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On the theory of non-linear operator equations
on conjugately similar spaces

by
8. YAMAMURO (Sapporo)

1. Introduction. It is the purpose of this paper to consider an
eigenvalue problem for some operators F which map a Banach space R
into the conjugate space R. For this purpose, we take, as the Banach
space R, a special kind of vector lattice, a conjugately similar space
which has been introduced by Nakano [9]. Roughly speaking, this is
a Banach space R such that a one-to-one correspondence T exists between
E and R. This correspondence T enables us to define a proper value A
and a proper element aeR of the operator F from R into R by the
following equation:

Fo = ATa.

In the case of L,-spaces (p > 1), this definition agrees with that of
E. 8. Citlanadze [4].

The definitions and elementary properties of the conjugately similar
spaces will be given in § 2. In the next section we will prove a theorem
of L. A. Ljusternik in its special form. The simple proof may be in-
teresting. In § 4 we will consider the eigenvalue problem of a non-linear
operator. The last section contains an application.

We express here our hearty thanks to Dr. Musielak for his valuable
remarks on various points in this paper.

2. Conjugately similar spaces. Let R be a vector lattice which
satisfies the following condition: for any system of positive elements z;,

(Aed) there exists an “infimum” element (7} z;. The conjugate space B
Aed

of R is the totality of all linear (additive and homogeneous) functionals
% on R which satisfy the following condition: if ;40 (*), then

inf{z(2,)] = 0.
ed

() We write #31e4 0 When {21 (AeA)} is a non-increasing directed system and

M@ =0.
AeA
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By this notion of conjugate space we define the reflexivity of R ([9],
p. 93).
Definition ([9], p.258). R is said to be conjugately similar if R
is reflexive and there exists a one-to-one correspondence 7 between R
and B: Rox <> TxeR such that
1) T(—2) = —T=;
(2) Tz > Ty if and only if @ = y;
(3) (Te,x) =0 (%), @ >0 implies z = 0.
The correspondence T is called the conjugately similar correspondence.
By this correspondence T we define a functional m(x) on R by

1

m(a) = [ (Ttw, a)dt.

]

We have m(z) < +co for any zeR, because m(x) < (Tx, x).
ctional 1m(x) satisfies the following conditions:

1) 0 < m(x) < +oo;

The fun-

)
3) |z| = ly| implies m(z) = m(y);

4) zry =0 (%) implies m(w+9) = m(z)+m(y);

5) m(ax+ BY) < em(w)+pm(y) if a+p =1, a,B > 0;

6) 0 < @144 Implies iu})m(ml) = m(x) (see [9], p.261).

Therefore, the space R is a modulared semi-ordered linear space
in the sense of (9) (%).

If we define m (%) for Z< R by the relation

m(T) = iu]}:{i(m) —m(x)},

then R is also a modulared semi-ordered linear space. Moreover, we have

1
m@) = [ (=, T &x)ds

and
(T, x) = m(x)+m(Tx).

(*) For zeR and zeE, (%, %) moans the value of # at =, namely, & (w).

(°) Eloments s and y are said to be mutually orthogonal it |o|~|y| = 0.

(') In [9] the modulared semi-orderod linear spaco hag been defined by more
general conditions. Namely, the conjugately similar space is a special class of moda-
lared semi-ordered linear spaces.
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By the modular, we define two kinds of norms:

1
LRl = int

megzy<t [€]

llz|} = inf
&>0
which satisfy the following relation:

el < ll2ll < 211l

and m(x) = 1 if and only if ||l»]|] = 1 (see [9], p. 179 and [12]). By these
norms, B is monotone complete (%), and, therefore, B is a Banach space

and the Banach dual of R iy R (see [1] and [13]).

