STUDIA MATHEMATICA, T. XIX. (1960)

- [19] A. Pelczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), p. 209-228.
- [20] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), p. 516-541.
- [21] G. Silov, Ideals and subrings of the ring of continuous functions, Doklady 22 (1939), p. 7-10.
- [22] A. Sobczyk, Projection of the space m on its subspace c_0 , Bull. Amer. Math. Soc. 47 (1941), p. 938-947.
- [23] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), p. 375-481.
- [24] H. Yoshizawa, On simultaneous extensions of continuous functions, Proc. Imp. Acad. Tokyo 20 (1944), p. 653-654.

Reçu par la Rédaction le 17. 12. 1959

Espaces d'Orlicz de champs de vecteurs (IV)

(Opérations linéaires)

рa

N. DINCULEANU (Bucarest)

Introduction. Soient Z un espace localement compact et ν une mesure de Radon (1) positive sur Z; $\mathcal{E} = (E(z))_{z \in Z}$ une famille d'espaces de Banach et $\mathcal{E}' = (E'(z))_{z \in Z}$ la famille des duals des espaces E(z).

Désignons par $\dot{C}(\mathcal{E})$ (respectivement $C(\mathcal{E}')$) l'ensemble des champs de vecteurs (2) \boldsymbol{x} (resp. de fonctionnelles \boldsymbol{x}') définis sur Z tels que $\boldsymbol{x}(z) \in E(z)$ (resp. $\boldsymbol{x}'(z) \in E'(z)$) quel que soit $z \in Z$.

Supposons qu'il existe une famille fondamentale $\mathcal{A} \subset \mathcal{C}(\mathcal{E})$ de champs de vecteurs continus et une famille fondamentale $\mathcal{A}' \subset \mathcal{C}(\mathcal{E}')$ de champs de fonctionnelles continus vérifiant la condition suivante:

La fonction scalaire $z \to \langle x(z), x'(z) \rangle$ est continue quels que soient $x \in \mathcal{A}$ et $x' \in \mathcal{A}'$.

Soit X un espace de Banach et pour tout $z \in Z$ désignons par G(z) l'espace $\mathcal{L}(E(z),X)$ (des applications linéaires et continues de E(z) dans X), par \mathcal{G} la famille $(G(z))_{z \in Z}$ et par $\mathcal{C}(\mathcal{G})$ l'ensemble des champs d'opérations U définis sur Z tels que $U(z) \in G(z)$ quel que soit $z \in Z$.

Soient φ une fonction positive définie sur $[0,+\infty]$, croissante, continue à gauche, telle que $\varphi(0)=0$ et $0<\varphi(t)<\infty$ pour $0< t<+\infty$, ψ la fonction inverse de φ , Φ et Ψ les fonctions définies sur $[0,+\infty]$ par les égalités

$$\Phi(u) = \int\limits_0^u \varphi(t) dt, \qquad \Psi(v) = \int\limits_0^v \psi(s) ds.$$

Considérons l'espace d'Orlicz (3) $L_{\mathcal{A}}^{\phi}(\nu)$.

Dans [4] nous avons montré que si: 1) $\lim_{t\to\infty} \varphi(t)=1,\,2)$ il existe M>0

⁽¹⁾ Pour ce qui concerne l'intégration voir [1].

⁽²⁾ Pour ce qui concerne les champs de vecteurs voir [8].

^(*) Pour la définition et les propriétés des espaces $L^{\phi}_{\mathcal{A}}$ voir un des ouvrages [2], [3], [4], [5].

tel que $\Phi(2u) \leqslant M\Phi(u)$ pour $u \geqslant 0$, 3) A vérifie l'axiome (G)(4) de Godement, 4) X est de type dénombrable et dual d'un espace de Banach F; alors toute application linéaire et continue f de $L^{\Phi}_{\mathcal{A}}(v)$ dans X peut s'écrire

$$\langle a,f(x)
angle = \int \langle a\,,\, U_f(z)x(z)
angle d
u(z) \quad pour \quad x\, \epsilon L^{\Phi}_{ ext{cl}}(
u) \ \, et \,\, a\, \epsilon F\,,$$
 où $U_f\epsilon\, C(G)$ et $rac{1}{2}\|U_f\|_{\Psi} \leqslant \|f\| \leqslant \|U_f\|_{\Psi}.$

Dans cet article, en ne supposant plus la condition 1), on donne une condition nécessaire et suffisante pour qu'une application linéaire de $L^{\rho}_{\mathcal{A}}(v)$ dans X admette une représentation intégrale de la forme précédente.

