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Dieser Wert b ist fiir o > 1 kleiner als . Dartiber hinaus geniigt er der
Ungleichung (28) mit m = 3, wenn

(30) a>4

ist. Folglich treten in dem. Fall (29), (30) auf der rechten Seite von (26)
nicht 4 sondern nur 3 Potenzen von s mit negativen Exponenten auf.
Eine entsprechende Diskussion kann man auch fir gréBere m durch-
fithren, man braucht lediglich weitere Koeffizienten d,, zu berechnen.

Die Richtigkeit der Formeln (16) und (17) findet man bestétigt
wenn man die Gleichung ’

[0 g,(s, Hydt = 0
0

wegen (7) in der Form
8 3
aa [60ON gt = b (67000 (s—1) "1t
[ 0

sehreibt und auf beide Seiten dieser Gleichung die Formel (17) bzw. (16)
anwendet. Um dies ejnznsehen, braucht man nur die Formeln (14) bzw.
(13) heranzuziehen und die Fille g = —a—1, » =0 wnd u =0, » =

= —b—1 zu betrachten. Eine weitere Kontrollmoglichkeit erhilt man,

wenn man den oben angedeuteten Weg iiber die Laplace-Transformation
formal durchrechnet.
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Spaces of continuous functions (V)

(On linear isotonical embedding of C(£2,) inte 0(£,))
by
. K. GEBA (Torut) and Z. SEMADENI (Poznan)
1. Introduction. In the sequel Q will denote a compact Hausdorff
gpace, and C(2) will denote the Banach lattice of all real-valued conti-
nuous functions defined on Q. By a well-known theorem (established,
in various forms, by Banach, M. H. Stone, I. Gelfand and A. Kolmo-
goroff, S. Eilenberg, I. Kaplansky and others; see [2], p. 170, [23],
p. 469, [9], [7], [14]), the space C(2) determines Q topologically. Thus,
the topological properties of {2 defermine the linear, metric and lattice
properties of C(R), and conversely.
From the topological point of view, the relation o space Q; is smaller
than Q, may be defined variously (e.g. it might mean that @, C Q,,

0]
or that 2, is a continuous image of Q,). On the other hand, functlijona.l
analysis gives also many definitions of the relation a space C(£2,)is smaller
than C(2,) (such a definition may be based on the linear dimension, on
jsometrical or isotonical embedding, and so on).

These notions suggest the problem whether the statement £, s
smaller than R, implies the statemént C(£2,) s smaller than 0(Q,) and
whether the converse implication is true, both notions smaller being
guitably defined.

The methods and results of both parts of this general problem —
the part concerning topological embedding and that concerning con-
tinuous images — are mutually different; moreover, the firgt part is more
difficult and the issues are not complete.

The problem of necessary and sufficient conditions for £, to be a con-
tinuous image of a compact Hausdorff space 2 is completely solved by
the following theorem of M. H. Stone (*): £, is a continuous image of acom-~

(*) This theorem may be formulated in various ways (e. g. in ring terms or in
lattice terms). It has been proved and discussed by M. H. Stone ([23], p. 475),
G. Silov [21], H. Yoshizawa [24], 8. B. Myers ([17], p. 240), Ky Fan [8], K. Geba
and Z. Semadeni [11]. It is closely related to the Stone-Weierstrags approximation
theorem and to the theory of semicontinuous decompositions of a compact set Q.
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pact space O if and only if there ewists o one-to-one multiplicative linear
transformation T of C(&y) into 0(Q) such that T'(e,) = ¢ (where ¢, and e
denote the units of €(£2,) and 0 (), respectively). The condition of multi-
plicativity T(z, @) = T(%,) T (2;) may be replaced by T(z,Vvaz,) =
= T(2,) v T'(z,), which means that T is a lattice isomorphism (?).

Now, we introduce the following definitions. Given a space X = ((Q),
a subset X, of X will be termed a B, -subspace of X if X, is linear and elosed
and if X, is a vector lattice with respect to the order induced by X. In
other words, a subspace X, of X is a B,-subspace if, for every pair z,y
of elements of X, there exists their relative 1. u. b. # Vyy (i. e. an element
zeX, such that z >, 2z > y and such that &'« Xy, 2" = 2, ' >y imply
2' = 2). Obviously, zV,y > 2vy for all zeX,, yeX,, and o Vyy =awvy
if and only if zvyeX,. The relative g.1.b. is defined by zAy =
= —[(=#)Vo(—1]

Example 1. Let 2 = {0, 1) and let X, be the set of all functions
x(t) of € <0, 1> which are linear on the interval {(}, ¥>. X, is a B, -subspace
of 0{0,1> and is equivalent to the Cartesian square of 00, 1); the unit
of X, coincides with the unit ¢ of €(0,1> and the condition mvoy =
= pvy is fulfilled if and only if «(f) >y (1) on (%, 4> or z(t) <y(t)
on <%, $-

Next, a subset X, of the space X = ((Q2) will be termed an MI-sub-
space of X if it is a B, -subspace, if the unit of C'(2) belongs to X, and if
ovy = xVey for zeX,, yeX, (the last condition is equivalent to the
following omne: zeX,, yeX, imply xvyeX,).

