

Algebras which are independently generated by every n elements

by

S. Świerczkowski (Wrocław)

1. Preliminaries and results

By an algebra \mathcal{A} we mean a pair (A, F) where A is a set and F is a family of functions of finitely many variables defined on A and A-valued. F is called the class of fundamental operations. The class of algebraic operations is, by definition, the class of operations A generated by F, i. e. the smallest class A such that A contains F, all identity operations belong to A and A is closed with respect to composition. The subclass of all algebraic operations of n variables will be denoted by $A^{(n)}$. The above definitions are given in a more detailed form in [3]; we use here the same notation.

Following E. Marczewski [3] we say that $N \subset A$ is a set of independent elements if, for each sequence of n different elements $a_1, \ldots, a_n \in N$ and for each pair of operations $f, g \in A^{(n)}$, the equality

$$f(a_1, \ldots, a_n) = g(a_1, \ldots, a_n)$$

implies that f and g are identical in \mathcal{A} .

We shall call the identity operations also trivial operations. More exactly: An operation $f(x_1, ..., x_k)$ is called trivial if, for a certain $l \leq k$, we have $f(x_1, ..., x_k) = x_l$ for all values of $x_1, ..., x_k$. If all algebraic operations are trivial then the algebra will be called trivial. For $A = \{a_1, ..., a_n\}$ and $F = \{f\}$ we shall write $(a_1, ..., a_n; f)$ instead of (A, F). Two algebras, (A, F_1) and (A, F_2) , having the same class of all algebraic operations will be treated here as identical.

We say that a set $B \subset A$ generates $\mathcal{S}l$ if each $x \in A$ is the result of an algebraic operation applied to some elements in B. Let \overline{S} denote the cardinal of the set S. We then say that the algebra is independently generated by every n elements if each set $B \subset A$ satisfying $\overline{B} = n$ is a set of independent elements and B generates $\mathcal{S}l$. In this paper we show some properties of those algebras. The results were announced in paper [4].

THEOREM 1. If all elements of an algebra $\mathcal A$ are independent and $\bar A \neq 2$, then $\mathcal A$ is a trivial algebra. There exists a non-trivial two-element algebra $\mathcal M$ all elements of which are independent.

The algebra \mathcal{M} has been found by E. Marczewski. It is evident that all elements of a trivial algebra are independent. Hence, if the trivial algebra has n elements, we obtain an example of an algebra which is independently generated by every n elements. If n > 3, then there are no other algebras of this kind since we have

THEOREM 2. Let n > 3. If \mathscr{A} is an algebra such that $\overline{A} \geqslant n$ and \mathscr{A} is independently generated by every n elements, then \mathscr{A} is the trivial algebra with n elements.

The assumption n > 3 is essential in this theorem. For n = 3 we consider the following:

Let us put $\mathcal{A}_0 = (a, b, c, d; f_0)$ where $f_0 = f_0(x, y, z)$ is the operation which associates with every three distinct elements of the set $\{a, b, c, d\}$ the remaining one and satisfies identically

$$f_0(x, x, y) = f_0(x, y, x) = f_0(y, x, x) = y$$
.

THEOREM 3. The algebra \mathfrak{Sl}_0 is independently generated by every three elements.

THEOREM 4. \mathcal{A}_0 is the unique algebra which is non-trivial, has at least three elements and is independently generated by every three elements.

There exist non-trivial algebras which are independently generated by every two elements. An example is the algebra \mathcal{M} considered in Theorem 1. Another kind of example gives the following theorem, which was communicated to me by A. M. Macbeath.

THEOREM 5. Let K be a field, let A be the set of all elements of K and let F be the class of all operations $f(x_1, x_2) = \lambda x_1 + (1 - \lambda) x_2$; $\lambda \in K$. Then the algebra $\mathcal{A} = (A, F)$ is independently generated by every two elements.

It follows from this theorem that there is, for every number p^k (p prime, k natural), an algebra with p^k elements which is independently generated by every two elements. Also the converse of this result is true:

THEOREM 6. If \mathcal{A} is a finite algebra which is independently generated by every two elements, then \overline{A} is a power of a prime.

In view of Theorems 5 and 6 (cf. also [5]) one might suspect that each algebra which is independently generated by every two elements is defined, as in Theorem 5, by a corresponding field. This, however, is not true and the simplest counter-example is the algebra $\mathcal M$ of Theorem 1.