Finally, we must illustrate the notion of projection operators, which
are indispensable in this paper. A subset N of R is said to be normal if
every element xeR can be decomposed into two orthogonal elements y
and 2z such that

T = g;+z, yeN and zeN™.
In this cage, we define the projection operator [N] by
y =[Nz (weR).
This operator [N] is linear and idempotent ([9], §5). The set
{p)* = {weR:|p|~lz) = 0}

is normal for any element peR. We denote |{p}"*| by [p] ([9], §6).
Example 1. L, is the totality of all meagurable functions (t)

1

(0 <t < 1) such that [|m(f)dt < 4o0. If 1 < p < +oo, the conjugate
0

space of L, is L,, where ¢ =p/(p—1). If we put

Ta(t) = |@(t)[" 'signa(t),

T is a conjugately similar correspondence between L, and L,, and
1
1 P
miz) = = [ looPd,
p L]

1 1/p
ol = (3 [ mtoPas) s lel = 2"l

() B is said to be monotone r;omp_leta it 0K o244 and supm(z;) < + oo imply
that {z; (AeA)} is order-bounded. ed
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Example 2. Let L, be an Orlicz space. We assume that the
funetion ¢(£) which appears in the integral
D) = [ pln)dy

0

is strictly increasing and its strictly increasing inverse function ¢(¢)
generates the conjugate function ¥(£) by the following relation:

3

w(E) = [ pin)dy.

0

Then, L, is the conjugate space of L, and, if both spaces satisfy con-
dition (A,) for large arguments (%), then

Ta(t) = ¢ le* (1)) —o{c™ (1))

is a conjugately similar correspondence between L, and L. In this cagse
1
m(@) = [ ®(|a(t)))ds
‘0
Example 3. For a measurable function p(t) > 1 (0 <t < 1), we

define a function space L as the tota]lty of all measurable functions
z(t) such that

1
1
f |E2(t)POdt < +oo  for some £ 0.
)P0
When
l<inf p(t) < sup P(t) < +o0,
o<l <<l

the conjugate space of Ly is Ly, where ¢(t) = p(t)/(p(t)—1), and

To(t) = | (t)PO~ signa (1)

is a conjugately similar correspondence between Ly and Lygy. We

have
1
f 1
4 p(t)

(*) Namely, we assume m(z) < +oc for every u(t)}eliy. For the condition
(A2), see [5].

P9 ar.
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In this paper R is assumed to be conjugately similar by the cor-
respondence T, and the modular generated by 7T is denoted by m(x).

3. Fréchet-derivatives and the Eigenvalue Problem. We will
begin by the following
LevMA 1. The functional of &:

m(z+£y),
is differentiable and

d
—zm(z+&y) =

T (T(2+&y), ).

Proof. Although there are shorter proofs, we adopt here the one
which uses a simple inequality between the modular and the conjugate
modular. Putting 2z = x4 £y for any number ¢ > 0, we have

m (@4 (&4 e)y)—m(z+ &) — (T (@+ &y), =)
' = m(z+ey)—m(2)— (T2, ey)
= m(z+ey)—((T#, 2)—m(Te)} — (T2, ey)
= m(z+ey)+m(Tz)— (T2, 2+¢ey) = 0,

and hence it follows that

€

—

On the other hand,
m(z+ ey)—m(z) = (T (2+ey), 2+ ey)— W(T (24 e))— m(2)

= (T(z+sy), 2)—m(2)+ (T (2+ ey), sy)— T (T (2+ey))

< (T 2+ y), &),

which implies that

== (2+ ey) —m(2)

lim

850 &

< Hm (T (s+ey), ) = (T2, ).
50
Therefore, the right-hand derivative of m(z+ &y) is (T(m—{— Ey),y).
Analogously, we can prove that the left-hand derivative is also
(T (w+ £y), y)-
Remark. In this proof, we have used the following fact:
then limHTa;,—-fl’w" = 0.

00

if lim|jz,—a| =0,
P00
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This is true, because, since the norm is complete and continuous, the
norm convergence is equivalent to the star-order-convergence (see [9],
Theorems 33.4, 33.5), and T is order-continuous.

Definition. A functional f(z) on R is said to be Fréchet-differen-
tiable at x if there exists an operator Fe(R — E) such that

fle+y)—fz) = (Fo,y)+y(,¥)
and
) ly (&, ¥)| _
wio Yl

The operator Fis called the gradient mapping of f, and it is, in general,
non-linear. Sometimes we write Fx as f' (x). For various properties of the
gradient mapping (see [5], [6], [10] and [11]).

THEOREM 1. m(x) is Fréchet-differentiable and

m(z+y)—mx) = (Lo, y)-+vie, y)
for the conjugately similar correspondence T.

