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Hinweis (30. 12. 1959). Von 0. Szész [3] wurde die Poisgonsche Verteilung
fir die Approximation nutzbar gemacht; die approximierenden Awusdriicke sind
dabei Potenzreihen multipliziert mit. einer Exponentialfunktion. Als neuere Arbeit,
in der ein Approximationssatz auf wahrscheinlichkeitstheoretische Weise bowiesen
wird, sei die Arbeit [4] von Aratd und Rényi genannt.
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Generalized bases in topological linear spaces

by
M. G. ARSOVE (Seattle) and R. E. EDWARDS (Reading, England)

1. Introdaction. Let U be a topological linear space over a scalar
field «. By a basis in 9 we mean a sequence {#,} of points of U such that
to every @ in U there corresponds a unique sequence {a,} of scalars for

which
=]
T = 2%%,
f=1

convergence of the series being that of the topology on 9. Each coefficient
here determines a corresponding linear funetional g, on U, and in this
notation (1.1) ecan be written as

L= Z'Pn(m)wn-

n=1

(1.1)

The above definition of a basis was introduced by Schauder [15]
with ¢ taken as a Banach space, and in this special case the coefficient
functionals are automatically continuous. In general, whenever all the
coefficient functionals ¢, are continuous, we shall refer to {x,} as a Schauder
basis.

Although the utility of these basis concepts hag been amply demon-
strated in various branches of mathematics, certain generalizations appear
to be at least as important. Examples in thig direction have, in fact, long
been implicit in summability theory. To be specific, we need only focus
attention on the Banach space of all continnous funetions # of period 2=
on the real line, normed by [jz|| = max|#|. The functions

@) =1, og() =sinkt, @pe(t) = coskt (h=1,2,...)

then do not constitute a basis is 9, since there do not generally exist
expansions of the form (1.1). However, it is known that for appropriately
chogen coefficients a,, the series in (1.1) is always summable ¢, to z in the
topology of <, so that {z,} behaves very much like a basis.
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There remained for Markushevich [12, 137, with this as motivation,
to make the crucial step — that of generalizing the notion of a Schauder
basis in such a way as to avoid all mention of serics expansions. Thus,
suppose that {z,} is any sequence of points total in % (i.e. having finite
linear combinations dense in U). If there exists a sequence {p,} of continuous
linear functionals biorthogonal to {z,} and such that

(1.2) P(@) =0 (n=1,2,..) =2 =0 (all zc),

then Markushevich has called {m,} a ‘“basis in the wide sense” for <.
We shall employ the terminology Markushevich basis for such a sequence
{#a}. Every Schauder basis is a Markushevich basis, but not eonversely
(the sequence {z,} in the example just cited is easily seen to be a Marku-
shevich basis).

A trivial extension of the basis concept involves the replacement of
{w,} by a family {z;} which is not assumed countable. With this modifi-
cation in the definition of a basis, Schauder basis, of Markushevich bagis
we shall refer to {;} as an extended basis, evtended Schauder basis, or ew-
tended Markushevich basis ().

In the present paper we carry the generalization one step farther
by discarding the requirement of totalness, along with that of countability.
Thus pared down to its topological essentials, the resulting concept of
a generalized basis gives rise to certain paradoxes. For example, the family
of coefficient functionals is no longer unique, and, moreover, there exists
a non-separable Banach space admitting a countable generalized basis.
On the other hand, the concept of a generalized basis is just strong enough
o allow an extension of the isomorphism theorem (given in [1] for Schauder
bases in Fréchet spaces) to the case of generalized bases in complete metric
linear spaces.

A, number of examples are exhibited to indicate the relative scope
of the various basis concepts. Also, as might be expected, the total gene-
ralized bases (or extended Markushevich bases) turn out to be of pars-
icular interest, and we are led to examine them in greater detail. Transla-
tional bases on discretie abelian groups, previously studied from a somewhat
different viewpoint in [9], are then reconsidered in the present context.
Our final section deals with continuity of the coefficient fumctionals and
includes a proof of the fact that striet inductive limits of Fréchet spaces

(*) Extended Markushevich bases have already been considered by Markushe-
vieh [12]. For extended Schauder bases it is agreed that the basis expangions are to
be carried out according to a fixed linear ordering of the indexing set. (In practice, it
is usually assumed that the expansions converge unconditionally)

s
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do not tolerate non-Schauder bases (this generalizes a theorem of Newns
[14], pp. 431-432, which makes the same assertion for Fréchet spaces).