La démonstration utilise la théorie des mesures vectorielles, [6], [7], dont un bref exposé sera donné dans la suite.

1. Mesures vectorielles. La norme d'un élément x appartenant à l'un des espaces E(z), E'(z) ou X sera notée par |x|. Si $x \in \mathcal{C}(\mathcal{E})$, on désigne par |x| la fonction numérique $z \to |x(z)|$.

Pour tout ensemble $A \subset Z$ et tout $x \in \mathcal{C}(\mathcal{E})$ on pose

$$||\boldsymbol{x}||_{\mathcal{A}} = \sup_{z \in \mathcal{A}} |\boldsymbol{x}(z)|.$$

Soit \mathfrak{B} le clan des parties boréliennes relativement compactes de Z. En ajoutant, au besoin, à \mathcal{A} , des champs de vecteurs continus, on peut supposer que \mathcal{A} vérifie la condition suivante:

(*) Quels que soient A, $B \in \mathfrak{I}$, tels que $A \subset B$, $\varepsilon > 0$ et $x \in \mathcal{A}$, il existe $y \in \mathcal{A}$ tel que $\varphi_A x = \varphi_A y$ et $||y||_B \leq ||x||_A + \varepsilon$.

On considère sur \mathscr{A} la topologie d'espace localement convexe séparé, définie par la famille filtrante de seminormes $(\|x\|_{\mathcal{A}})_{\mathcal{A} \in \gamma_{\beta}}$. Par $\mathscr{A}_{\mathcal{A}}$ on désigne l'ensemble \mathscr{A} muni de la topologie de la convergence uniforme sur \mathcal{A} , définie par la seule séminorme $\|x\|_{\mathcal{A}}$.

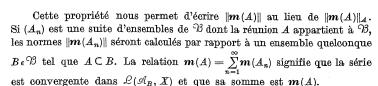
 $\mathcal{L}(\mathcal{A}_A,X)$ est l'espace de Banach des applications linéaires et continues U de \mathcal{A}_A dans X, muni de la topologie définie par la norme

$$||U||_{\mathcal{A}} = \sup_{\|\boldsymbol{x}\|_{\mathcal{A}} \leqslant 1} |U\boldsymbol{x}|.$$

 $\mathcal{L}(\mathcal{A},X)$ est l'espace des applications linéaires et continues de \mathcal{A} dans X. On a

$$\mathcal{L}(\mathcal{A}, X) = \bigcup_{A \in \mathcal{B}} \mathcal{L}(\mathcal{A}_A, X).$$

Si m est une application de \mathfrak{P} dans $\mathcal{L}(\mathcal{A},X)$ telle que m(A)x = m(A)y si $\varphi_A x = \varphi_A y$, $(x, y \in \mathcal{A}, A \in \mathfrak{P})$, alors, pour tout $A \in \mathfrak{P}$, on a $m(A) \in \mathcal{L}(\mathcal{A}_A, X)$ et $\|m(A)\|_A = \|m(A)\|_B$ quel que soit $B \in \mathfrak{P}$ tel que $A \subset B$.



Définition. On appelle mesure vectorielle sur Z toute application m de $\mathfrak B$ dans $\mathcal L(\mathfrak A,X)$ telle que:

1º pour tout $x, y \in \mathcal{A}$ et $A \in \mathcal{B}$ vérifiant $\varphi_A x = \varphi_A y$ on a

$$m(A)x = m(A)y;$$

2º pour toute suite (A_n) d'ensembles disjoints de \Im dont la réunion appartient à \Im on a

$$m\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\sum_{n=1}^{\infty}m\left(A_{n}\right).$$

À chaque mesure vectorielle m on attache sa $variation \ \mu$ définie pour tout $A \in \Im$ par l'égalité

$$\mu(A) = \sup \sum_{i} \|m(A_i)\|,$$

le sup étant considéré pour toutes les familles finies (A_i) d'ensembles disjoints de $^{\circ}\beta$ dont la réunion est A.

La variation μ de m est une fonction d'ensemble positive (finie ou infinie), croissante, dénombrablement additive, et

$$||m(A)|| \leq \mu(A)$$
 pour tout $A \in \mathcal{P} \delta$.

On dit que m est à variation finie si $\mu(A) < +\infty$ quel que soit $A \in \mathcal{P}$. Une mesure vectorielle m est régulière si, quels que soient $A \in \mathcal{P}$ et $\varepsilon > 0$, il existe un compact $K \subset A$ et un ouvert relativement compact $G \supset A$, tels que si $A' \in \mathcal{P}$ et $K \subset A' \subset G$, on ait $||m(A) - m(A')|| < \varepsilon$.