Proof. For any &> 0 there exists 0 = (¢, w) > 0 such that
lle—yl| < 6 implies ||[7@—Ty|| < e. Therefore for those &, 4 we have

1
(24 y)— mi@) = (Lo, ) = | [ {(T@+ &), y)— (Lo, y)| dé |
0

1

< [T (@+ &y)—Ta)|- Iyl dé < elllyll

0
if |ly|| < 4, because

let+gy—all < &lyl<d (0<<ELT).
Therefore we have

im ly{(z, y)| <e,
e Iyl

which is to be proved:
Definition. Let F be an operator from R into R. A proper value A
and a proper element a<R of F are defined by
Fo = ATa.

_ In the case where B = L, (1 <p < 4o0), this definition agrees
with that of Citlanadze [4]. In particular, for p = 2, we get the usual
definition of the proper element in Hilbert spaces.
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The following modification of a theorem of Ljusternik ([6], p.239)

is fundamental in our theory.

THEOREM 2. Let S = {weB:m(x) =1} and let N be a normal
manifold of R such that S~N is not empty. Let f(x) be a functional on R,
which takes an ewtremum at aeS~ N, 1. .

@) <f(@)  (or f(a) = f(=))
If f(x) ds Fréchet-differentiable ai a, then
J'(@)[N] = ATa,

where A = (f'(a), a)/(L'a, a). Therefore, if N = R, then the element a is
a proper element of the gradient mapping f'(x) and the proper value, to
which o belongs, is f'((a), a)/(Ta, a).

Proof. Let us agsume that f(a) < f(z) (xe8~N). Putting
g (@) = f(z)—i-m(w),
where A = (f'(a), a)/(Ta, a), we have
g(a) = f(a)—dm(a) < f(#)—Am(z) = g(8) (we8N),

which means that the function g(z) also takes its minimum at a. Since
flx) and m (x) are Fréchet-differentiable, g(x) is also Fréchet-differentiable
and

for every xeSAN.

(¢' (@), a) = {f'(a), a)— A(La, a) = 0.
Now, for any yeR such that a+ &[N]y 5 0 for any £, the elements
a(é) = a-+ E[N]y/lla+ [N ]yl
belong to S~N, smq .
g(a(&) = g(@)+g' (a), a(é)—a)+y(a, a(£)—a)
= g(a)+(y' (a), a (&) + 7 (a, a (&) —a).

Since ¢(a) < gla(£) (—oo < &< +oo), if g(a(é)) is right-hand
differentiable at £ = 0, then the right-hand derivative must be non-
-negative.

We will prove that g(a(&)).is right-hand differentiable at & =0.
For any & > 0, we have

g(a(e) —g(a) = (¢' (@), a(e))+¥{a, a(e)—a),

(—oo < &< 400)

and

' . a+¢e[N]y _’)
(¢ (@), ae)) = (9 @) TlaF s tr gl

- d ! Nly).
Terern ¢ @ W)
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Therefore,
de@)—g@ _ L @), (W) 4 L1G 0 =)
C T T ¢ BT

On the other hand, since

lla(e)—alll 1 1 ) [Ny H'
R LA S —1
e =(ma+e[mym “t et e iyl
| lactelMgll=1] IV Iyl
el Jllate[N]yll lla+e[Nyll]’
we have
i (@ ae)~a) o v, ale)~a)| |llale)~all
0 P o |lla(e)—all] B
== |r(a, a(e)—a)| | ma+e[N]ym lllalll
<Ti Tl =
SO Te@—an 15 +|H[N1ym| 0,

because, by a result of S. Mazur (7],
Hla+s[N]yH[~lllaH
s—w .

and, by the definition of Fréehet—differentia.tion,

m 7@ ae)—a)
o0 |lla(e)—all|
Therefore we have
o JaE)—g()

- lim = (9'(a), (¥1y) = (¢’ (@) [N, ).
Hence it follows that
(0@ [¥1,9) =0 (yeR),
which means that
. ¢ (a)[N]=0.
Thus we obtain
f(a)[¥] = ATa[N] = ATa.