‘We shall write ¥ C X,or Y C X, if there exists a one-to-one, linear,

isometrical and 1sotomca1 map of Y onto a B, -subspace of X, or onto

an MI-subspace of X, respectively. As we have mentioned, the eondition

C(Ry) C C(2) is equ_iva.lent to existence of a continuous mapping of
Mr

£ onto £2,.

Every MI-subspace X, of X = C() is an MI-gpace (3) and, by
a representation theorem of 8. Kakutani and of M. Krein and S. Krein
(see [13] and [16]), X, is equivalent in the linear, metric and lattice
sense to a space C(Q,).

(%) The L u.b. zVy is defined (in .X = C(2)) by (sVy)({t) = max (&), y(#);
we shall also write a\/§ instead of max (a, B), «, bemg real numbers.

The terms laitice isomorphism, lattice homamorphmsm, Banach lattice etc. have
the same meaning as in Birkhoff’s monography [3].

(*) A Banach lattice ¥ is called an M-spoce if @20, y =0 imply |=Vyl
= |z{|Vilyll. The unit of ¥ is an element ecY such that IIwH <lis equivalent to —e
L o< e

An M-space with a unit will be called an MI-space.
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On the other hand, & B, -subspace need not be equivalent to any
space of continuous functions (*) and a B,.-subspace need not be an
MI-gabspace even if it is equivalent (in a linear, isometrical and isotonical
sense, with respect to its relative order) to a space C(£).

Let C(2,) C X = (0(9Q), and let X, be a B, -subspace of X corres-

ponding to O(Qo) The question arises whether there exist, for every
point teQ, functions weX,, ye<X, such that (zvy)(t) ;é(:vv.,y) (t).
The answer ig negative: the set 2, of all points ¢ such that

for all weX,, yeX,

(@vy) (@) = (2vey) (1)
is non-empty; moreover £2; separates X, (°).

Next, X, being an M-space (with respect to the relative order induced
by X), it may possess a relative unit g, (i. e. an element ey X, such that
lleol = 1 and such that xeX,, || <1 imply = < ¢). Evidently, ¢, <e,
but the equality ¢, = ¢ is not true in general.

Example 2. Let 2 = (0,1) and let X, be the set of all functions
x(t) belonging to €0, 1), which are linear in each interval (%, ) and
{},%>, and equal to 0 at ¢ = }. As in the preceding example, X, is
a B, -subspace of 00, 1), equivalent to the Cartesian square of 040, 1);
2Voy = @vy is valid for all weX,, yeX,, but the unit ¢, of X, equal
to 0 at ¢t = %, differs from e in the interval (}, §).

Let us write £, = {tef: 6(f) =1}. In general, neither inclusion
2,C 9 nor 2,C Q, is true. Indeed, in Example 1 we have Q, = Q
= (0, 1> (since the unit ¢ of 0(£2) belongs to X,) and & =0, I v{F1);
however, in Example 2, @, = <0,1) and 2, = 0, v {F 1.

The set 2, = 2, ~ Q, will be termed the support of X,. The main
theorem of this paper (Theorem 1) states that 2, is a closed, non-empty
subset of Q separating X,, and that

llall = sup {lo()]: b2}

for every xeX,. Moreover, 2, is a continuous image of Qg (°).

(4) Moreover, M. Krein [15] proves that, for every Banach lattice <¥, || I|>,
there exists an eqmv-alent norm || l; in ¥, defined by the formula {lyli; = su})‘{lr} (¥):
neS } where S = (el <1, 9> 0}, such that (¥, || l[1> C O(S ), 8% being

compact in the *-weak topology o(X* ¥). If ¥ is separable, then also <¥, 1>
C 040, 1>.
(5) We shall say that a subset F of Q separates a subspace Xy, of X if

sup{lz (f)]: teF} 5t 0 for every weX,, © # 0.
(%) This theorem was published (without proof) in [10].

Studia Mathematica XIX. 20
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Thus, if C(2,) BC C(9), then Q, is a continuous image of a guitable

+
closed subset Q; of 2. This last condition is thus necessary (but not suffi-
cient, even if 2, = Q) in order that C(Q,) C C(2). In the special cage of
B

. . +
Q(.Q) being separable, this comsequence of Theorem 1 is quite trivial,
since every uncountable metric space contains a subset homeomorphic

to the Cantor -discontinuum €, every compact metric space is a conti-

nuous image of C, and every countable compact space is homeomorphic
to a closed countable segment of ordinals. Thus, 0(2,) C C(Q,) and
B

C(8,) BC C(£,) hold for every pair of uncountable compact n:etric spaces
+
£, and 2,.

Obviously, the condition 2, = 2 means that X, is an MI-subspace
of 0(2); thus, the continuous image theorem (quoted above as a variant
of a theorem of Stone) is a special case of Theorem 1.

K. B.orsuk [4] proved the following very important extension
theore{:u: if By is o closed and separable subset of a metric space B (in parti-
cular, if B, is a closed subset of a compact metrisable space ), then every

bounded continuous function x(t) defined on E, may be estended 1o a fune-
tion x*(t) continuous on E, so that

1) SuD |2(t)] = sup |a*(t)],
teEy o

(2)  the correspondence ©— " is linear, i.e. if ©—a"* and y ->y*, then
24y = z* 4y,

B) o w(t) >y() for all teB,, then also a*(t) > y* (1) for teB,

(4) i 2(t) =1 for teE,, then 2*(t) = 1 for t<B.