Une mesure vectorielle à variation finie est régulière, si et seulement si sa variation est régulière.

2. Intégration des champs de vecteurs par rapport à une mesure vectorielle. Soit m une mesure vectorielle régulière et à variation finie μ .

On dit qu'un champ de vecteurs $\boldsymbol{x}_{\epsilon}\mathcal{C}(\mathcal{E})$ est intégrable par rapport à \boldsymbol{m} (ou \boldsymbol{m} -intégrable), si \boldsymbol{x} est μ -intégrable. On désigne par $L^1_{\mathcal{A}}(\boldsymbol{m})$ l'espace des champs de vecteurs \boldsymbol{m} -intégrable $(L^1_{\mathcal{A}}(\boldsymbol{m}) = L^1_{\mathcal{A}}(\mu))$ muni de la topologie définie par la seminorme

$$N_1(\boldsymbol{x},\mu) = \int |\boldsymbol{x}| d\mu$$
.

^(*) (G): il existe une partie dénombrable $\mathcal{A}_0 \subseteq \mathcal{A}$ telle que l'ensemble $\{x(z)|x\in \mathcal{A}_0\}$ soit dense dans E(z) quel que soit $z\in Z$.

Pour définir l'intégrale $\int x dm$ de x par rapport à m, on considère d'abord les champs de vecteurs étagés, de la forme

$$oldsymbol{x} = \sum_i arphi_{\mathcal{A}_i} oldsymbol{x}_i \ \in \ ^{\mathcal{H}}, \ oldsymbol{x}_i \ \in \ ^{\mathcal{H}}, \ 1 \leqslant i \leqslant n).$$

Pour un tel champ de vecteurs étagé on définit l'intégrale $\int\! x\,dm$ par l'égalité

$$\int x \, dm = \sum_{i} m(A_{i}) x_{i}.$$

Puisque μ est régulière, l'espace $\mathcal{C}_{\mathscr{A}}(Z)$ des champs de vecteurs étagés est dense dans $L^1_{\mathscr{A}}(m)$. Pour tout $x \in \mathcal{C}_{\mathscr{A}}(Z)$ on a

$$\left|\int \boldsymbol{x} d\boldsymbol{m}\right| \leqslant \int |\boldsymbol{x}| \, d\mu = N_1(\boldsymbol{x}, \, \mu),$$

donc l'application $x \to \int x dm$ de $\mathcal{C}_{\mathscr{A}}(Z)$ dans X est continue pour la topologie définie sur $\mathcal{C}_{\mathscr{A}}(Z)$ par la séminorme N_1 et par suite peut être prolongée uniquement, par continuité, en une application linéaire et continue de $L^1_{\mathscr{A}}(m)$ dans X. La valeur de ce prolongement pour un élément $x \in L^1_{\mathscr{A}}(m)$, notée toujours par $\int x dm$, est appelée l intégrale de x par rapport à m.

Pour tout $x \in L^1_{\mathcal{A}}(m)$ on a $|x| \in L^1(\mu)$ et

$$\left|\int \boldsymbol{x}d\boldsymbol{m}\right|\leqslant\int \left|\boldsymbol{x}\right|d\mu$$
.

Le relation entre les intégrales par rapport à m et μ est donnée par le théorème suivant:

THÉORÈME 1. Si A vérifie l'axiome (G) et F est un espace de Banach de type dénombrable, pour toute mesure vectorielle m à valeurs dans $\mathcal{L}(\mathcal{A}, F')$, régulière et à variation finie μ , il existe un champ d'opérations $U_m \epsilon \mathcal{C}(\mathcal{G})$ déterminé localement μ -presque partout, tel que $||U_m(z)|| \equiv 1$ et

$$\langle a, \int x dm \rangle = \int \langle a, U_m(z) x(z) \rangle d\mu(z),$$

quels que soient $a \in F$ et $x \in L^{\mathfrak{o}}_{\mathcal{A}}(m)$. Si, en outre, F' est de type dénombrable, alors

$$\int \boldsymbol{x} d\boldsymbol{m} = \int U_{\boldsymbol{m}}(z) \boldsymbol{x}(z) d\mu(z) \quad pour \quad \boldsymbol{x} \in L^{1}_{\mathcal{A}}(\boldsymbol{m}).$$

Ce théorème sera utilisé dans la démonstration du théorème de représentation annoncé au commencement.