For every set A there is a class of operations F such that $\mathcal{A} = (A, F)$ is an algebra which is independently generated by every element. To prove

this we introduce in A a group addition so that A is an Abelian group. We associate with every $a \in A$ the operation $f_a(x) = a + x$ and we denote by F the class of all those operations. Then \mathcal{L} is generated by every element. Moreover, every element is independent since f_a are the only operations of one variable.

2. Algebras with all elements independent

In this section we shall prove Theorem 1. Denote by n the cardinal of A. The theorem is trivial for n = 1. We assume therefore that $n \ge 3$ and we have to show that every algebraic operation $f(x_1, \ldots, x_k)$ is a trivial one. We consider the possibilities: k < n and $k \ge n$ (the latter obviously only for finite n).

For k < n it is convenient, for a further application, to derive the result from the weaker assumption $\overline{A} \geqslant n$. So we first prove the following:

(a) If $\overline{A} \geqslant n$ and every n elements of \mathcal{A} are independent, then $A^{(k)}$ contains, for each k < n, only trivial operations.

Proof of (α) . Let k < n and let $f \in A^{(k)}$. Consider k different elements $a_1, \ldots, a_k \in A$. The elements $a_1, \ldots, a_k, a_{k+1} = f(a_1, \ldots, a_k)$ are obviously not independent. Thus they cannot be different, by $k+1 \le n$, and we have

$$f(a_1, \ldots, a_k) = a_l$$
 for some $l < k$.

From the independence of the a_i it follows that we have identically $f(x_1, ..., x_k) = x_i$, so that f is a trivial operation. Hence (α) is proved.

Now let $k \ge n$, $f \in A^{(k)}$ and let $a_1, \ldots, a_k \in A$. Suppose that the element $a_{k+1} = f(a_1, \ldots, a_k)$ is different from all $a_i, i \le k$. Then, if r is the number of distinct elements a_{i_1}, \ldots, a_{i_r} occurring in the sequence $\langle a_1, \ldots, a_k \rangle$, we infer that all $a_{i_1}, \ldots, a_{i_r}, a_{k+1}$ are different and thus independent. This is impossible since a_{k+1} is the result of an algebraic operation on a_{i_1}, \ldots, a_{i_r} . So

$$f(a_1, \ldots, a_k) = a_k$$

for some $u \leq k$. Let $S = \{1, ..., k\}$ and let $\Delta(a_1, ..., a_k)$ be the subset of all $u \in S$ satisfying (*). We shall show that f is a trivial operation if we prove that there is a number u such that (*) holds for that u and for arbitrary $a_1, ..., a_k \in A$. Equivalently, we have to show that the intersection of all sets $\Delta(a_1, ..., a_k)$ is non-empty.

Suppose we have a one-to-one mapping of A onto itself. Let a' denote the image of a. It follows from the independence of all elements of \mathcal{A} (cf. [3], sec. 2 (ii)) that (*) holds with the same numbers u for a_1, \ldots, a_k and a'_1, \ldots, a'_k . Thus $A(a_1, \ldots, a_k)$ depends only on the decomposition δ of the set of indices S in the disjoint sets D_1, \ldots, D_m containing indices of equal a_i (so that $a_i = a_j$ if and only if i, j belong to the same D_l ,

whence $m \leq n = \overline{A}$. Evidently $A(a_1, ..., a_k)$ is one of those sets D_l and since it depends only on the decomposition δ , it will be denoted by $\varphi \delta$. We observe that every decomposition of S into not more than n subsets is realized by some sequence $\langle a_1, ..., a_k \rangle$.

DEFINITION. For any decompositions δ , δ' we write $\delta < \delta'$ if, for each set D_i of δ , there is a set D_j' of δ' which contains D_i .

Let us prove that $\delta < \delta'$ implies $\varphi \delta \subset \varphi \delta'$. Indeed, if $\delta < \delta'$ and $(a_1, ..., a_k)$ is a sequence that determines the decomposition δ , then there is a mapping of A into itself such that the sequence $\langle a'_1, ..., a'_k \rangle$, which is the image of $\langle a_1, ..., a_k \rangle$, determines the decomposition δ' . From the independence of the elements of εl it follows ([3], sec. 2, (ii)) that if (*) holds for some u and $a_1, ..., a_k$, then it holds for the same u for $a'_1, ..., a'_k$. Thus $\varphi \delta \subset \varphi \delta'$.