Remark. In the definition of § the condition that m(z) = 1 i not
essential. Namely, for

8 = {weR:miz) = 4},

e ©
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my (@) = }m(w)

enables us to get the same conclusion. By that m, we can define a con-
jugately similar correspondence T, which satisties

1
T =—Tx.
w=—To

Therefore

(f(a)ya) p, . _ [Fla); )

= Ta.
(Tya,0) "~ (Taya)

fa)[N] =

For the properties of m,, we refer to [12].

LeMMA 2. Let us suppose that f(x) (x<R) satisfies the following two
conditions:

i) f(») is weakly continuous;

ii) there exists a mumber a >0 such that f(&x) = &f(w) for any
number & =1 and element veR.

Then, there exists an element aeR such that

m(a) =1 and S(ll)Ijllf(w)l = |f(a)].

Proof. The existence of such an element aeR that

sup |f(@)] = |f(a)|

m(@y=1
follows from the facts that the unit sphere is weakly compact (*) and that
f(») is weakly continuous. The norm of the element a is not greater than
one. If m(a) <1, then

‘/lf nmm) (mam) e,

which shows that the element a/|||a||| is our solution.

THEOREM 3. Let us assume that:

i) f(z) is Fréchei-differentiable;

ii) there ewists a number a >0 such that f(&x) > &f(x) for any
number £ =1 and element weR;

iii) f(z) is positive: f(x) =0 (weR);

iv) the gradient mapping F of f(x) is completely continuous. -

(") B is reflexive as a Banach space.
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Then, there exists an element aeR such that wi(a) =1 and

(Fa,a)
(Taya)”

Fa =

namely, a is @ proper element of I and the proper value to which a belongs
s (Fa,a)/(Ta, a).

Proof. By the agsumptions ii), iif) and Lemma 2, we can find a<R
such that

mie) =1 and

sup f(x) = f(a),
mz)=1
because the complete continuity of F implies the weak continuity of
f(x) (see [10], Theorem 3.2). Therefore, by Theorem 2, we can complete
this proof.
Before proceeding to the next theorem, we need the following
Definition. A subset A of R is said to be complete if | A implies
x = 0. An element is said to be complete if it is complete as a one-point set.
THEOREM 4. We assume the conditions i)-iv) of Theorem 3. Moreover,
we suppose that
v) there exists a complete element;
vi) f(x) < f(lz|) for every meR.
Then there ewists a sequence of projection operators P, in R such that
1) P42, 0 and P, = I (the identity in R);
2) there exist a, >0 and i, >0 such that

m(a,) =1,

3) the sequence a, (v =1,2
Yif A £0 (v=1,2,..

inf2,|/Ta,|| = 0.

¥>1

P,Fa, = A\Ta, and PFa, =a,(®);

y...) is complete in R;
.), then

Proof. We start by the proper element a of the preceeding theorem.
By vi), we can take positive a. We denote it by a,. When a, is not a com-
plete element, then the non-empty set

Noy = {weR:(Tay, |a]) = 0)
is normal and

[¥g)+[a]l =1 (the identity of R).

(®) For the definition of PE, see [9], p. 82.

icm

Non-linear operator equations 239

By the same method as in the proof of Lemma 2, we can find a,eR
guch that m(a,) =1, ase[Na,] and

sup  flz) =
m(x)=1zeNay

flas).

Then, by Theorem 3, we have
Fa,[Na,] = 2,Ta,,
where

dy = (Pag, @) [(Tay, as) = (Fay, as) | Tasl.

Suppose that we could find an orthogonal a, > 0 (» =1,2,..
that

., #) such

m(a,) =1, a,eNa,~nNay~...~ Na,_,
and
where 1, = (Fa,, a,)/I|Ta,|-

Fa, [Na,][Na,]...[N,,] = 4Ta,

It {a, (v = 1,2, ..., u)} is not complete, we can continue this process.
Gince R is superuniversally continuous, the set of such elements must
be at most countable. Therefore, 3) is true.

Now, since

(Na,] = I—[a,] = I—[Ta,]",
we have '
Fa,[Na,][Nay)..
’ = (I—[Ta])...
Putting P, =1 and
P, = (I—[Ta,))..

.[Na,_,] = Fa,(I—[Ta,]%)...(I— (Ta,_,1%)
(I—[Ta,,)) Fa,.