3. Le théorème de représentation. Dans ce paragraphe on suppose que X est le dual F' d'un espace de Banach F.

Soit f une application linéaire de $L^{\mathfrak{P}}_{\mathscr{A}}(\nu)$ dans F'. Posons

$$|||f|||=\sup \sum_i |f(arphi_{A_i}x_i)| \quad ext{ et } \quad ||f||=\sup \Big|\sum_i f(arphi_{A_i}x_i)\Big|,$$

le sup étant considéré pour toutes les familles finies $(A_i)_{1\leqslant i\leqslant n}$ d'ensembles disjoints de $\mathcal B$ et toutes les familles finies $(x_i)_{1\leqslant i\leqslant n}$ d'éléments de $\mathcal S$, telles que $\|\sum \varphi_{\mathcal A_i} x_i\|_{\varPhi} \leqslant 1$.

On a évidemment

$$||f|| \leqslant |||f||| \leqslant +\infty.$$

Remarque. S'il existe M>0 tel que $\Phi(2u)\leqslant M\Phi(u)$ pour $u\geqslant 0$, alors l'espace $\mathcal{E}_{\mathscr{A}}(Z)$ est dense dans $L^{\sigma}_{\mathscr{A}}(v)$, donc $\|f\|$ est la norme habituelle de f.

THÉORÈME 2. Supposons que: 1) il existe M>0 tel que $\Phi(2u)\leqslant M\Phi(u)$ pour tout $u\geqslant 0$; 2) A vérifie l'axiome (G); 3) F est de type dénombrable. Alors $|||f|||<+\infty$ si, et seulement si, il existe un champ d'opérations $U_{f}\in C(G)$ tel que $||U_{f}||_{Y}<+\infty$ et

$$\langle a, f(\boldsymbol{x}) \rangle = \int \langle a, U_f(z) \boldsymbol{x}(z) \rangle d\nu(z)$$

quels que soient $a \in F$ et $x \in L^{\Phi}_{\mathcal{A}}(\nu)$. Dans ce cas on a

$$\frac{1}{2}||U_f||_{\Psi} \leqslant |||f||| \leqslant ||U_f||_{\Psi}.$$

Démonstration. On peut considérer que A vérifie la condition (*), en lui ajoutant, au besoin, des champs de vecteurs continus.

Supposons d'abord que $|||f||| < +\infty$. Posons

$$M_B(\varphi) x = f(\varphi x \varphi_B), \quad B \in \mathfrak{P}, \ \varphi \in L^{\Phi}(v), x \in \mathfrak{R}.$$

L'application $M_B(\varphi)\colon x\to M_B(\varphi)x$ de $\mathcal A$ dans F' est linéaire et continue pour la séminorme $\|x\|_B$, car

$$|M_B(\varphi)x| = |f(\varphi x \varphi_B)| \leqslant ||f|| \cdot ||x||_B \cdot ||\varphi||_{\Phi},$$

done $M_B(\varphi) \in \mathcal{L}(\mathcal{A}, F')$ et $||M_B(\varphi)||_B \leqslant ||f|| \cdot ||\varphi||_{\varphi}$.

Pour chaque ensemble $A \in \mathcal{B}$ posons $\boldsymbol{m}(A) = M_A(\varphi_A)$. Pour tout $B \in \mathcal{B}$ tel que $A \subset B$ on a $\boldsymbol{m}(A) = M_B(\varphi_A)$.

Montrons que m est une mesure vectorielle régulière, dont la variation μ est finie et de base ν .

a) Il est aisé de voir que si $A \in \mathcal{P}$ et x, $y \in \mathcal{A}$ sont tels que $\varphi_A x = \varphi_A y$, alors

$$m(A)x = m(A)y$$
.

b) Soit (A_n) une suite d'ensemble disjoints de \mathcal{B} , dont la réunion A appartient à \mathcal{B} , et soit $B \in \mathcal{B}$ tel que $A \subseteq B$. Alors

$$\lim_{n\to\infty}\int\varPhi\left(\varphi_{\mathcal{A}}-\sum_{i=1}^{n}\varphi_{\mathcal{A}_{i}}\right)d\nu\,=\,0\,,$$

done

$$\lim_{n\to\infty} \left\| \varphi_{\mathcal{A}} - \sum_{i=1}^n \varphi_{\mathcal{A}_i} \right\|_{\theta} = 0$$

(à cause de la condition 1).

Il s'ensuit que

$$\lim_{n\to\infty} \left\| M_B(\varphi_A) - \sum_{i=1}^n M_B(\varphi_{A_i}) \right\|_B = 0,$$

donc

$$\lim_{n\to\infty} \left\| \boldsymbol{m}(A) - \sum_{i=1}^n \boldsymbol{m}(A_i) \right\|_B = 0,$$

c'est-à-dire

$$m(A) = \sum_{i=1}^{\infty} m(A_i).$$

Les propriétés a) et b) montrent que m est une mesure vectorielle.

c) Pour montrer que m est à variation finie μ , soit A_{ϵ} \mathfrak{B} et $\epsilon > 0$; soit $(A_{\epsilon})_{1 \leq i \leq n}$ une famille finie d'ensembles disjoints de \mathfrak{B} , dont la réunion est A.

