem 1
if we verify that there are only n elements in A. If » is infinite, then,
by (), every operation is trivial and hence 4 contains only tlhxe n generm':o?s.
It n is finite, then it is enough to prove that A™ containg only trivial
operations. ) .

Let us suppose that there is in 4™ a non-trivial operation f(m-l, ey o?n).
By («), the operation on n—1 variables f(®, @y, @4, %4, ..., #.) 8 trivial,
whence it is identically equal to one of the variables , 2, 2,, euy &
Certainly one of the two variables @y, z, (we have n > 4) is 1.101; identn_:ally
equal to f{x,, s, Ta, Ty, ..., Tn) and we may assume that it is the Yan_able
@, performing in the opposite case a suitable rearrangement of indices.
Therefore, identically

By, gy By By ooy Tn) =Xy OF &y OT ... OF Bp.

Let @y, ..., an € A be distinet elements and let aniy = f(ay, ..., @a)
Since f is non-trivial and @,...,a, are independent, we have an.,
% Oy, vry On, The elements ag,y ..., Gnyy, being different, generate the
algebra. Hence, for a certain algebraic operation h, a; = h(ds, ..., Gpiq),
ie.

ay = h(ty, Gyy Qgy vy [(G1y Goy Ogy vy B} -

Since all elements appearing in the above equality are independent,
the equality holds identically, e. g. holds also if we put a, in place of ay.
Now f(ay, a3, a3, a4, ..., an) iz one of the elements a,, a4,...., a.,. and so
a, i3 the result of an algebraic operation on @y, @y, ..., tn in F;plte of the
independence of ay, ..., a,. We have obtained a contradiction and we
have proved the theorem.

4. The algebra i,

Fundamental properties. Let us prove Theorem 3. Since ehvi—
dently o, is generated by every three elements, we have to gshow tt z,t
every three elements are independent. Let us demote by 6, ¢, € the

three trivial operations in A so that identically
al@,y,2) =a, &@,¥,2) =Y, ey, Y, %) =%2.
7
Fundamenta Mathematicae, T. XLIX. .
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It is easy to check that the class of operations @ = {fus €1, €, €}
hag the following property:

If hyy by, by € @, then the operation h defined by the formula
hiz,y,2) = fO(h’l(wI ¥, 2), (@, ¥, 2), by(z, v, z))

98 8., Swierczkowski

also belongs to O.

This shows, by the definition of 4§ (cf. [3], sec. 1, (a)) that 4P — g,
Knowing 4§ we easily check that every three elements are independent.

Uniqueness of ¢,, We now proceed to prove Theorem 4. We
agsume that the algebra o = (4, A) is non-trivial, independently gener-

ated by every three elements and 4 > 3 (where 4 denotes the class of
all algebraic operations). We first show that

() If feA® 45 non-trivial, then identically

fle, 2, y) =f(w,y,m)=f(y,w,w) =Y.
Proof of (y). Let a,b,¢ be independent generators of of. It fis
non-trivial, we have f(a, b, ¢) £ a, b, ¢ and thug a,b, f(a, b, c) generate

A. It follows that, for a certain algebraic operation k(w,y, 2),

¢=nh(a,b,1(a,b,0c).

Since a, b, ¢ are independent, this equation holds identically, e. g. also

if @ stands at the place of b, So ¢ = h(a, a, f(a, a, ¢). Now f(z, », y) is,
by («), a trivial operation, whence f(@, #,y) = z or y. But f(a,a,¢) =a
gives ¢ = h(a, a, o), which is a contradiction. Thus we have f(z, @, y) = y.
The other equalities in (1) hold by symmetry,
_ Now let us show that «f has exactly four elements. We have assumed
4 2> 3. Bince o is non-trivial and every three elements are independent,
we have, by Theorem 1, 4> 3. Let us suppose that there are at least
five elements a,b, ¢, dyecd. Since a,b,¢ are generators, there are
operations f, ¢ such that

4 =f(a,b,¢), ¢=g(a,d,0).