Thus, # — ™ is a linear, isometrical and isotonical map transforming
the space Cp(E,) of bounded eontinuous functions on B, into the space
Ch (1?). Any extension » — & satisfying conditions (1), (2) and. (3) is called
a simulioneous extension. Every simultaneous extension determines
& non-negative (") projection P, of norm 1, transforming the space O (H)
onto the subspace X, of all functions #* (1) with @eCy(B,); namely P(x)
is the extension of the restricted function x| B,. ’

Ol?viously, X, is a B, -subspace of Cy(B) and P is a lattice homo-
morphism of Cy(E) onto X,, i. e.
P(ovy) = P(z)v P(y) for all veX,yeX.

(") A linear opération P is termed non-negalive it P (x) >0 whenever > 0.

A map P from X onto a subspace X, will be called iection i is i 3
PY=P, ic. if P(s)— o for pef, u/ ed a projestion if P ig linear and if
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Condition (3) being satistied, neither conditior zvy— z*vy* mor
@y -« -y* need to be safisfied. Yoshizawa [24] has shown that, in the
case of compact F, the last condition iy satistied if and only if &, is a re-
tract (8) of E.

Borsuk’s proof gives an effective integral formula for the extended
functions, founded on the existence of a continuous map transforming
a set of positive linear Lebesgue measure onto K.

S. Kakutani [12], Dugundji [6a], R. Arens [1] gave new proofs
of this theorem of Borsuk; their proofs are simpler and use methods
of functional analysis. At the same time, they generalize Borsuk’s assump-
tions concerning the topological properties of E and F,. The most general
formulations of the simultaneous extension theorem are discussed by
B. Michael [19]; in particular, the theorem holds if F, is metrisable
and compact and ¥ is paracompact, or if F is metric and E, is any closed
subset of K. Although Tietze’s extension theorem is valid for normal
spaces, an extension satisfying conditions (1), (2) and (4) does not need to
satisfy (3). Arens, Michael and, finally, M. M. Day [6] investigate counter-
-examples to show that simulianeous extension is not possible in the domain
of all mormal spaces, even if both spaces B and B, are compact.

E.g., the Stone-Cech compactification A(N,) of an uncountable
isolate set N, is topologically contained in a Tychonoff cube 9% and,
on the other hand, the space C{8(N,)} is isomorphic to no subspace of
0(9*), since 0(9%) is isomorphic to & strictly convex space and C (8(IV,))
does not possess this property. Next, N being the set of integers, there
exists no simultaneous extension of the continuous functions on f(N)\ N
onto the whole of 8(IV), since there exists no projection of the space m
of all bounded sequences onto its subspace ¢, of null-convergent sequences
(Phillips [20], Sobezyk [22]), and the space

X, = () {zeC(B(I): (3) = 0}
Tl (NN

is equivalent to ¢, (9).

(8) H, is termed a retract of B if there exists a continuous map, called retraction,
transforming ¥ onto F, so that o(u) = u for ueH,. Any retract ¢ induces a simulta-
neous extension given by @*(f) = # (o (f))-

(*) A. Sobezyk [22] proves that if ¥, is a subspace of a separable Banach
space ¥ and if ¥, is isomorphic to the space ¢,, then there exists a projection of ¥
onto ¥,. An analysis of the proof of this theorem of Sobezyk (given by A. Pelezynski
[19]) leads to the following conclusion: if ¥, is a subspace of C(£) isometric to ¢
and if there exists no projection of C(2) onto ¥, then there exists a closed subset
Qq of £ such that the continuous functions on 2, do not admit a simultaneous exten-
sion onto Q.

In particular, the above statement is valid if ('(Q2) contains a subspace isometric
to the space m.
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The negative solution of the general problem of simultaneous exten-
sions in compact spaces leads to many unsolved particular problems.
The inverse principal question (whether the isometric and lattice-
-isomorphic embedding €(f2,)C C(£2.f implies .Qltg)!?g) has a negative

solution, as shown by simple examples. In the second part of this paper we
shall give the following conversion of Borsuk’s theorem: if C(L,) is iso-
metric to a subspace X, of X = O(£2) and if there exists a lattice-homo-
morphism projection P of norm 1, transforming X onto X,, then Q, may
be embedded topologically into £ in a way admitting a simultaneous
extension corresponding naturally to the initial embedding of C(£,)
into 0(£). Moreover, in this case X, is a B, -subspace of (£2) and the
homeomorphic image 2p of Q, in 2 is a retract of the support 2, of X,.
Hence, if £, = Q (i.e. if X, is an MI-subspace of 0(2)), then £p is
a Tetract of Q (this is a generalization of the theorem of Yoshizawa which
we have quoted).

If P >0 and P2 = P, then the assumption ||[P|| =1 is equivalent
to P(e) = e,; however, it implies the relation P(2vy) = 2Vv,y only for
zeX, and y e X,. Thus, the hypothesis of Theorem 3 and Theorem 4 of [10]
that P is a non-negative projection of norm 1 is essentially too weak, and
the theorems need the additional hypothesis that P(xvy) = xvy for all

' zeX,y, yeX,, to be correct.

‘We shall also consider the non-negative projections of norm ||P|| > 1.
If such a projection of X = C(2) onto its subspace X, exists, then X,
is & B, -subspace of X, and X, is an MI-space with respect to the order
induced by X and with respect to the norm |zf* = inf{i: |#| < AP(e)},
which is equivalent to the initial norm || in X,.