Pour chaque i, soit $x_i \in \mathcal{A}$ tel que $||x_i||_{\mathcal{A}} \leqslant 1$ et

$$\|oldsymbol{m}(A_i)\| - rac{arepsilon}{n} < |oldsymbol{m}(A_i)oldsymbol{x}_i|$$
.

Alors

$$\begin{split} \sum_{i=1}^{n} \|\boldsymbol{m}(A_i)\| - \varepsilon < \sum_{i=1}^{n} |\boldsymbol{m}(A_i)\boldsymbol{x}_i| &= \sum_{i=1}^{n} |f(\varphi_{A_i}\boldsymbol{x}_i)| \leqslant |||f||| \cdot \Big\| \sum_{i=1}^{n} \varphi_{A_i}\boldsymbol{x}_i \Big\|_{\boldsymbol{\theta}} \\ &\leqslant |||f||| \cdot \Big\| \sum_{i=1}^{n} \varphi_{A_i} \Big\|_{\boldsymbol{\theta}} = |||f||| \cdot \|\varphi_{A}\|_{\boldsymbol{\theta}}, \end{split}$$

done $\mu(A) - \varepsilon < |||f||| \cdot ||\varphi_A||_{\varphi}$.

- arepsilon étant arbitraire, on déduit $\mu(A) \leqslant |||f||| \cdot ||\varphi_A||_{\phi} < +\infty$.
- d) μ est absolument continue par rapport à ν . En effet, soit $A \in \mathcal{B}$ tel que $\nu(A)=0$. Alors $\|\varphi_A\|_{\Phi}=0$ et de l'inégalité précédente on déduit que $\mu(A)=0$.

e) Puisque ν est régulière, il s'ensuit que μ est régulière, donc aussi m est régulière.

Du théorème 1 on déduit qu'il existe un champ d'opérations $U_{m} \epsilon \mathcal{C}(\mathcal{G})$ tel que $\|U_{m}(z)\| \equiv 1$ et

$$\langle a, \int x dm \rangle = \int \langle a, U_m(z) x(z) \rangle d\mu(z) \quad \text{pour} \quad x \in L^1_{\mathcal{A}}(\mu) \text{ et } a \in F.$$

Puisque μ est de base ν , il existe une fonction positive g localement ν -intégrable telle que $\varphi \in L^1(\mu)$ si et seulement si $\varphi g \in L^1(\nu)$, et alors

$$\int \varphi d\mu = \int \varphi g d\nu \quad \text{pour} \quad \varphi \in L^1(\mu)$$

f) Montrons que $g \in L^{\Psi}(v)$.

Soit $\varphi = \sum_{i=1}^n \varphi_{A_i} c_i$ une fonction positive étagée, telle que les A_i soient disjoints. Alors

$$\int \varphi \, d\mu = \sum_{i=1}^n \mu(A_i) \, c_i.$$

Soit $\varepsilon > 0$. Pour chaque i, il existe une famille finie $(B_{ij})_i$ d'ensembles disjoints de $\mathcal B$ dont la réunion est A_i , telle que

$$\mu(A_i)c_i < \sum_i \|m(B_{ij})\|c_i + rac{arepsilon}{2n}.$$

Pour chaque paire d'indices (i,j), il existe un champ de vecteurs $x_{ij} \in \mathcal{A}$, tel que $\|x_{ij}\|_{\mathcal{A}} \leqslant 1$, où $A = \bigcup_{i=1}^{n} A_i$, et

$$\sum_{i} \| oldsymbol{m}(B_{ij}) \| c_i \leqslant \sum_{j} | oldsymbol{m}(B_{ij}) oldsymbol{x}_{ij} | c_i + rac{arepsilon}{2n}.$$