Also ¢, d, ¢ are generators; thus, for some operation ky a =hc, d,e)
and we have

“=h(0:f(a;b;‘}),g(a’;b,c))'

Since this equality must hold identically, we have, writing a at the
place of b, by (y), a = h(c, ¢, ¢). This is a contradiction and 50 4 =4,
From what we have shown it follows that we may asgsume that
both algebras, Ay and o, have the same set of elements 4,=A
= {a,b, ¢, d}. To complete the proof of our theorem it remaing to prove
that the operations are in both algebras the same, i. e. that dy=4
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Since a, b, ¢ generate <f, we have, for a certain f e A, 4 = f(a, b, e).
Thus f is non-trivial and hence it associates with every three elements
of 4 the remaining one. Since the equalities in (v) hold, we infer that f
coincides with the fundamental operation f, of &ly. Consequently A, is
the class of operations generated by f and we have 4,C 4.

Given an operation h e A, we say that & depends on the variable @,

where 1 <i <k, if there is a sequence (g, vy By ey Ay of elements
of A and an afe A such that
Mgy ooy gy oy o) # 00y, ..., al, vy O} .

We have to show that 4C.d4,. We observe that if hed, then &
must depend on some variables, for if h takes a constant value, say
h = a, then also A(b, ..., b) = a, contradicting the independence of o and 5.
We can even assume that 2 depends on every variable, for if h(@yy ey )
does not depend on some of the variables, then, after a suitable Tear-
rangement of indices if necessary, we have :

h(wly'--zmk)=!](w17“~7wm)7 m<k;

g depends on every variable and if ge A,, then he 4,.

The idea of our proof is now the following. To show that if h e A®
depends on every variable, then ke 4, it is enough to verify that there
is at most one operation in A" which depends on every variable, and,
if there is one, then there is at least one which belongs to A®. This
follows, by 4,C A4, from

(e} For any k, if there ewists an operation h e A® which depends on every
" variable, then there is evactly one such operation and & is an odd integer.

(n) For every odd integer %, there exists an operation h e AP which depends

on every variable.

Since the proof of (7)) is much simpler than the proof of (), we shall
give it firgt.

Proof of (). The assertion is trivial for k = 1. Suppose that, for
some odd % 3 1, there is an operation h(,, ..., 2;) belonging to A% and
depending on every variable. Then the operation g defined by

G(@1y vy Tppn) = F ({1, ooy D1y Bir1y Besa)

belongs to A, Trom g(ay, ..., &g, @, @) = k(@ ..., ) we infer that g
depends on each of the variables @, ..., oy. Since, for a constant w e 4,
the funetion f(u, #,y) depends on each of the variables &, v, it follows
that ¢ depends also on @y and @yy,.

Proof of (z). Since, by (e), every operation of not more than two varia-
bles is trivial, (e) holds for k = 1 and % = 2. Let us showB )’uhat .(s) holds for
k=38, i e., that f(x,y,2) is the only operation in 4® which depends

, o
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on all variables. Suppose that g(z,y, 2) e A% depends on every variable,
Hence 4 is a non-trivial operation and we must have g(a, b, ¢) = d, by
the independence of a,b,¢. So g(a,b,¢) = f(a,b,¢) and, using again
the independence of a,b,¢, g(2, v, ) = f(=, Y, 2).

Thus it remains to prove () for k> 3. Suppose that he d®, k> 3
and % depends on every variable. Since we have only four elements in 4,
the operation } is given by a system of operations of not more than four
_variables which are obtained from % by identifying some of the variables
Ty +ey B 80 that not more than four different ones are left. Let us call
those operations derived from h. If we show that cach operation derived
from % depends only on the given identification of the variables and
Dot on h, then it is evident that & is wnique. This proof will be given in
two steps. First, in (), we show that each operation h, derived from %
is determined by the system of operations of two variables derived
from k. Then, in (g), we prove that the system of operations of two
variables derived from % can be determined without knowing h.

‘We consider the family of all decompositions of the set of indices
8= {1,...,k} in not more than four subsets. For each decomposition §

8=XuYuZuU

(where some of the sets X, .y U may be empty) we identify those
variables in h(x, ..., #) which have indices belonging to the same set
of the decomposition. We denote by 2,4, %, % those variables x; whoge
indices belong to the sets X,.., U respectively. Thus we obtain an
operation hy(,y, 2, u), which is derived from .
(e The operation hyfx, Y, %, u) is determined by the system of operations

of two variables which are derived from hy.

Proof of (g). Our assertion is trivial if 0 is a decomposition of §
in two sets. If § is a decomposition in three sets, then hy = ho(x, ¥, 2).
It & is not trivial, then h, = ¥ since f is the only non-trivial algebraic
operation of three variables. Consequently hyw, @, y) = hyz, ¥, 2)
=h(y,®,2) =y. If by is trivial, then only two of these equalities
holds and the remaining four are false. Moreover, we know &, if we know
which of the equalities holds. Thus all the possible cases are distinguished
by the behaviour of the operations of two variables derived from hy;
We can determine &, by examining those operations.