We have to prove that the intersection of all $\varphi\delta$ is non-empty. This follows from the lemma

(β) If we have a fixed number $n \ge 3$, S is a finite set, and to every decomposition δ of S in not more than n disjoint subsets corresponds a set $\varphi\delta$ of that decomposition so that $\delta < \delta'$ implies $\varphi\delta \subseteq \varphi\delta'$, then the intersection of all $\varphi\delta$ is non-empty.

Proof of (β) . The assumption $n \ge 3$ means that the correspondence $\delta \rightarrow \varphi \delta$ is defined for all decompositions in not more than three subsets.

It is sufficient to verify that, for any δ' , δ'' the set $\varphi\delta' \cap \varphi\delta''$ is also a $\varphi\delta$. We prove first that $\varphi\delta'$ and $\varphi\delta''$ are not disjoint. Consider the decompositions δ_1 , δ_2

$$S = \varphi \delta' \cup B$$
, $S = \varphi \delta'' \cup C$,

where B and C are uniquely determined. We have $\delta' < \delta_1$, $\delta'' < \delta_2$ and this implies $\varphi \delta_1 = \varphi \delta'$, $\varphi \delta_2 = \varphi \delta''$. Suppose that $\varphi \delta'$ and $\varphi \delta''$ are disjoint. Then the decomposition δ^*

$$S = \varphi \delta' \cup \varphi \delta'' \cup D$$

satisfies $\delta^* < \delta_1$, $\delta^* < \delta_2$. $\varphi \delta^*$ is contained in both $\varphi \delta_1$ and $\varphi \delta_2$, which contradicts $\varphi \delta_1 \cap \varphi \delta_2 = \varphi \delta' \cap \varphi \delta'' = \emptyset$ (\emptyset is the empty set).

Now consider the decomposition δ defined by

$$S = (\varphi \delta' \cap \varphi \delta'') \cup (\varphi \delta' - \varphi \delta'') \cup B.$$

From $\delta < \delta_1$ follows $\varphi \delta \subset \varphi \delta_1 = \varphi \delta'$ and thus $\varphi \delta \neq B$. Since two sets $\varphi \delta, \varphi \delta''$ are never disjoint, we have $\varphi \delta = \varphi \delta' \cap \varphi \delta''$. This completes the proof of (β) and of the first part of Theorem 1.

Let $\mathcal{M} = (a, b; f)$ where f = f(x, y, z) is the operation defined on $\{a, b\}$ so that identically

$$f(x, x, y) = f(x, y, x) = f(y, x, x) = x$$
.

Hence f is non-trivial and thus the algebra $\mathcal M$ is non-trivial. All elements of $\mathcal M$ are independent, since, for any algebraic operations g, h of two variables, the equality g(a,b)=h(a,b) implies g(b,a)=h(b,a) because of symmetry and g(x,x)=x=h(x,x) holds since there is no non-trivial operation of one variable in $\mathcal M$.

3. Algebras which have more than three independent generators

We shall now prove Theorem 2. The result follows by Theorem 1 if we verify that there are only n elements in A. If n is infinite, then, by (α) , every operation is trivial and hence A contains only the n generators. If n is finite, then it is enough to prove that $A^{(n)}$ contains only trivial operations.

Let us suppose that there is in $A^{(n)}$ a non-trivial operation $f(x_1, ..., x_n)$. By (α) , the operation on n-1 variables $f(x_1, x_2, x_2, x_4, ..., x_n)$ is trivial, whence it is identically equal to one of the variables $x_1, x_2, x_4, ..., x_n$. Certainly one of the two variables x_1, x_4 (we have $n \ge 4$) is not identically equal to $f(x_1, x_2, x_2, x_4, ..., x_n)$ and we may assume that it is the variable x_1 , performing in the opposite case a suitable rearrangement of indices. Therefore, identically

$$f(x_1, x_2, x_2, x_4, ..., x_n) = x_2 \text{ or } x_4 \text{ or ... or } x_n.$$