-(T’_[Taw—l]) (1‘=2,31...),

we have

P,Fa, = 2,Ta, (»=1,2,...)

and
PRy, = [Na,]...[Na,,Ja, =a, (v=2,3, ).
Thus, ‘we could prove 2).

It is evident that P, = ‘We will prove that () P,=0 (the

y=1

Py=...
projection operator defined by 0-% = 0). Since

= [Na,l] e [.Zvll,,_],],
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we have only to prove that

o0

M [Na,]...[Na,_;]1=0.

y=2

Suppose, on the contrary, that
ﬂz [Na,]...[Na,_,] # 0.

Then there exists a projector [p] # 0 such that

[p] <[¥a,]...[Na,_,]
which shows that

(»=2,38,...),

[p1la,] =0

This contradicts the fact that {a, (v =1, 2,...)} is complete.
Finally, we will prove that 4) is true. If

(»=1,2,..).

inf4,|Ta,| + 0,
=1

we can take a subsequence (we denote it also by A Ta,]) such that
AWlTa,) > ¢ (v==1,2,...) for some & > 0. Then the elements a, /2, Ta,||
(v=1,2,...) are norm-bounded. Therefore, by iv), the set

{ Fa, 1.9 }
AiTaj =T
is compact, and hence it follows that
{Pva‘a, _ Ta, 1.9 }
AT " e TR

is compact. But this is impossible, because, as a, (» = 1
ally orthogonal, we have ’

m( Ta, Ta,,) »m( Ta, Ta,,i)
o)~ Ta) = " \iTa T Ta,]

,2,...) are mutn-

>m(—i)+m(~TL)>z inf m(3z) > 0
2| Ta,)|| 2{[|Ta,ll| A@=1 -
since B is uniformly simple ([13], Lemma 2.1).
tablished.

Remark. It is possible that, for an a,
(Aed) such that

Thus 4) is es-
there exist infinite x;, 20
le = alx,

and  m(z,) =1.

icm

Non-linear operator equations 241

But the set {x; (1«A)} contains only a finite. number of mutually
orthogonal elements because of the complete continuity of F. It is evident
that mutually orthogonal elements are linearly independent. But the
inverse is not always true.

4. Symmetric operators. In this section we will introduce the notion
of symmetric operators on Banach spaces and apply the results of the
preceeding section. :

Definition. An operator Fe(R— E) (°) is said to be symmetric
it (Fo,y) = (Fy,x) @,y <R).

Obviously the symmetric operator is additive and homogeneous.
The conjugately similar correspondence T is symmetric if and only if
the space R is an abstract L,-space (*).

For a symmetric operator F, we put

(*) fr(z) = $(Fo, x).

Then fm(z) is homogeneous of order 2, that is, a quadratic form.
Moreover, we have

LemMmA 3. If F is continuous and symmetric, fyp(x) is Fréchet-
differentiable and fr(z) = Fa.

Proof. By (), we have

fole+y)—fr@) = H(F(@+y), o+ y)— (Fz, 2)]
= (Fz,y)+ $(Fy, ¥),
and |(Fy, 9)| < [Pyl liylll. Therefore

Ey, | _
iyl

’
1wil|—0

because F is continuous. Thus we have

(f (@), 9) = (F2,y)  (yeR).

(*y We will denote by (B — R) the set of all operators from R into E.
() If F is symmetric, it is homogeneous. Therefore

& 52
m(éz) = [ (Tye, m)dn = —2—(Tn:, x),
0

which means that m (&w) = &2m(z). Hence it follows that lw-+y|P = fi2lP+ lylf if
xny = 0. See [3].

18
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Remark. If a function f(x) is Fréchet-differentiable and its gradient
mapping F is symmetric, then

f@) = 3(Fa, 2)+f(0).

In fact,
1

f 57'); '

]

= ff(pm, v)dé = }(Fx, w).
0
Definition. An operator Fe(R — E) is said to be positive definite,
if (Fz,x) >0 (xeR). F is said to be positive if > 0 implies Fa > 0.
Obviously, these two notions are independent.

Lemma 3. If F is positive, then fp(x) < fp(l2l).
Proof.
2fp(x) = (Fz, )
= (F@t—a), at—a)
= (Pu*, 2+)—2(FPa*, o)+ (Fo~, o)

< (F(I:+, 5’7+)+2(F”+1 7 )+ (Fa—, o)

(leel) (™).