Now suppose that § is a decomposition of § in four sets. We have
to consider an operation hy(z, v, %, ). Let us determine first hy(a, b, ¢, d).
Suppose that ky(a, b, ¢, d) = d. Then ho(a, B, ¢, f(a, b, ¢)) = f(a, b, ¢) and,
by the independence of a, b, ¢, we have (@, y, 2, H(z, ¥, 2)) = (@, ¥, 2).
Identitying any two of the variables #,y,2 we easily obtain

b, &, 4, Y) = hy(w, Yy, y) = ho(y, x, 2,4) =y.
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Let us call an identification of some f)f the va.ria,ples By Y, %, U even
if it results in one of those which appear in t?rackt‘s‘cls in the above_equa-
lities. Thus we infer that for any even Iidentification of variables,
hs2, ¥, 2, ¥) = 4. By symmetry, if we assume th@t hs{a, b, 0, d} = ¢, we
shall find thas, for every even identification of variables, hs(w, y, 2, u) = 2
holds and it is similar for o and b instead of. ¢, d. So we see that by
examining the operations of two variables _d_erlv‘ed from h:, (in fact only
those which are derived by an even identification of variables) we can
i a,b,e,d).
detelz[l’?iinzggls,tc: v:ariiy that also in the case vsfhen twc_» qf the arguments
#,¥, %, w are equal, h, can be determined. _It is not difficult to see that
we then have to find the value of an operation h; of not more '.ﬁha.n three
variables which is derived from %,. Since we know the operation of t.VVO
variables derived from ks (they are also derived ﬁom hs) we determine
5 so in the same way as we determined ?L,, when it was a.ssu.med to be
an operation of not moré than three varlablejs. Thusg (so) is proved.
Let 95 be the family of subsets of § which contains, for every de-
composition 8: § = X v ¥, one of the two sets X, ¥, namely

X if hyle, ) =w, Yif b, y) =y.

(Let us recall that in o every algebraic operation of two variables is
trivial.)

Obviously

(0) Sefy.

G If GoH=2~8 and G~ H =0, then exactly one of the sefs &
and H belongs to 2.

Tt is evident that 0, determines the system of operations of two
variables derived from h. Thus, by (), b i8 completely determjnefl by 2.
To show that h is unique it is enough to show that is‘unique, L e. that
£, is fully determined by the mere condition that & is opera;mo?l of k
varjables which depends on every variable. This will be shown in (g),
but to prove (g;) we need some more properties of £,. Assume that
G, H ey, Let us prove

() If GAH#G and 8 =G U H, then G~ Hey.

({ii) If G ~H =0, then Gu H¢D,.

(iv) If QC H, then H— G ¢y, '

In the proofs of (ii), (iii) and (iv) we shall congider an operation
ko, 4, 2) given by a decomposition é: § = X « ¥ u Z. The sets X, ¥, Z
will be defined in each case separately.

Proof of (ii). Assume G A H#@, § = G u H. Define X = G—H,
Y=Gn~ H, Z=H-—G Consider the operation hiz,vy,2). We have
Xu¥, ZuYe and thus ko, z,y) = o and h(z,y,y) = y- Hence
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ks is different from f and thus it is a trivial operation. Consequently
hs(@, 4, &) = y. It follows that hsw,y,s) =y and thus (ii).
" Proof of (ili). Suppose that G~ H =0, Let X = G, Y =41,
7 =8~(G v H). From X, Y ¢ 2, it follows hy(w, y, y) = =, ho(@, y, @)=y
and thus k; cannot be a frivial operation. Hence hy(w, 4, 2)=f(z,y,2)
and we have k@, 2, 2) =2 Thus Z e, and consequently ¢ v H ¢ 82,
Proof of (iv). Let GCH. Define X =G, Y= 8—H, Z=H—-@
It follows from X, X U Z e £2, that hyle, v, y) =z = ho(, v, x). We see
that R, iy different from f. Thus it is a trivial operation satisfying
hw,y,2) =@ For =y we obtain Z¢Q,. This proves (iv)
"~ We shall derive from (e,), (i) and (iii) that '
(v) Ewery one-element subset of S belongs to 2.