Let $a_1, ..., a_n \in A$ be distinct elements and let $a_{n+1} = f(a_1, ..., a_n)$. Since f is non-trivial and $a_1, ..., a_n$ are independent, we have $a_{n+1} \neq a_1, ..., a_n$. The elements $a_2, ..., a_{n+1}$, being different, generate the algebra. Hence, for a certain algebraic operation h, $a_1 = h(a_2, ..., a_{n+1})$, i. e.

$$a_1 = h(a_2, a_3, a_4, ..., f(a_1, a_2, a_3, ..., a_n)).$$

Since all elements appearing in the above equality are independent, the equality holds identically, e. g. holds also if we put a_2 in place of a_3 . Now $f(a_1, a_2, a_2, a_4, ..., a_n)$ is one of the elements $a_2, a_4, ..., a_n$ and so a_1 is the result of an algebraic operation on $a_2, a_4, ..., a_n$ in spite of the independence of $a_1, ..., a_n$. We have obtained a contradiction and we have proved the theorem.

4. The algebra A

Fundamental properties. Let us prove Theorem 3. Since evidently \mathcal{A}_0 is generated by every three elements, we have to show that every three elements are independent. Let us denote by e_1 , e_2 , e_3 the three trivial operations in $A_0^{(3)}$ so that identically

$$e_1(x, y, z) = x$$
, $e_2(x, y, z) = y$, $e_3(x, y, z) = z$.

It is easy to check that the class of operations $\Phi=\{f_0,\,e_1,\,e_2,\,e_3\}$ has the following property:

If $h_1, h_2, h_3 \in \Phi$, then the operation h defined by the formula

$$h(x, y, z) = f_0(h_1(x, y, z), h_2(x, y, z), h_3(x, y, z))$$

also belongs to Φ .

This shows, by the definition of $A_0^{(3)}$ (cf. [3], sec. 1, (a)) that $A_0^{(3)} = \Phi$. Knowing $A_0^{(3)}$ we easily check that every three elements are independent.

Uniqueness of \mathcal{A}_0 . We now proceed to prove Theorem 4. We assume that the algebra $\mathcal{A}=(A,A)$ is non-trivial, independently generated by every three elements and $\overline{A}\geqslant 3$ (where A denotes the class of all algebraic operations). We first show that

(γ) If $f \in A^{(8)}$ is non-trivial, then identically

$$f(x, x, y) = f(x, y, x) = f(y, x, x) = y$$
.

Proof of (γ) . Let a, b, c be independent generators of \mathcal{A} . If f is non-trivial, we have $f(a, b, c) \neq a, b, c$ and thus a, b, f(a, b, c) generate \mathcal{A} . It follows that, for a certain algebraic operation h(x, y, z),

$$c = h(a, b, f(a, b, c)).$$

Since a, b, c are independent, this equation holds identically, e. g. also if a stands at the place of b. So c = h(a, a, f(a, a, c)). Now f(x, x, y) is, by (a), a trivial operation, whence f(x, x, y) = x or y. But f(a, a, c) = a gives c = h(a, a, a), which is a contradiction. Thus we have f(x, x, y) = y. The other equalities in (γ) hold by symmetry.

Now let us show that \mathcal{A} has exactly four elements. We have assumed $\overline{A} \geqslant 3$. Since \mathcal{A} is non-trivial and every three elements are independent, we have, by Theorem 1, $\overline{A} > 3$. Let us suppose that there are at least five elements $a, b, c, d, e \in A$. Since a, b, c are generators, there are operations f, g such that

$$d = f(a, b, c), \quad e = g(a, b, c).$$

Also c,d,e are generators; thus, for some operation $h,\ a=h(c,d,e)$ and we have

$$a = h(c, f(a, b, c), g(a, b, c)).$$

Since this equality must hold identically, we have, writing a at the place of b, by (γ) , a = h(c, c, c). This is a contradiction and so $\overline{A} = 4$.

From what we have shown it follows that we may assume that both algebras, \mathcal{A}_0 and \mathcal{A} , have the same set of elements $A_0 = A$ = $\{a, b, c, d\}$. To complete the proof of our theorem it remains to prove that the operations are in both algebras the same, i. e. that $A_0 = A$.

Since a, b, c generate \mathcal{A} , we have, for a certain $f \in A^{(3)}$, d = f(a, b, c). Thus f is non-trivial and hence it associates with every three elements of A the remaining one. Since the equalities in (γ) hold, we infer that f coincides with the fundamental operation f_0 of \mathcal{A}_0 . Consequently A_0 is the class of operations generated by f and we have $A_0 \subset A$.