Thus, we can easily see that the following theorem is true:

THEOREM 5. If F is symmetric, completely continuous, positive and
positive definite, then the functional fr(x) satisfies the conditions i)-iv)
and vi) of Theorem 3 and Theorem 4. Therefore we can apply Theorem 4.
In this case we can replace 4) of Theorem 4 by

4) if 2, > 0, then A,(|Ta,|| > 2| Tay| >... and

= (Flxl, [#]) = 2fp

lim 4, ||Ta,] = 0.

In fact, 4,7 = (Fa,, a,) = 2fz(a (a,).

Remark. If a symmetmc operator F iy positive definite, we can
eagily prove the following equality:

1B = SUP |Fz)| = sup (F=,x).
lz[[|=1 m(x)=1
() Jof =2t +o7, 2t =200 and 2= = (—z)+.
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5. An integral operator on medulared function spaces. For & > 0
and 0 <t <1, we consider a finite function ¢(¢,?), which is assumed
to be strictly increasing with respect to & > 0, measurable with respect
to ¢ and ¢(0,t) = 0 for almost all ¢. Let the inverse function of ¢(¢&, 1)
as a function of & be y(&,¢), which is also a finite, strictly increaging
function of £ > 0 and measurable with respect to t.

We define Young’s functions as follows:

&
)= [gn, )iy
0
Then it is easy to see that
& < P& H)+P(n, 1),

&
and  Y(&,1) = [p(y, dn

and ’
aff =
Let L, be the totality of all measurable functions () (0 <t < 1)
such that

P(a, )+ ¥(p,t) I f=gplet) ora= y(B,1)

m(Ex) = f¢(§[w ), t)dt < oo for some &> 0.
Then the functional m(x) satisfies the ‘“‘modular conditions” of [9],
p. 153. This space L, is reflexive and its conjugate space is L,. Every

element ZeL, takes the form of

for some Z(t)eL,.

Throughout this section we agsume that m(x) < +oo for every
2(t)eLy.

LeMMA 4. The transformation

Ta(l) = ‘P(w—iﬂ(t)yt)"q’(‘v‘(t)ﬂ)

i8 & conjugately similar correspondence between Ly and L.
Proof. At first, we prove that Te(L,— L,). Let 0 <
Then

(t) eLy.

1

JECRTC t)dt = lim

0

ez —m@ _
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Therefore we have

1

JY’((]J(% 1),1) ), t)dt < +oo,

fm

ole@®), t)dt—f(b

which means that
Ta(t)eL, if
For arbitrary «(t)eL, we have
Tx(t) = Tet () —Tw~
Next we prove that

T{I}:T(y

0 <o)L

(t) e Ly

implies x=1y.

We can assume that x(t),y(t) are positive. If z(?) # y(t),
example,

then, for

o(t) >y (1)

on a set of positive measure. Therefore, we can find a > > 0 such
that the set

{t:2(t) > a> B>y

is of positive measure. Since ¢(£,?) is strictly increasing,
p(o(),1) # oy, 1)
To show that T is one-to-one, we have ohly to prove that for any
< yeLy, there exists 0 <<welL, such that To = y. But this is obvious,
because, for that y(t)eL,. we have

@(t) = py (), t)eL, @lo(t), 1) =y ().

We find no difficulty in proving the following conditions: (1) 7(—=)
= —Tz; (2) # < y if and only if Te < Ty; (3) (Tx, x) = 0, # > 0 implies
z=0.

Thus the proof is established.

Next we will consider the following integral operator:

we have

and

(%) Fo =y(s) = [ K(s, t)a(t)ds

Using a method of A.C. Zaanen [14], we can prove the following
THEOREM 6. If

f!{f[f (1K (s, 0], t)dt, s] ds < +oo;

icm°®
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then the operator (x*) is completely continuous as an operator from L,
nto L.
Proof. At first, we prove that Fe(Ly, -~ Ly). For Fz = y, we have

1

[®(3ly(s), 5)ds =

0

fwmflf s, D (t)dt|, s1ds

1 1
+3[2[[ (=), ), s]ds < 400,
0 0

which shows that FaeLy.
To prove that F is completely continuous, we note that in this case

the norm convergence and the convergence by modular (12) coincide
([13], Lemma 2.1).