Proof of (v). Without loss of generality it will be enough to prove
that {1} e Oy. Since h(xy,..., #,) depends on %, there are sequences
{yy vy @Dy by ooy by @5y bie A such that ap.= b for 2 > 2 and

(g ey a) E B(Dy, ey by)

Since obviously a, == b, we- can assume that @y = a, by =b. Both se-
quences, {@yy ey 0y, and by, -y b, are composed of the elements
4,b,¢,d, and thus there are uniquely determined decompositions &
and J of 8. '
8=XuYuZuU, 8=Xu¥uZulT

such that :

W@y, oy @) = hofa, b, 0,d) 5 hidy, ..., b) = hg(a, b, o, d) :

- It is not difficult to check that ¥ — X — 1y, Y=Y u {1}, Z=27,
U=TU. We see also that the operations k, and 7 are different.

] L«?t 0Oyy Oy, Oy, O, stand for the symbols X , X, Z, U but not neces-
sarily in the same order. We find, by &, 7 hz and by (=) that there are
two different operations of two variables, one derived from hy(w, y, 2, u),
the other from %3z, y, 2, u) and both obtained by the same identification
of some of the variables @,y, #, ». This means that there is o set ¢ C &
which can be denoted by Civ Cu Gyor by 0,0 0, or by C, such that
U e £, but the corresponding set 0C § denoted by Gy Cyw Gy or G, u G
01‘_6’1 does not belong to 0. ’ ' ’
. It is obvious that 0 and ¢ ditfer only in the element 1 of § and we
have either {1} = C—C and 0C 0 or {1} = C—C and O C 0. We define
G=0, H= 8—C so that & ¢ 2y and, by (i), H ey.

B {1}=0-0C, then S=G U H and G ~ H = {1}. We derive from
(i) g}at (L} e I (13=0-0, we have G~ H— & and therefore
by (i), ¢ o H¢Q and, by (i), {1} € D, , o
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We are now in a position to prove that 2, does not depeﬁd on h.
By applying induetion on the number of elements in X and using (o),
(i), (iii), (iv) and (v) we find that

(e)) A set XC 8 belongs to £y if and only if the number of elements in X
is odd. In particular, since S ey, k is odd.
As we noticed above, (s;) implies that there is at most one operation
heA® which depends on every variable. Since k must then be odd,
our proof of (¢) and of the theorem is now complete.

5. Algebras independently generated by every two elements

‘We shall prove here Theorems 5 and 6. Consider first the algebra
ol defined in Theorem 5. It is easy to see that the class of all algebraie
operations 4 consists of operations of the form

f(m“ weny mk) = 3,1371 + ... ’I"lkmk
where 2 A=1. Let a,b be distinct elements in 4. Then there exists,

for everiy ¢ e A, exactly one operation feA® for which ¢ = #(a, b) (since
the equations A4 a+2,b=¢ A4+4, =1 determine A, and 1,). Suppose
that g(a,b) = h(a, b) holds for some g,hed™. It follows that g — 4
and thus a, b are independent. Obviously these two elements generate
the algebra and thus we have proved Theorem 5.

To prove Theorem 6 suppose that ¢ is an algebra which is inde-
pendently generated by every two elements. A group I of one-to-one
mappings of a set onto itself is called doubly transitive when it containg
one or more mappings changing given two elements @, b into any two
elements ¢, d. If the conditions ¢ =t(a), d =1%(b) determine uniquely
the mapping ¢ e T, then T is said to be minimal. We prove first that

() The group T of all automorphisms of <l is a doubly transilive and
minimal group of one-to-one mappings of A onto itself.

Proof of (A). If a, b are distinet elements of 4 and ¢, d also, then,
by the independence of @, b, we infer that the mapping a—>¢, b—d has
an extension to a homomorphism ¢ of the subalgebra generated by a, b on
the subalgebra generated by ¢, d and obviously this extension is unique
{cf. [8], sec. 2, (ii)). Since a,b generate f, ¢ is an endomorphism and since
¢, d generate ¢f, t is onto. Finally, from the independence of ¢, d it follows
that ¢ is an automorphism. Hence 7' is doubly transitive and since ¢ is
determined uniquely by the conditions #(a) = ¢, 1(b) = d, T is minimal.

Our theorem now follows by (2) since it is well known that if there
exists, for a finite set, a doubly transitive and minimal group of one-
to-one mappings of this set onto itself, then the number of elements
of this set is a power of a prime (ef. [1], see. 105; also [2]).
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