Given an operation $h \in A^{(k)}$, we say that h depends on the variable x_i , where $1 \le i \le k$, if there is a sequence $\langle a_1, \ldots, a_i, \ldots, a_k \rangle$ of elements of A and an $a_i' \in A$ such that

$$h(a_1, ..., a_i, ..., a_k) \neq h(a_1, ..., a_i', ..., a_k)$$
.

We have to show that $A \subset A_0$. We observe that if $h \in A$, then h must depend on some variables, for if h takes a constant value, say h = a, then also h(b, ..., b) = a, contradicting the independence of a and b. We can even assume that h depends on every variable, for if $h(x_1, ..., x_k)$ does not depend on some of the variables, then, after a suitable rearrangement of indices if necessary, we have

$$h(x_1, ..., x_k) = g(x_1, ..., x_m), \quad m < k;$$

g depends on every variable and if $g \in A_0$, then $h \in A_0$.

The idea of our proof is now the following. To show that if $h \in A^{(k)}$ depends on every variable, then $h \in A_0^{(k)}$, it is enough to verify that there is at most one operation in $A^{(k)}$ which depends on every variable, and, if there is one, then there is at least one which belongs to $A_0^{(k)}$. This follows, by $A_0 \subset A$, from

- (2) For any k, if there exists an operation $h \in A^{(k)}$ which depends on every variable, then there is exactly one such operation and k is an odd integer.
- (η) For every odd integer k, there exists an operation $h \in A_0^{(k)}$ which depends on every variable.

Since the proof of (η) is much simpler than the proof of (ε) , we shall give it first.

Proof of (η) . The assertion is trivial for k=1. Suppose that, for some odd $k \ge 1$, there is an operation $h(x_1, ..., x_k)$ belonging to $A_0^{(k)}$ and depending on every variable. Then the operation g defined by

$$g(x_1, \ldots, x_{k+2}) = f(h(x_1, \ldots, x_k), x_{k+1}, x_{k+2})$$

belongs to $A_0^{(k+2)}$. From $g(x_1, ..., x_k, x, x) = h(x_1, ..., x_k)$ we infer that g depends on each of the variables $x_1, ..., x_k$. Since, for a constant $u \in A$, the function f(u, x, y) depends on each of the variables x, y, it follows that g depends also on x_{k+1} and x_{k+2} .

Proof of (ε) . Since, by (a), every operation of not more than two variables is trivial, (ε) holds for k=1 and k=2. Let us show that (ε) holds for k=3, i. e., that f(x,y,z) is the only operation in $A^{(3)}$ which depends

on all variables. Suppose that $g(x,y,z) \in A^{(3)}$ depends on every variable. Hence g is a non-trivial operation and we must have g(a,b,c)=d, by the independence of a,b,c. So g(a,b,c)=f(a,b,c) and, using again the independence of a,b,c, g(x,y,z)=f(x,y,z).

Thus it remains to prove (ε) for k > 3. Suppose that $h \in A^{(k)}$, k > 3 and h depends on every variable. Since we have only four elements in A, the operation h is given by a system of operations of not more than four variables which are obtained from h by identifying some of the variables x_1, \ldots, x_k so that not more than four different ones are left. Let us call those operations derived from h. If we show that each operation derived from h depends only on the given identification of the variables and not on h, then it is evident that h is unique. This proof will be given in two steps. First, in (ε_0) , we show that each operation h_0 derived from h is determined by the system of operations of two variables derived from h_0 . Then, in (ε_1) , we prove that the system of operations of two variables derived from h can be determined without knowing h.

We consider the family of all decompositions of the set of indices $S = \{1, ..., k\}$ in not more than four subsets. For each decomposition δ

$$S = X \cup Y \cup Z \cup U$$

(where some of the sets X, ..., U may be empty) we identify those variables in $h(x_1, ..., x_k)$ which have indices belonging to the same set of the decomposition. We denote by x, y, z, u those variables x_i whose indices belong to the sets X, ..., U respectively. Thus we obtain an operation $h_0(x, y, z, u)$, which is derived from h.

(ε_0) The operation $h_\delta(x, y, z, u)$ is determined by the system of operations of two variables which are derived from h_δ .