Let a set A C L, be bounded, namely,
NNzl < v

for some y > 0. This is equivalent to

(wed)

m(lm) <1 (zed).
Y

Since A is weakly compact, there exist », (» =0,1,2,.

..} such
that

limy, = 2,

P00

weakly and m(2z,) <1,

where 2yx,eA. Therefore, for every y(t)eLy, we have

1
f%

lim | =,
i a0
The assumption on K (s, t) shows that K(s,t)eLy as a function of ¢ for
almost all s. Hence it follows that for

y(t)ds.

t)z, (t)dt

(11) A sequence =, is said to be convergent by modular to xg if im m (2, — mp) = 0.
=00
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we have
lim|y,(s)—o(s)] = 0  almost everywhere,
which implies
LmY (ly,(s)—#,(8)],8) = 0  almost everywhere.

P—>00

On the other hand, since

[9.(8) < [ 1K (8, 0 ,(8) — o (1)]
1
Y(K(s, t), ¢ dt—i—fqﬁ(lw () — o (t)], t) At

YK (s, 1)), 1) dt+1,

Qgﬁ»- o

we have

Py () —yo(8)l, 8) <P [[P(K (s, 0)], ) de+1, 5],

and the right-hand function of ¢ ig integrable. Therefore, by a theorem
of Lebesgue, we have

1
tim [ ¥(ly, () —yo(s)l, s)ds =
|'—>m0
This means that Fz, converges to Fz, by the modular convergence.
Therefore,

lim |5, —Fizy]| = 0

by the norms defined by the modular. Since 2yw;,e4 and F is linear,
F(A) is compact.

Remark. If &(&,1) = &(¢&), i.e. if P(£,1) is a function of only
€> 0, Ly is an Orlicz space. If (&, 1) = £9 for a measurable funec-
tion p(tf) > 1, Ly is Lyy. But in those cases we cannot always obtain
the exact forms of their norms that make them Banach spaces. It is easy
to see that in the case where

D&, t)=& for p>1,
ie. in the case of L, (p > 1), the condition on K(s,t) of the above
theorem can be replaced by a better one:

11
[ [1E@, )P Vdsdt < +oco.
00
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By Theorem 4 and 6, we can ensure the existence of a positive proper
element of the operator (++). Namely,

THEOREM 7. Let us suppose that the operator (xx) satisfies the follow-
ing conditions :

) [EIZ(E (s, 1)] 1)dt, s]ds < +oo;

ii) K(8,t) = 0 for every s,1;
iii) K (s, t) = K(t, s).
Then, there ewist a positive number o and a function a(t)eL, such that

JE (s, Da(t)dt = Ap(als), o).

If, moreover, F is positive definite, then there ewists a sequence of
measurable sets E, (v =1,2,...) such that:
1) [0,1] =E, DB, D... and lim|B,| = 0;
V~>00

2) there exist a,(t) =0 and 2, = 0 such that

j'cp(a,(t),t)dt=1 ad [ K(s,t)a,(t)dt = 4p(a,(s), s}
EI'

0

3) if a,( ) =0 (v=1,2,...) and x(t) =0, then © = 0;
4)1,fl,>0(v—-12 ..}, then lim}, = 0.
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Remarks to the paper of L. Kubik «The limiting distributions
of cumulative sums of independent two-valued random variables”

(Studia Mathematica 18 (1959), p. 295 -309)

In the definition of class ¥ it is necessary to assume additionally
that the limit

/ n
. M )
lim 2, ]/,231 DHXy)
exigts and in the definition of class X (and in the proof of theorem)
it is necessary to assume that 4= —B, »4u=1. In the proof of
theorem, “P(n) and LQ(n) should be defined as P(n) = P~ N(n),
Dn)=2~N(n) where P (respectively L) denotes the set of positive
integers %k such that min(py, gx) = p (respectively min (px, gx) < Pr)-
The theorem on page 296 should be formulated as follows:
The class R coincides with the class of all distributions which are
of the same type as any element of K.

The elements of ‘¥ which do not belong to X can be obtained by

replacing B, = ]/kzl D*(X;) by B, == B,/o.

Regu par la Rédaction le 6. 4. 1960
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