Alors

$$\begin{split} \int \varphi \, d\mu - \varepsilon &= \sum_{i} \, \mu(A_i) \, c_i - \varepsilon < \sum_{i,j} \, |\boldsymbol{m}(B_{ij}) \boldsymbol{x}_{ij} \, c_i| \\ &= \sum_{i,j} |f(\varphi_{B_{ij}} \boldsymbol{x}_{ij} \, c_i)| \leqslant |||f||| \cdot \Big\| \sum_{i,j} \, \varphi_{B_{ij}} \boldsymbol{x}_{ij} \, c_i \Big\|_{\boldsymbol{\Phi}} \\ &\leqslant |||f||| \cdot \| \sum_{i,j} \, \varphi_{B_{ij}} \, c_i \|_{\boldsymbol{\Phi}} = |||f||| \, \Big\| \sum_{i} \, \varphi_{A_i} \, c_i \|_{\boldsymbol{\Phi}} \\ &= |||f||| \cdot ||\varphi||_{\boldsymbol{\Phi}} \leqslant |||f||| \, (|\varphi|_{\boldsymbol{\Phi}} + 1) \, . \end{split}$$

 ε étant arbitraire, on a

$$\int \varphi \, d\mu \leqslant |||f||| \cdot ||\varphi||_{\boldsymbol{\sigma}} \leqslant |||f||| (|\varphi|_{\boldsymbol{\sigma}} + 1).$$

De cette inégalité on déduit d'abord que $L^{\Phi}(v) \subset L^{1}(\mu)$ et puis

$$\|g\|_{\varPsi} = \sup_{\|\varphi\|_{\varPhi}\leqslant 1} \int |\varphi g| \, d\nu = \sup_{\|\varphi\|_{\varPhi}\leqslant 1} \int |\varphi| \, d\mu \leqslant 2|||f||| < +\infty.$$

g) Posons maintenant

$$U_f(z) = U_m(z) g(z).$$

On a $|U_f(z)| = g(z)$, done $||U_f||_{\mathscr{Y}} = ||g||_{\mathscr{Y}} \leqslant 2 |||f|||$. D'autre part, pour tout $a \in F$ et $x \in L^1_{c'}(\mu)$ on a

$$\begin{split} \langle a\,,\, \int \boldsymbol{x}\,d\boldsymbol{m}\rangle &= \int \langle a\,,\, U_{\boldsymbol{m}}(z)\boldsymbol{x}(z)\rangle\,d\mu(z) \\ &= \int \langle a\,,\, U_{\boldsymbol{m}}(z)g(z)\boldsymbol{x}(z)\rangle\,d\nu(z) = \int \langle a\,,\, U_{\boldsymbol{f}}(z)\boldsymbol{x}(z)\rangle\,d\nu(z). \end{split}$$

En particulier, cette égalité est vraie pour tout $x \in L^{\phi}_{cd}(\nu)$.

h) Démontrons maintenant la formule de représentation et les inégalités énoncées dans le théorème 2.

Pour tout champ de vecteurs étagé $m{x} = \sum\limits_i arphi_{A_i} m{x}_i$ on a

$$\int \boldsymbol{x} \, d\boldsymbol{m} = \sum_{i} \boldsymbol{m}(A_{i}) \boldsymbol{x}_{i} = \sum_{i} f(\varphi_{A_{i}} \boldsymbol{x}_{i}) = f(\sum_{i} \varphi_{A_{i}} \boldsymbol{x}_{i}) = f(\boldsymbol{x}),$$

done, pour tout $a \in F$,

$$\langle a, f(x) \rangle = \int \langle a, U_f(z) x(z) \rangle d\nu(z).$$

Alors, en supposant que les A_i sont disjoints,

$$\begin{split} \sum_{i} |f(\varphi_{\mathcal{A}_{i}}\boldsymbol{x}_{i})| &\leqslant \sum_{i} \int_{\mathcal{A}_{i}} \|U_{f}(z)\| \|\boldsymbol{x}_{i}(z)\| \, d\nu(z) \\ &= \int \|U_{f}(z)\| \cdot \Big\| \sum_{i} \varphi_{\mathcal{A}_{i}}(z) \boldsymbol{x}_{i}(z) \Big\| \, d\nu(z) \leqslant \|U_{f}\|_{\mathcal{V}} \Big\| \sum_{i} \varphi_{\mathcal{A}_{i}}\boldsymbol{x}_{i} \Big\|_{\phi}, \end{split}$$

donc $|||f||| \leq ||U_f||_{\Psi}$, d'où il résulte que

$$\frac{1}{2}||U_f||_{\Psi} \leqslant |||f||| \leqslant ||U_f||_{\Psi}.$$

Soit maintenant $x \in L^{\sigma}_{\mathcal{A}}(\nu)$. À cause de la condition 1), les champs de vecteurs étagés de $L^{\sigma}_{\mathcal{A}}(\nu)$ forment un ensemble dense dans $L^{\sigma}_{\mathcal{A}}(\nu)$; donc il existe une suite (x_n) de champs de vecteurs étagés de $L^{\sigma}_{\mathcal{A}}(\nu)$, telle que $\|x-x_n\|_{\sigma} \to 0$. Alors $f(x_n) \to f(x)$ et $\int x_n dm \to \int x dm$, donc $f(x) = \int x dm$ et

$$\langle a, f(x) \rangle = \int \langle a, U_f(z) x(z) \rangle d\nu(z), \quad a \in F,$$

ce qui achève la première partie de la démonstration.