Proof of (ε_0) . Our assertion is trivial if δ is a decomposition of S in two sets. If δ is a decomposition in three sets, then $h_{\delta} = h_{\delta}(x, y, z)$. If h_{δ} is not trivial, then $h_{\delta} = f$ since f is the only non-trivial algebraic operation of three variables. Consequently $h_{\delta}(x, x, y) = h_{\delta}(x, y, x) = h_{\delta}(y, x, x) = y$. If h_{δ} is trivial, then only two of these equalities holds and the remaining four are false. Moreover, we know h_{δ} if we know which of the equalities holds. Thus all the possible cases are distinguished by the behaviour of the operations of two variables derived from h_{δ} ; we can determine h_{δ} by examining those operations.

Now suppose that δ is a decomposition of S in four sets. We have to consider an operation $h_{\delta}(x, y, z, u)$. Let us determine first $h_{\delta}(a, b, c, d)$. Suppose that $h_{\delta}(a, b, c, d) = d$. Then $h_{\delta}(a, b, c, f(a, b, c)) = f(a, b, c)$ and, by the independence of a, b, c, we have $h_{\delta}(x, y, z, f(x, y, z)) = f(x, y, z)$. Identifying any two of the variables x, y, z we easily obtain

$$h_{\delta}(x, x, y, y) = h_{\delta}(x, y, x, y) = h_{\delta}(y, x, x, y) = y.$$

Let us call an identification of some of the variables x, y, z, u even if it results in one of those which appear in brackets in the above equalities. Thus we infer that for any even identification of variables, $h_d(x, y, z, u) = u$. By symmetry, if we assume that $h_d(a, b, c, d) = c$, we shall find that, for every even identification of variables, $h_d(x, y, z, u) = z$ holds and it is similar for a and b instead of c, d. So we see that by examining the operations of two variables derived from h_d (in fact only those which are derived by an even identification of variables) we can determine $h_d(a, b, c, d)$.

It remains to verify that also in the case when two of the arguments x, y, z, u are equal, h_{δ} can be determined. It is not difficult to see that we then have to find the value of an operation h_{δ} of not more than three variables which is derived from h_{δ} . Since we know the operation of two variables derived from h_{δ} (they are also derived from h_{δ}) we determine h_{δ} so in the same way as we determined h_{δ} when it was assumed to be an operation of not more than three variables. Thus (ε_{0}) is proved.

Let Ω_h be the family of subsets of S which contains, for every decomposition $\delta: S = X \cup Y$, one of the two sets X, Y, namely

$$X \text{ if } h_{\delta}(x, y) = x$$
, $Y \text{ if } h_{\delta}(x, y) = y$.

(Let us recall that in \mathcal{A} every algebraic operation of two variables is trivial.)

Obviously

(o) $S \in \Omega_h$.

(i) If $G \cup H = S$ and $G \cap H = \emptyset$, then exactly one of the sets G and H belongs to Ω_h .

It is evident that Ω_h determines the system of operations of two variables derived from h. Thus, by (ε_0) , h is completely determined by Ω_h . To show that h is unique it is enough to show that Ω_h is unique, i. e. that Ω_h is fully determined by the mere condition that h is operation of k variables which depends on every variable. This will be shown in (ε_1) , but to prove (ε_1) we need some more properties of Ω_h . Assume that G, $H \in \Omega_h$, Let us prove

- (ii) If $G \cap H \neq \emptyset$ and $S = G \cup H$, then $G \cap H \in \Omega_h$.
- (iii) If $G \cap H = \emptyset$, then $G \cup H \notin \Omega_h$.
- (iv) If $G \subset H$, then $H G \notin \Omega_h$.

In the proofs of (ii), (iii) and (iv) we shall consider an operation $h_{\delta}(x, y, z)$ given by a decomposition $\delta : S = X \cup Y \cup Z$. The sets X, Y, Z will be defined in each case separately.

Proof of (ii). Assume $G \cap H \neq \emptyset$, $S = G \cup H$. Define X = G - H, $Y = G \cap H$, Z = H - G. Consider the operation $h_0(x, y, z)$. We have $X \cup Y$, $Z \cup Y \in \Omega_h$ and thus $h_0(x, x, y) = x$ and $h_0(x, y, y) = y$. Hence

 h_{δ} is different from f and thus it is a trivial operation. Consequently $h_{\delta}(x, y, z) = y$. It follows that $h_{\delta}(x, y, x) = y$ and thus (ii).