2. Support of a B, -subspace. In the sequel we make the following
agsumptions:

10 Q is a compact Hausdorff space and X is the space C(R2),

20 X, is a B -subspace of X,

30 Q4 is a compact Hausdorff space such that C(2,) is equivalent to X,,
and this equivalence is established by a one-to-one, linear, isometrical and
isotonical transformation T of C(Q,) onto X,.

The elements T-(z), T-(2"), T-(y), T-*(y,), ... will be denoted
by @, %', Y, Yn, --., Tespectively. Since T is a lattice isomorphism,
' avey = T(xevy) and a2Ay = T(xAy)
are the relative 1. u.b. and g.l. b., respectively. Moreover

T(zAy) ST (2)AT(y) < T(x)vI(y) < T(xvy),
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which means that

@vy) () = (zvy)(t) and

for all teL.
By e, we shall denote the unit of ¢(£,) (i. e. the funection e(u) =1
for u e2y) and, in turn, by ¢, we shall denote the element 7'(e,). Obviously,

¢ is the relative unit of X,, whence ¢, <e. By |z|, (for 2¢X,) we shall
denote the relative absolute value of z, defined as

(eAY) (1) < (@AY)(2)

2o = @Vo(—a) = T[av (—x)] = T(lx|).
Next, we shall write successively:

D(x) = {tel: olo(t) = |2(t)]} for weX,,

=%, 8= {.ZGXD: z 20, | \<~1}’
zeXp
Z(x) = {teQ: a(t) = 0} for zeX,
Zy(@) = {ueQy: x(u) =0} for weX,,
CA(w) = {peST:@(u) =0} for weQ,
Qu) = () Z(z) for wuef,.
zed(u)

LeMMA 1. Let F be any closed subset of Q separating X, and such that

el = sup{iw(t)]: teF} for every meX,. Then the operation U defined as
the restriction y = U (x), where

Y(t) = x(t) for teF, 1eC(Q) and y<O(F),

s a linear lattice-homomorphism of norm 1 tramsforming C(Q) onto C(F),
and the restricted operation U)X, (considered only on X,) is a one-to-one iso-
metrical and isotonical map of X, onto a B, -subspace X, of C(F).

Proof. The first part of the lemma is obvious. We shall prove that
if weX, and U(w) > 0, then z > 0 (i. e. that the statements x(f) > 0 for
tel and x(t) > 0 for teQ are equivalent for z<X,); we may assume that
flell = 1.

Let zeX,, U(x) >0 and |z| = 1. Then z <e¢,, whence 0 < z(t)
< e(t) <1 for teF, Consequently,

lleo—al| = suple, () —2(t)]: teF} <1,

which means that ¢,—# < ¢, and x > 0. U|X, being isotonical, the set X,
of all restricted functions y = #|F with x#eX, is a B, -subspace of O(F).
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Tmmea 2. The set Q, = {teQ: 6 (1) = 1} ds identical with the set

H=U [teQ:a(t) =1} = Ql(tegz lo(t)| = 1}.
HFS e

Proof. Inclusion Q, C H is trivial. Let us assume toeJ.F[ ‘apd x(t) =1,
el = 1 for a certain function zeX,. Then, by the deﬁpltxon of ¢, 2 we
have ¢ > 6, >®, Wwhence 1> eo(to) = ®(h) = 1. We infer ¢,(f) =1,
whence f,eQ,.

TmMma 3. The set Q, separates Xo; moreover

el = sup{lz(®)]: teQ) for weXo.
This is a consequence of Lemma 2.
Timvsa 4. The conditions weXq,yeX, and
x(t)y =y(t) for tef,

imply @ = Y.
! p?ﬂhis/isya consequence of Lemmas 1 and 3.

TEMMA 5. The set 2, ~ Q(u) is non-empty for every uefy.

Proof. Let u,ef,. By the compactness of Q, it suffices to prove
that the family {2, ~ Z(®)}s,apq bDas the finite intersection proper‘ty.
TLet us suppose, a contrario, that there exist funetions »,, ..., s, belonging

n
to A(u,) and sueh that Q, ~ (N Z{x) = 0. This means that z,(t)-+...
i=1

weeb 2, (1) > O for all te L, (since z; = 0 fori =1, ..., n). By the compact-
ness of Q,, there exists 6 > 0 such that

@y (8) .+ (8) =6 = d-e(t) for e,

whence, by Lemma 4, we infer ;4. o, > Og, and Xy +.. .+ %, > o€y,
which contradicts o, (). ..+%, (%) = 0.

LEwna 6. Let teQ(u) and lot ®eSt. If x(u) =0, then a(t) = 0; if
x(w) =1 and tefe, then x(t) =1.

Proof. The first implication follows immediately from the defi-
nition of 2(u); in order to prove the second, we obgerve that if zeST,
then also g—zeSt, and (e—)(t) = O implies #(¢) = 1.

LEvvA 7. Let uyefy, UgeQy and wy 7 uy. Then

2.~ [2(1) ~ 2(ug)] = 0.

Prootf. There exists a function ®e0(Q,) such that |lag|| = 1, () =0
for all we,, z(u) =0 and x(u,) = 1. Then z = T(x)eS8* and, by
Lemma 6, we have x(t) = 0 for all teQ(u,) and x(t) = 1 for all teQen
~Q(uy), which implies £, 2(u;) ~ 2 (u,) = 0.
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By the above lemmas, the map ¢ defined by the relation
w=g@() if and only if
is uniquely defined on the set

te, ~ Q(u)

Q= 0,~ J 2(u)

%efdg
and Q2(u) = ¢~1(u) for all ueQ,.