The authors wish to express their gratitude to Dr. Czeslaw Bessaga
for reading the manuseript and calling attention to the weak basis theorem
for Fréchet spaces (currently unpublished, but to appear shortly in a pa-
per by Bessaga and Pelezynski [4]) (2). In addition, the study of continuity
of the coefficient functionals for the case of inductive limits of Fréchet
gpaces (§ 6) has its origin in a guestion raised by Dr. Bessaga.

2. Definition and examples of generalized bases. Let I be any
non-empty set, and let us denote by o the linear space of all indexed
families {a;} (¢<I) of scalars, the operations in of being pointwise operations
relative to the scalar field . For brevity we shall henceforth use the ter-
minology “the family {a;}”’ to mean ‘“‘the indexed family {a;}"” (i.e. the
function. on I whose value at any iel is a;).

A family {p;]} of continuous linear functionals is said to be biortho-
gonal to a family {x;} of points of U provided that g;(x;) = dy for all
i, § in I, where d; is the Kronecker delta.

DerFINITION 1. Let {x;} be a family of points of 9. If there exists
a family {g;]) of continuous linear functionals on 9 biorthogonal to {w;}
and such that

(2.1) pi() =0 (le)Do=0

for all x¢ U, then {a;} will be called a generalized basis in . We shall also
refer to {p;} as a family of coefficient functionals corresponding to {:}.

Condition (2.1) is obviously equivalent to the condition that the
mapping @ of U into of defined by & () = {@;(#)} be one-to-one. We shall
call @ the coefficient mapping determined by {g}.

A given family {;} of continuous linear functionals can be the family
of coefficient functionals for at most one generalized basis {w;}. Further-
more, every total generalized basis {#;} uniquely determines the family
{@:} of coefficient functionals.

As we now ghow, the converse also holds provided we assume U to
be locally convex and a to be the real or complex field.

THEOREM 1. Let U be a locally convex topological linear space over
the real or complex field. For the family {@;} of coefficient functionals to be
uniquely determined by the generalized basis {;} in U it is necessary and
sufficient that {wz;} be total in U.

Proof. It suffices to show that if {#;} is not total, there exist distinet
families {p;} and {g;} of coeificient functionals. For this we invoke fhe

(%) A special case of the weak basis theorem was given in the original manuseript
of the present paper.
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Hahn-Banach theorem to infer the existence of a continuous linear func-
tional 42 on U vanishing at each ; but not vanishing identically. Then
if {g;} is a family of coefficient functionals corresponding to {;}, we can
take for {p;} any family obtained from {¢;} by adding 2 to finitely many
of the functionals ¢;.

More generally, let Z' be the subspace of U spanned finitely by {a;}
(i. e. comprised of all finite linear combinations of the points ), let @
be the coefficient mapping determined by {¢;}, and let {4} be any family
of continuous linear functionals on QU annibilating {@;}: A;(%;) = 0 for

all 4, j in 1. T {A4(w)}e®[Z] for all @ in U and
(2.2) =gtk (iel),
then {gi} is a family of coefficient functionals corresponding to {w;}. In
fact, {p;} is obviously biorthogonal to {#;}, and we have
(tel) DX D hila) =0 (iel)
Se@) =0 (fel)Do=0

@i(w) =0

for all # in Q.

The condition just given in (2.2) is a sufficient one only. If {p;} and
{@i} are families of coefficient functionals corresponding to the same ge-
neralized basis {w;}, then the functionals g;—@; must of course annihilate
{#;}. However, as the following example shows, the family {p;(®)-— ¢ (@)}
may fail to belong to G[X] for some x in .

Examrie 1. Let I be an infinite set and 9/ the linear space of all
bounded real-valued functions on I. This is plainly a Banach space under
the sup norm. For each i eI let us define a; as the function agsuming the
value 1 at 4 and 0 elsewhere. The point functionals ¢;(v) = @ () are all
continuous, and {g;} is biorthogonal to {;}. Since

@@ =0 ((e)=a=0

for all & in 9, it follows that {s;} is a generalized basis in . However,
U is easily seen to be non-separable, and {a;} is not total in /. Thus,
there exists.a non-separable Banach space admitting a countable genera-
gzefi )basis (such a space admits neither a Schauder nor a Markushevich
agis).