Proof of (iii). Suppose that $G \cap H = \emptyset$. Let X = G, Y = H, $Z = S - (G \cup H)$. From X, $Y \in \Omega_h$ it follows $h_{\delta}(x, y, y) = x$, $h_{\delta}(x, y, x) = y$ and thus h_{δ} cannot be a trivial operation. Hence $h_{\delta}(x, y, z) = f(x, y, z)$ and we have $h_{\delta}(x, x, z) = z$. Thus $Z \in \Omega_h$ and consequently $G \cup H \notin \Omega_h$.

Proof of (iv). Let $G \subset H$. Define X = G, Y = S - H, Z = H - G. It follows from X, $X \cup Z \in \Omega_h$ that $h_\delta(x, y, y) = x = h_\delta(x, y, x)$. We see that h_δ is different from f. Thus it is a trivial operation satisfying $h_\delta(x, y, z) = x$. For x = y we obtain $Z \notin \Omega_h$. This proves (iv).

We shall derive from (ε_0) , (ii) and (iii) that

(v) Every one-element subset of S belongs to Ω_h .

Proof of (v). Without loss of generality it will be enough to prove that $\{1\} \in \Omega_h$. Since $h(x_1, \ldots, x_\delta)$ depends on x_1 , there are sequences $\langle a_1, \ldots, a_k \rangle$, $\langle b_1, \ldots, b_k \rangle$, $a_i, b_i \in A$ such that $a_i = b_i$ for $i \geq 2$ and

$$h(a_1, ..., a_k) \neq h(b_1, ..., b_k)$$
.

Since obviously $a_1 \neq b_1$, we can assume that $a_1 = a$, $b_1 = b$. Both sequences, $\langle a_1, ..., a_k \rangle$, and $\langle b_1, ..., b_k \rangle$, are composed of the elements a, b, c, d, and thus there are uniquely determined decompositions δ and δ of S.

$$S = X \cup Y \cup Z \cup U$$
, $S = \overline{X} \cup \overline{Y} \cup \overline{Z} \cup \overline{U}$

such that

$$h(a_1, ..., a_k) = h_{\bar{a}}(a, b, c, d); \quad h(b_1, ..., b_k) = h_{\bar{a}}(a, b, c, d).$$

It is not difficult to check that $\overline{X}=X-\{1\},\ \overline{Y}=Y\cup\{1\},\ \overline{Z}=Z,$ $\overline{U}=U.$ We see also that the operations h_{δ} and $h_{\overline{\delta}}$ are different.

Let C_1, C_2, C_3, C_4 stand for the symbols X, Y, Z, U but not necessarily in the same order. We find, by $h_{\delta} \neq h_{\overline{\delta}}$ and by (ε_0) that there are two different operations of two variables, one derived from $h_{\delta}(x, y, z, u)$, the other from $h_{\overline{\delta}}(x, y, z, u)$ and both obtained by the same identification of some of the variables x, y, z, u. This means that there is a set $C \subset S$ which can be denoted by $C_1 \cup C_2 \cup C_3$ or by $C_1 \cup C_2 \cup C_3$ or by $C_1 \cup C_2 \cup C_3$ or $\overline{C_1} \cup \overline{C_2} \cup \overline{C_3}$ or $\overline{C_1} \cup \overline{C_2} \cup \overline{C_3} \cup \overline{C_3}$ or $\overline{C_1} \cup \overline{C_2} \cup \overline{C_3} \cup \overline{C_3} \cup \overline{C_3} \cup \overline{C_3}$

It is obvious that C and \overline{C} differ only in the element 1 of S and we have either $\{1\} = C - \overline{C}$ and $\overline{C} \subset C$ or $\{1\} = \overline{C} - C$ and $C \subset \overline{C}$. We define G = C, $H = S - \overline{C}$ so that $G \in \Omega_h$ and, by (i), $H \in \Omega_h$.

If $\{1\} = C - \overline{C}$, then $S = G \cup H$ and $G \cap H = \{1\}$. We derive from (ii) that $\{1\} \in \Omega_h$. If $\{1\} = \overline{C} - C$, we have $G \cap H = \emptyset$ and therefore, by (iii), $G \cup H \notin \Omega_h$ and, by (i), $\{1\} \in \Omega_h$.