Thus, the map ¢ is defined by the following property: if e,(f) = 1
and if © >0 and ®(u) =0 imply »(t) = 0, then u = p(1).

Let ¢(t) = 1 and % = @(t). Then ®(u) = 0 implies 2, (u) =0 and
_(u) = 0, whence #(f) = 0. Consequently, the map ¢ is determined by
the null-sets of the functions » and x with zeX,.

LEMMA 8. ¢ is a continuous map of 9, onto Q,.

Proof. The identity ¢(2,) = @, has been established; we shall prove
that ¢~*(4) is closed for every closed subset A of Q,. Let t)eQ,\g~*(4).
Then there exists a function eS8t such that x(u) =0 for ued and
x[p(t)] = 1. Hence, by Lemma 6, we conclude that x(f) =0 for
tep~l(4) and x({) = 1. Thus, the set G = {{e2:x(t) > 3§} is an open
neighbourhood of ¢, disjoint with ¢—2(4).

LemMA 9. Let xeX,y, # %0, and © = 0. Then
¢ [Zy(2)] C Z ().
Proof. tep™'[Z,(»)] means that x[p({)] = 0, whence, by Lemma 6
and by the formula Z(z) = Z(x/|lz||), we obtain z(f) = 0.

Levma 10. Let ve Xy, yeXy; if oAy = 0, then x(t)-y(t) =0 for all
tef2;.

Proof. Let zA,y = 0, then xAy = 0 in C(2,), which means that

Zy(x) v Zy(y) = 2,. We apply Lemma 9:
2, = oHQ) = ¢ [Zo(@) w9 [Zo(¥)] C Z () © Z(y),

‘whence, for every tef2,, either z(t) =0 or y(f) = 0.

LevuMa 11. Given a point t,eQ, the following statements are equivalent:
@) @Vey) () = (0vy)(t) for all weX,, yeX,,
(b) (@A oy) () = (A Y) (&) for all zeX,y, yeX,
(e) lzlo(h) = |l () for oll @eXy,
(d)  if (zAY) (%) = 0, then x(t,) y(t,) = 0, for all xeX,, yeX,.

Proof. The equivalence between (a), (b) and (c) follows by the
identities

2Voy = —[(—2)Ao(—Y)] = }[o+y+lo—yl]-
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The implication (b)=> (d) is trivial. Thus, let us assume (d) and let
weX,, yeX,. Then, by the identity

[o— (@A) 1A [Y — (@AY)] = 0,
we infer either (f) = (#AY) (o) 0T Y(fo) = (®A0Y) (to), Whence (wAY)(t,)
= (8AoY) (to)-
TEMMA 12. The set Q, s identical with Q; = Q¢ ~ £2;, whence it is
closed.
Proof. The inclusion 9, C 9, £; being a consequence of Lemmas 10

and 11, we have to prove that 2,N02,C 2\ Q. Let e\ 0
= 0\ U Q2(w). Then, for every we(,, there exigts a function wed (u)

ue Qo
such that x(f,) # 0. Hence, for every uef, we can choose a function

yueX, such that y,(l) =1, Yu(v) =0 and y, = 0. Writing @, = {veQy:
¥.(v) < 3} We obtain an open covering of ©,, whence, by the compactness
n

of £,, there exist Points u;, ..., %nefy such that Q,= ‘U G- Writing
n =]

y= /\yui we conclude that y(v) < % for all vef,, whenee |ly[| = [ly]| < §.
=1

However, ¥,,(t) =1 for i=1,...,n which means that

..........

Thus, there exist functions # and y in X, such that (#A.y)(t,) #
= (A Y)(Ly); this implies f,¢;.

TarorEM 1. Let 2, 9,, X, and T satisfy conditions 1°, 20, 3° (written
above, see p. 308). Then the support Q, = Q,~ 2 of X, has the following
properties: .

(i) 2, s closed and non-empty,
(i) Q; separates X, and |zl = sup{lz(t): teQ,) for every weX,,

(iii) if weXy, yeX, and z(t) =y{) for 1y, then w(t) =y(t) for
all tef,

(iv) the relation

u =) if e(t)=1 and x(t) = 0 whenever © =0 and a(u) =0

determines a uniquely defined continuous map of 2, onto £,
(v) &[p(t)] = 2(t) for every & = T (x)eX,,
(vi) the functions ®(i) continuous on Q, and constant on every member

of the semicontinuous decomposition Qz = U ¢1(w) have a simullaneous
ue Qg
extension on Q (determined by T).

Proof. Conditions (i) and (iv) have been established in Lemmas 5,
8 and 12.

icm

Spaces of contintous functions (V) 313

Condition (v) has been proved in two special cases (see Lemma 6):
if 2[p(t)] = 0 or if x[p(f)] = 1. The general case may eagily be reduced
(by the substitution y(s) = #(s)/x[p(f)]) to the preceding cases. Condi-
tion. (i) is an immediate consequence of (v), and condition (iii) follows
by (i) and by Lemma 1.