Fixing I now as the set of positive integers, we observe that the Ma-
zur generalized limit ([37], p. 34) yields a continuous linear functional A
on ¥ annihilating {2;}. Moreover, the linear subspace X spanned, finitely
by {@:} has as closure the space of all sequences converging to 0. It is then
readily verified that {p;-+ 4} is a family of coefficient functionals correspon-
ding to {2}, but the family all of whose terms are A(x) does not belong
to @[Z] unless @ = 0.

icm°

deneralized bases in topological linear spaces 99
An alternative example of the same kind is obtained by taking U
as the space of all bounded sequences {x(4)}32, for which the quantity

— lim o(1)+(2)+...+a(n)

in—c00 n

exists finitely. This in again a Banach space under the sup norm, and
1 is & continuous linear functional annihilating the generalized basis {u}
defined as before. Here, however, there iy the advantage of having an
analytical expression for A.

That a Markushevich basis need not also be a Schauder basis has
been mentioned in connection with the Fourier series example of §1.
Perhaps even simpler is the following example, due to Markushevich [13].

ExXavere 2. Let 9 be the Fréchet space of all functions amalytic
on the open unit disc (2| < 1), topologized by the metric of uniform con-
vergence on compact sets. Choosing « as any complex number such that
0 <ol <1, we set

Tn(2)

These functions form a Markushevich basis in 9, the corresponding bior-
thogonal sequence of continuous linear functionals being given by

" (a)

n!

— @—a)® (n=0,1,..).

galf) = n=0,1,..).

On the other hand, {f,} is not a Schauder basis, since the series

Ew (z—a

1
. & (—a™
corresponding to the function f(z) = (1—2)"" diverges for « outside the
circle [z—a| = |[1—al.

'We observe further that if {z;} is a generalized basis in U and (@}
is any corresponding family of coefficient functionals, then {z;} and {g:} -
form a maximal biorthogonal system relative to 9. In fact, if this biortho-
gonal gystem were not maximal, then there would exist a point o’ of U
and a continuous linear functional ¢’ on % such that ¢’ (') = 1 and ¢;(z")
= 0 for all 7eI; but these conditions are clearly incompatible with (2.1).

To show that a maximal biorthogonal system may fail to yield a ge-
neralized basis, we make use of an example cited in a different context
by Markushevich [13] (3)

(*) Similar examples have been published by Dieudonné [8].
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ExamprLe 3. Let us take 9 as the space employed in Hxample 2

but this time put _ .
fol2) = 1,

f1(z) = 1+2,

Defining ¢, on. U by

_ ™) (o) -
= —_{/n,‘—rf)' (n=0,1,..),

ea(f)

we see that {f,} and {g,} form a biorthogonal system over . However
{f.} isnot a generalized basis in U, since, in the first place, the only possible
candidate for a sequence of coefficient functionals is {p,} (in view of the
fact that {f,} is total), and, in the second place, the condition g, (f) =
(n =20,1,...) does not force f = 0(%).

To verify that the biorthogonal system {f,}, {p,) must be maximal,
let us assume the contrary. There then exists a continuous linear funectio-
nal annihilating {f,} but not vanishing identically. This, however, is impos-
sible, since every continuous linear functional g on Y has the représenta-

tion
#(f) = Zm‘

for {h,} a suitably chosen sequence of complex numbers.
. Summarizing our conclusions, we have the following strict ordering
in texms of increasing generality:
Schauder basis 3 Markushevich basis
=3 generalized basis <3 mawimal biorthogonal system.

20,
n!

3. Similar generalized bases and the isomorphism theorem. Let
us consider now two topological linear spaces 4 and <) having scalar
helds_ a and /3., respectively. We shall assume further that Q¢ admits a ge-
?erghzed basis {@;} (i) and that <V admits a generalized basis {y;)
jed).

DrrinirioN 2. The generalized bases {;} in U and {y;} in €2 will
be called similar provided there exist corresponding families {g;} and

(") It is easily seen that the condition gn(f) =0 (n = 0,1, ...) I8 necessary

and sufficient for f to be of the form f(e) = (14 2+ 22 i i
bty oomstont ( 4 2%, 2"4-...), where ¢ is an
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{y;} of coefficient functionals such that
PLU] = F[V],

where @ and ¥ are the coefficient mappings determined by {g;} and {vs},
respectively.