We are now in a position to prove that Ω_h does not depend on h. By applying induction on the number of elements in X and using (0), (i), (iii), (iv) and (v) we find that

(ϵ_1) A set $X \subset S$ belongs to Ω_h if and only if the number of elements in X is odd. In particular, since $S \in \Omega_h$, k is odd.

As we noticed above, (ε_1) implies that there is at most one operation $h \in A^{(k)}$ which depends on every variable. Since k must then be odd, our proof of (ε) and of the theorem is now complete.

5. Algebras independently generated by every two elements

We shall prove here Theorems 5 and 6. Consider first the algebra \mathfrak{S} defined in Theorem 5. It is easy to see that the class of all algebraic operations A consists of operations of the form

$$f(x_1, \ldots, x_k) = \lambda_1 x_1 + \ldots + \lambda_k x_k$$

where $\sum_i \lambda_i = 1$. Let a, b be distinct elements in A. Then there exists, for every $c \in A$, exactly one operation $f \in A^{(2)}$ for which c = f(a, b) (since the equations $\lambda_1 a + \lambda_2 b = c$, $\lambda_1 + \lambda_2 = 1$ determine λ_1 and λ_2). Suppose that g(a, b) = h(a, b) holds for some $g, h \in A^{(2)}$. It follows that g = h and thus a, b are independent. Obviously these two elements generate the algebra and thus we have proved Theorem 5.

To prove Theorem 6 suppose that $\mathcal{S}l$ is an algebra which is independently generated by every two elements. A group T of one-to-one mappings of a set onto itself is called *doubly transitive* when it contains one or more mappings changing given two elements a, b into any two elements c, d. If the conditions c = t(a), d = t(b) determine uniquely the mapping $t \in T$, then T is said to be *minimal*. We prove first that

(λ) The group T of all automorphisms of SI is a doubly transitive and minimal group of one-to-one mappings of A onto itself.

Proof of (λ). If a, b are distinct elements of A and c, d also, then, by the independence of a, b, we infer that the mapping $a \rightarrow c$, $b \rightarrow d$ has an extension to a homomorphism t of the subalgebra generated by a, b on the subalgebra generated by c, d and obviously this extension is unique (cf. [3], sec. 2, (ii)). Since a, b generate \mathcal{A} , t is an endomorphism and since c, d generate \mathcal{A} , t is onto. Finally, from the independence of c, d it follows that t is an automorphism. Hence T is doubly transitive and since t is determined uniquely by the conditions t(a) = c, t(b) = d, T is minimal.

Our theorem now follows by (λ) since it is well known that if there exists, for a finite set, a doubly transitive and minimal group of one-to-one mappings of this set onto itself, then the number of elements of this set is a power of a prime (cf. [1], sec. 105; also [2]).

References

- [1] W. Burnside, Theory of groups of finite order, Cambridge 1897.
- [2] On doubly transitive groups of degree n and order n(n-1), The Messenger of Mathematics XXV (1896), p. 147-153.
- [3] E. Marczewski, A general scheme of the notions of independence in mathematics, Rull. Acad. Pol. Sci. Série math., astr. et phys. 6 (1958), p. 731-736.
- [4] S. Świerczkowski, Algebras independently generated by every n elements, Bull. Acad. Pol. Sci. Série math., astr. et phys. 7 (1959), p. 501-502.
- [5] K. Urbanik, A representation theorem for Marozewski's algebras, Fund. Math. 48 (1960), p. 147-167.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 30.12.1959

POLSKA AKADEMIA NAUK

FUNDAMENTA MATHEMATICAE

ZALOŻYCIELE:

ZYGMUNT JANISZEWSKI, STEFAN MAZURKIEWICZ i WACŁAW SIERPIŃSKI

KOMITET REDAKCYJNY:

WACŁAW SIERPIŃSKI, REDAKTOR HONOROWY, KAZIMIERZ KURATOWSKI, REDAKTOR, KAROL BORSUK, ZASTĘPCA REDAKTORA, BRONISŁAW KNASTER, EDWARD MARCZEWSKI, STANISŁAW MAZUR, ANDRZEJ MOSTOWSKI

XLIX. 2

WARSZAWA 1961 PANSTWOWE WYDAWNICTWO NAUKOWE