Finally, let us recall the following known theorem, due to Silov [21]
(see also [11], p.57): every continuous function z(¢) on £, constant

on the members of the decomposition 2, = |J ¢~'(u), is of the form
uaflg

2(t) = x[p(t)] with xeC(Q;). By (v), the function @ = T(z) (defined
on ) coincides with # on 2, which means that the correspondence z —
is a simultaneous extension.
CoROLLARY. If (assuming conditions 10, 20, 30) the set X, separaies
(in particular, if X, separates 2), then QyC Q.
to

Indeed, the assumption of separation ispequivalent to the existence,
for every pair of different points ¢, I, of £,, of a function reX, such that
x(t) # x(f,) and consequently, by Lemma 6, to the fact that ¢ is ome-
-to-one. Hence 2, = 2, C Q.

top

ProposITION 1. Let ¥, be an arbitrary B,-subspace of X = C(Q)
and let Yy be a dense subset of ¥, such that Z(y) # 0 for every ye¥,. Then
there emists o point f,eQ such that y(i) = 0 for all yeX,.

If, additionally, Y, is a B, -subspace satisfying conditions 1°, 20, 3°
(written above), then

N Z(z) = Z(e) C 2;.
ze¥p

Proof. Let ye Y, and let |ly—y,| 0 with YneY,. Then the com-
pactness of Q and Z(y,) # 0 imply Z(y) #0.

Now, the family {Z(#)}z,x,>0 has the finite intersection property,
since Z(®) A ... ~ L(®,) = Z(wy+...F @) F0 for %, >20,...,2, 2> 0.
Hence

F= NZ@® #0.
ze¥o
20
Every element of ¥, being the difference of non-negative elements of Y,
we infer y(t) = 0 for all ye¥, and for any point ¢ belonging to F.
The second part of Proposition 1 is obvious.

3. Projections onto B, -subspaces. P being a projection of & Banach
space X onto its subspace X,, the adjoint transformation P*, defined
by the formula

(P*&)(x) = E(Pw) for weX, §eXy,
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is an isomorphism of Xj into X%, ||P*|| = ||P|l, and P*¢ is an extension
of £ onto the whole of X, whence |[(P*)-%|] < 1. Moreover, P* is a homeo-
morphism with respect to the *-weak topologies o (X7, Xo) and o(X*, X).

LevmA 13. Let X be a vector lattice, let X, be any subspace of X and
let P be any non-negative projection of X onto Xy. Then X, is a vector
lattice with respect to the order induced by X and

loly = P(al)  for weX,, yeX,.
Proof. Let zeX,, yeX,. Then zvy >y and svVy > &, whence
Pavy) =Py) =y

aVey = P(avy), any =P(zry),

and P(xvy) =2Po) =2.

Now, let z be any element of X, such that 2 = 2 and 2 > . Then
2 = o V7Y, whence

2=Pz) = PmVy).

This means that P(zVy) is the relative 1. u. b. & v,y of x and y in X;
o and y being arbitrary elements of X,, we have proved that X, is a vector
lattice. The relation P(sAy) = aA,y follows from P(zvy) = av,y;
finally, |zl = @V,(—2) = PV (—x)] = P(|x|).

TeEOREM 2. Let X = C(Q) and let P be a non-negative projection
of X onto its subspace X,. Then X, is a B -subspace of X isomorphic to
a space C(Q,). Moreover:

(i) X, is an MI-space with respect to the morm

lloll* = inf{2: |o] < 2P (e)}

and  unit 2 =f(e) (i-6. weX;, yeXo, 220, y =0 imply |ov,yl*
= max (2%, [lg]), lleol™ =1, and |o[* <1 implies @ < e,);
(i} the norms ||| and |||* are equivalent on X, and

lloll* < lialt < [PY-llall*  for
(ilf) we have |lgll = [P}l

P*roof. X, is & B, -subspace of X (by Lemma 13) and |o| < [o]*P(e)
= "¢, (by the continuity of the order relation). Now, we shall prove
that || |*is a norm in X,. Since

meXo;

oty < lol+lyl < (lel*+yll*) e,

we conc.lu‘de thala o+ < llelf*+ |ly)*. The equality [oz|* = |a]-|n]*
being trivial, || {* is a pseudonorm in X,.
Let x<Xy; then 0 <e, <||P|-¢ implies

llel] = in{2: || < e} <inf{A: [P |o] < Ay} = |P|- ",
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Thus, we have proved that || ||* is & norm in X, and

flall << 1P - feell™

In turn, let us write

lolle = inff2: o], <Ag} for  weX,.

We shall prove that |z = |l#|* for weX,. Let |#| <2¢. Then
2 < Ae and —u < Agy, whenece |z, = &V, (—x) < 4¢. On the other hand,
o] < |wlo, whenoe |x}, <Je, implies |o| < 6. Consequently, |z < ¢
is equivalent to |zl < e, and la® = ||

Next, |#| < le implies |@l, = P(lz]) < 4¢, for z<X,. Hence la]* =
= |lw|l® = inf {1: [#l, < A6y} <inf{A: |z <76} = |lzf. We have proved that
||| and || |* are equivalent on X,. Finally, easy computations show that
(Xy, 1% is an MI-space with unib e, leol® = 1 and |le,]| = || P]I.