Inversement, soit $U \in \mathcal{C}(\mathcal{G})$ un champ d'opérations tel que pour chaque $x \in L^{\phi}_{\mathcal{A}}(v)$ et chaque $a \in F$, la fonction $z \to \langle a, U(z)x(z) \rangle$ soit v-intégrable, et que $||U||_{\Psi} < +\infty$. L'application

$$a \to \int \langle a, U(z) \boldsymbol{x}(z) \rangle dv(z)$$

est une forme linéaire et continue sur F, car

$$\left|\int \langle a, U(z) x(z) \rangle d\nu(z)\right| \leqslant |a| \int ||U(z)|| \cdot |x(z)| d\nu(z) \leqslant |a| \, ||U||_{\Psi} \cdot ||x||_{\Phi}.$$

Désignons par f(x) cette forme linéaire:

$$\langle a, f(x) \rangle = \int \langle a, U(z) x(z) \rangle dv(z), \quad a \in F, x \in L_{\mathcal{A}}^{\phi}(v).$$

Il est immédiat que f est une application linéaire de $L^{\sigma}_{\mathcal{A}}(\nu)$ dans F'. Montrons que $|||f|||<+\infty$.

Soit $x = \sum_{i}^{n} \varphi_{\mathcal{A}_{i}} x_{i}$ un champ de vecteurs étagé tel que les \mathcal{A}_{i} soient disjoints et que $\|\sum_{i} \varphi_{\mathcal{A}_{i}} x_{i}\|_{\sigma} \leqslant 1$.

Pour chaque \overline{i} il existe $a_i \, \epsilon \, F$ tel que $|a_i| = 1$ et que

$$|f(\varphi_{A_i}x_i)| = \langle a_i, f(\varphi_{A_i}x_i) \rangle.$$

Alors

$$\begin{split} &\sum_{i} |f(\varphi_{\mathcal{A}_{i}}\boldsymbol{x}_{i})| = \sum_{i} \left\langle a_{i}, f(\varphi_{\mathcal{A}_{i}}\boldsymbol{x}_{i}) \right\rangle = \int \sum_{i} \left\langle a_{i}, \ U(z)\varphi_{\mathcal{A}_{i}}(z)\boldsymbol{x}_{i}(z) \right\rangle d\nu(z) \\ & \leqslant \int \|U(z)\| \sum_{i} \varphi_{\mathcal{A}_{i}}(z)|\boldsymbol{x}_{i}(z)| d\nu(z) = \int \|U(z)\| \cdot \Big| \sum_{i} \varphi_{\mathcal{A}_{i}}(z)\boldsymbol{x}_{i}(z) \Big| \ d\nu(z) \\ & \leqslant \|U\|_{\boldsymbol{\mathcal{Y}}} \Big\| \sum_{i} \varphi_{\mathcal{A}_{i}}\boldsymbol{x}_{i} \Big\|_{\boldsymbol{\theta}} \leqslant \|U\|_{\boldsymbol{\mathcal{Y}}}, \end{split}$$

done $|||f||| \leq ||U||_{\Psi} < +\infty$.

Il reste à montrer l'unicité de U_f . Soient $U, U' \in \mathcal{C}(\mathcal{G})$ tels que

$$\int \langle a, U(z) x(z)
angle d
u(z) = \int \langle a, U'(z) x(z)
angle d
u(z)$$

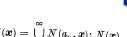
quels que soient $a \in F$ et $x \in L_{\mathscr{A}}^{\phi}(v)$.

Pour a et x fixes et $A \in \Im$ quelconque on a

$$\int\limits_{\mathcal{A}}\left\langle a\,,\,U(z)\boldsymbol{x}(z)\right\rangle dv(z)=\int\limits_{\mathcal{A}}\left\langle a\,,\,U'(z)\boldsymbol{x}(z)\right\rangle dv(z),$$

donc il existe un ensemble localement v-négligeable N(a,x) tel que pour $z\notin N(a,x)$ on ait

$$\langle a, U(z)x(z)\rangle = \langle a, U'(z)x(z)\rangle.$$



Soit (a_n) une suite dense dans F et posons $N(x) = \bigcup_{n=1}^{\infty} N(a_n, x); N(x)$ est localement v-négligeable et pour $z \notin N(x)$ on a

$$U(z) \boldsymbol{x}(z) = U'(z) \boldsymbol{x}(z).$$

Enfin si $\mathcal{I}_0 \subset \mathcal{A}$ est une partie dénombrable telle que l'ensemble $\{x(z)|x\in\mathcal{A}_0\}$ soit dense dans E(z) quel que soit $z\in Z$, (axiome (G)), en posant $N=\bigcup_{\substack{x\in\mathcal{I}_0\\x\in\mathcal{I}_0}}N(x)$, N est localement v-négligeable et pour $z\notin N$ on a U(z)=U'(z).