CoRrOLLARY. If all assumptions of Theorem 2 are fulfilled and if
moreover, 6(t) > 0 for all tQ, then there evisits a norm * én X, equi-
valent to || || on X, which is an extension of the morm || ||* considered above
and is such that |P|* =1 (|P|* denotes the norm of the projection P of
(XL I*S onto its subspace (X, || |II"))-

Indeed, if ey(t) > 0 for tef, then the relation
lalf* = int{2: o] < Aeo)

defines a new norm in X. The equivalence of || and | II* follows at

once from the inequalities A—|| < |lwlf* < a7 |lw| where « =i§]}$eo(t),
4

B = supey(t) = ||P|l. As in the proof of Theorem 3, we obtain
Q2

Pl = inf{A: |Ps] < A}
< inf(2: P(lal) < A6} <int{d: o] < e} = Joll",

since P(|z|) = |P(x)|. Thus, 1P|* <1, and IPIf* > 1, since P is a pro-
jeetion.

PprorosrioN 2. Let X, be a B, -subspace of X and an MI-space with
respect to the relative order and norm induced by X, and let P .be any pro-
jection of X onto X,. Then the following conditions are equivalent:

(2) Pl=1 and P =0,
(b) P>=0 and P(e) = e,
(e) Pl)y=¢ and |Pl=1
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Proof. Implications (a) >
and (iii) of Theorem 2.

To prove (c) > (a), let us assume [P|| =1, Ple) = ¢, [l&f = 1.
Let #eX, 0 <x <e and let ¢ be any point of Q. Then

— (P2) (1) = €(t)— (P) (t) = (e—Pu) () = [P(e—@)](?) <

whence (Pr)(t) > 0. Since ¢ is an arbitrary point of Q,, Pz = 0
dition (iii) of Theorem 1). Consequently, P = 0.

COROLLARY. If X, is a B _-subspace of X = 0(Q) and an MI-space
with respect to the relative order, and if e<X, (i.e. if ¢ = e), then the con-

ditions

(b) and (b) > (¢) follow by conditions (ii)

P[] le—afl <1,
(by con-

IPl=1 and P =0

are equivalent, P being any projection of X onfo X,.

TaEOREM 3. Let X, be a B, -subspace of the space X = C(Q) and
let P be a lattice-homomorphism projection of X onto X,, with | P| = 1.
Then

(i) Xy @8 an MI-space with respect to the norm and order induced by X,
and the unit of X, is e, = P(e),

(ii) there exist successively: a compact Hausdorff space 24, a linear-
-isometrical-isotonical transformation T from C(£2,) onto X,, a closed subset
Q5 of Q and, finally, a homeomorphism v from Q, onto Qp, such that

(T-'Px)(p=2(1)) = =() for
(iii) the comtinuous functions on Qp have a simultaneous extension
onto Q defined by z — 2° where
) = (Ty)t) for teQ =z[y(u)] for
(iv) Pa is identical with the extension 2* of the restricted function
2(t) =w(t) for tefp.,

(v) Qp is a retract of the support Q, of X, and a retraction o of Q,
onto Qp s given by the formula

o(t) = »lp(®)],
where @ denotes the continuous map of 2, onto 2, defined in Theorem 1.
Proof. Condition (i) is a consequence of Theorem 2.
Let Q, denote the set of all functionals & over X, such that
(5) lsh=1, &>0,

and such that @A,y = 0 implies £(2)-&(y) = 0. O, is a compact Haus-
dorff space with respect to the *-weak topology induced by the space
X; conjugate to X,, and by the Kakutani-Krein representa,tmn theorem,

zeX and teQp,

and Y (u) Ueldy,
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there exists a one-to-one linear isometrical and isotonical map T from
C(#2,) onto X,, defined by the relation

T (@) = x(-), where 2(§) = &(x) for £e0,.

Next, let 2 denote the set of all functionals & over X satisfying (5)

and such that sAy = 0 implies &(z)- £(y ) =0forall zeX, yeX. It is well
known that the natural map x, defined by

x(l) = &(-), where &(x) = a(f) for <X,
is a homeomorphism from Q onto 2.

Given £e2,, the functional n =P*E is an extension of ¢ onto X,
and ne®. Indeed, |4l =1, and if «>>0, then 5(») = (P*&)(x) = £(Px)
=0, for P > 0; if w/\y—O then

N(@)A7(Y) = E(PB)AE(PY) = §(PrA Py) = E[P(zAy)] = 0.

Thus, P* maps 2, into 2 homeomorphically (with respeet to the

*-weak topologies). Accordingly, the map
p(&) = »1[P*(£)]

is a homeomorphism from £, onto a subset Qp of Q.
Next, we shall prove tha.t (T-1Pa) (p=2(2) () = =(#) for all me_X teQp.
Let teQp. Then ¢t = y(&) = »~2(P*&) and

a(t) = (P*&)(w) = £(Pw) = [T-2(Px)](§)

(by the definition of T). The proofs of (iii) and (iv) are similar.

Now, the proof of (v) consists of two steps. Firstly we shall prove
that Qp C £Q,; in other words, given ¢ = y(&) = »~1P*§, we shall deduce
that (xV,ey)(t) = x(t)vy(t) and e,(f) = 1:

(@Voy)(t) = (P*§)(av,y) = E[P(aVey)] = &(mVey) = E(@)V E(y)
= £(Pa)V E(Py) = (P*8)(a)V (P*E)(yy = 2(t)V ¥ (1),
e(t) = (P*8) (&) = E[P(&)] = &(&) = [1&] = 1.