Ceci achève la démonstration du théorème.

Remarques. 1º Si l'espace F' est de type dénombrable, la fonction $z \to U_f(z) x(z)$ est ν -mesurable quel que soit x ν -mesurable; donc, dans ce cas, la formule de représentation s'écrit

$$f(x) = \int U_f(z) x(z) d\nu(z), \quad x \in L_{\mathcal{A}}^{\phi}(\nu).$$

2º Supposons qu'il existe une famille fondamentale $\mathcal{O} \subset \mathcal{C}(\mathcal{G})$ vérifiant l'axiome (G) et la condition suivante:

La fonction $z \to U(z)x(z)$, (à valeurs dans F') est continue quels que soient $U \in \mathcal{D}$ et $x \in \mathcal{A}$.

Dans ce cas la fonction $z \to U_f(z)$ est ν -mesurable, donc $U_f \in L^{\psi}_{\mathcal{O}}(\nu)$. 3° Si F = C, alors |||f||| = ||f||. En effet, si $\boldsymbol{x} = \sum_i \varphi_{A_i} \boldsymbol{x}_i$ est un champ

de vecteurs étagé, tel que les A_i soient disjoints et que $\|x\|_{\sigma} \leqslant 1$, alors, pour chaque i il existe un nombre complexe θ_i tel que $|\theta_i| = 1$ et que

$$|f(\varphi_{A_i} \boldsymbol{x}_i)| = \theta_i f(\varphi_{A_i} \boldsymbol{x}_i) = f(\varphi_{A_i} \theta_i \boldsymbol{x}_i).$$

Alors

$$\sum_{i} |f(\varphi_{A_{i}} x_{i})| = f\Big(\sum_{i} \varphi_{A_{i}} \theta_{i} x_{i}\Big) \leqslant ||f|| \cdot \Big\| \sum_{i} \varphi_{A_{i}} \theta_{i} x_{i} \Big\|_{\sigma} \leqslant ||f||,$$

d'où l'on déduit que $|||f||| \le ||f||$, donc |||f||| = ||f||.

Le théorème 2 de cet article contient donc le théorème 2 de [3] concernant la représentation intégrale des fonctionnelles linéaires et continues sur $L^{\phi}_{\mathscr{A}}(\nu)$.

Travaux cités

- [1] N. Bourbaki, Intégration, chap. I-IV, 1952, chap. V, 1956.
- [2] N. Dinculeanu, Espaces d'Orlicz de champs de vecteurs I, Rendiconti Accad. Naz. Lincei 22 (1957), p. 135-139.
 - [3] Espaces d'Orlicz de champs de vecteurs II, ibidem 22 (1957), p. 239-275.

- [4] Espaces d'Orlicz de champs de vecteurs III, Studia Math. 17 (1958), p. 285-293.
- [5] Spații Orlicz de cîmpuri de vectori, Studii și cercetări matematice 8 (1957), p. 343-412.
- [63] N. Dinculeanu et C. Foias, Mesures vectorielles et opérations linéaires sur L^p_p, C. R. Acad. Sci. 248 (1959), p. 1759-1762.
- [7] Sur la représentation intégrale de certaines opérations linéaires IV (à pa-
- [8] R. Godement, Sur la théorie des représentations linéaires, Annals of Math. 53 (1951), p. 68-124.
- [9] М. А. Красносельский и И. Б. Рутицкий, Линейные функционалы в пространствах Орлича Д. А. Н. 97. 4 (1954), р 68-124
 - [10] Выпуклые функции и пространства Орлича, Москва 1958.
- [11] W. Orlicz, Über eine gewisse Klasse von Räumen von Typus B, Bull. Intern. Acad. Pol., Classe A (1932), p. 207-220.
- [12] A. C. Zaanen, On a certain class of Banach spaces, Annals of Math. 47 (1946), p. 654-666.
 - [13] Linear Analysis, New York-Amsterdam 1953.

Reçu par la Rédaction le 21. 1. 1960