Finally, let ¢ be the map of £, onto 2, defined in Theorem 1; it is
determined by the following relation:

§ = @(t) if and only if ®(&) = w(t), whenever zeX,y, ® = T-1(x).

We shall prove that ¢ = ypp is a retraction of Q, onto Q2p. Obviously,
0(&2;) = 2p. Let tep and let & = y~1(). Then

®(£) = &(@) = §(Pa) = (P*&)(2) = z[p(§)] = (1),
whence £ = p(2) and, consequently, t = p[p(2)].
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COROLLARY. If X, is am MI-subspace of X = C(Q) (2. e..if 0, = Q)
and if P is a lattice-homomorphism projection of X onto Xy, with “_Pn'z 1,
then 2, may be embedded topologically into 2 in such a way that this ho-
meomorphic image Qp tn 2 is a retract of 2. .
Example 3. Let 2 = 0, 1) %0, 1>. Then X = 0(R) consists of
all real-valued continuous funetions @({,$), defmed. for 0 <t<1,
0 <s <1. Let X, consist of all functions constant with respect to the
second variable, i. e.

X, = N {meX: a(t, 81) = »(t, 82')}‘

1,87, %
The transformation P defined by the formulas
1
y(t, 8) = J:D(t, o)do,
[
is a non-negative projection of norm 1, and P(X) = X,. However, the
condition P(zvy) = P(z)V,P(y) is not satisfied for all weX, yeX, and
the functionals &, defined for wzeX, by the formula & (x) = (¢, 0),
belong to £2,, although the functionals

1

miw) = (P*&)(@) = fm(t, o)do  for

Py =y( ")

zeX

do not belong to 2. Thus, we have obtained

PROPOSITION 3. A non-negative projection P transforming X = C(Q)
onto an MI-subspace X,, with |P|| =1, 4s not necessarily a lattice homo-
morphism.

Example 4. Let 2 =(0,1), X =C(2) and let X, congist of all
functions & = 2, ay%, Where

0 on {0, 3>, , 1 on {0, £,
2,(f) = | linear on (%, 2,  2(t) = { linear on (G,
1 on (%, 1y, 0 on (5,1,

ay, a; being constant. .
X, is a two-dimensional B, -subspace of X, and the operation P,
defined by

Px =y, where y(t) = a(1) 2 (t)+2(0)-2,(3) for ¢e<0,1),

establishes a non-negative projection of X onto X,, with ||P| = 2. Since
X, is not isometrically and isotonically isomorphic to the space 0, of
pairs § = (&', §") with [js|| = [s’|Vv]s”'], there exists no non-negative pro-
jection of norm 1 transforming X onto X,.

icm

Spaces of continuous functions (V) 319

Example 5. Let Q =0,1) (2,3}, X = ((2) and let X, consist

of all funections zeX such that
#(t+2) = 3tw(t) for 0 <t<1.

A non-negative projection P of X onto X, may be established as
follows: Pz =y, where y(I) = #(¢) for 0 <¢ <1 and y(t) = 3(¢—2)%
xa{t—2) for 2 << 3. Evidently, |[P|| = 3.

X, is a B,-subspace of X and is an MI-space with respect to the
relative order and with respect to the norm |jz* = inf{i: |»] < A},
where ¢,(f) =1 for 0 <t <1 and ¢ () = 3({—2) for 2 <t < 3.
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Espaces d’Orlicz de champs de vecteurs (IV)
(Opérations linéaires)
par

N. DINCULEANT (Buecarest)

Introduction. Soient Z un espace localement compact et » une
mesure de Radon (1) positive sur Z; & = (B(2))s.z une famille d’espaces
de Banach et &' = (E’ (z))ﬂz la famille des duals des espaces H(z).

Désignons par C(E) (respectivement C(¢’)) 1'ensemble des champs
de vecteurs (2) a (vesp. de fonctionnelles «') définis sur Z tels que
x(2)eE(2) (resp. x'(2) el (2)) quel que soit zeZ.

Supposons qu’il existe une famille fondamentale L C €(C) de champs
de vecteurs continus et une famille fondamentale ' C €(£’) de champs
de fonctionnelles continus vérifiant la condition suivante:

La fonction scalaire z-— (x(2), 2'(2)) est continue quels que soient
xed ot x'eA’,

Soit X un espace de Banach et pour tout zeZ désignons par G(z)
lespace L2(E(2), X) (des applications linaires et continues de E(2)
dans X), par § la famille (3(2))s.z et par €(§) lensemble des champs
d’opérations U définis sur Z tels que U(z)eG(2) quel que soit zeZ.

Soient ¢ une fonction positive définie sur [0, +oo], croissante, con-
tinue 4 gauche, telle que ¢(0) = 0 et 0 < ¢(¢) < oo pour 0 < § < +oo0,
v 1a fonction inverse de ¢, @ et ¥ les fonctions définies sur [0, +oo] par
les égalités

v

fgu(s)ds.

0

D)= [p()ds, ¥()

Considérons Despace d'Orlicz (%) L% ().
Dans [4] nous avons montré que si: 1) ime(f) =1, 2) il existe M > 0O

t—o0

(1) Pour ce qui concerne lintégration voir [1].
() Pour ce qui concerne les champs de vecteurs voir [8].
(3) Pour la définition et les propriétés des espaces Lil voir un des ouvrages

[2], [3], [4], [5].
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