Whenever {«;} and {y;} are similar, we must evidently have I =J
and « = B. From this point on, we shall adhere to the convention that the
Uinear spaces which enter the discussion shall all be taken over the same field
o of all real or complex numbers.

Assuming now that 9 and 9 are complete metric linear spaces, we
arrive at the following extension of Theorem 1 of [1](%):

THEOREM 2. Let U and YV be complete metric linear spaces, and let
{&;} (3eI) be a generalized basis in U. If Tis an isomorphism of U onto <V
and y; = Tw; (i<l), then {y;} is a generalized basis in Y similar to {:}-
Conversely, if {y;} is a generalized, basis in YV similar to {z;}, then there exists
an isomorphism T of U onto V such that y; = Tw; (i<I). In either case, {3}
is an extended Markushevich [Schauder] basis if and only if {=;} has the
same property.

Proof of the direct assertion amounts simply to the observation that
the properties involved are all invariant under isomorphisms. For the
converse let us put

Ay = d)[(l(] = }[’[C)}],

so that cf, is & linea1 subspace of &f. In view of the fact that o,, a8 a li-
near space, is isomorphic to both 9 and <7, we can metrize o, either by
the metric of Qf or the metric of €Y. In each case of, becomes a complete
metric linear space over a.

Tf we can show that both of these metrics define the same topology
on of,, then the mapping T =¥ '@ will furnish the desired igomorphism
of 9f onto <Y (the biorthogonality yielding ¥; = Ta; for ieI). That these
two metrics do, indeed, define the same topology is a consequence of the
following general theorem (¢):

TEEOREM 3. Let € be a linear space and {F;} a separating family (7)
of functions on . Further, let o' and o' be two metrics, each making C into

(5) The present proof is simpler than that in [1], but the development in [1]
yields additional insight into the properties of similar sequences in Fréchet spaces.

(%) The argument here is essentially that used by Gelfand [11, p. 17] in showing
that algebraic isomorphism of normed rings implies topological isomorphism.

(") That is, if F;(x) = F;(y) for all ieI, then x and y must coincide. Note that
condition (2.1) is just the requirement that {zp,,} be a separating family of continuous
linear functionals on %, or, equivalently ([8], p. 51), that {p;} be weakly total in the
dual space of .
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a complete metric linear space. If every Fy is continuous with respect to each
of these metrics, then o and o' define the same topology on E.

Proof. It is clear that o = o'+ o’ is a metric on ¢, and we proceed
to show that ¢ is complete in this metric. Thus, let {z,} be a Cauchy se-
quence in the metric o, so that {z,} in automatically a Cauchy sequen-
ce with respect to each of the metrics o' and . By the assumed
completeness, {2,} converges (p') to some point 2’ of € and converges
(¢'") to some point 2" of €. We next invoke the continuity properties of
the functions F; to infer that

Fi(2') = HmFy(z,) = Fy(2'") (iel).

The hypothesis that {F;} is a separating set then forces &' = z2”/,
and it follows that {2,} converges (p) to the point z =2’ = 2’'. Hence,
&€ i completie in the metric o.

Since ¢’ < o and ¢" < g, the open mapping theorem [3, p. 41, Theo-
rem. 5] ensures that ¢’ and o'’ define on € the same topology as p. This
completes the proof.

In applying Theorem 3 to the proof of Theorem 2, we have but to
set € = o, and Fy(2) = gu(0) = i(y), where z = & () = P(y).

4. Total generalized bases. The assumption that a given generalized
basis is total allows certain properties of finite sums to be carried over
to arbitrary points of the space. It is natural, therefore, to expect that
some of the theorems for Schauder bases will have counterparts for total
generalized bases. We present here a few results of this sort.

Let us suppose that U is a topological linear gpace admitting a total
generalized basis {#;} ({eI). For I’ any non-empty subset of I we shall
consider the closed subspace U’ of 9 generated by {w;} (ieI’). That is,
Q' is the closure of the set of all finite linear combinations of those #*
having indices ¢ in I'. The following theorem on extengions of isomor-
phisms appears a8 a direct analogue of Corollary 1.3 of [1]:

THEOREM 4. Let U and VY be complete metric linear spaces having
{og} and {y;} (iel), respectively, as total generalized bases. Further, let I'
be a subset of I for which I'— 1 is finite, and let W' and V' be the closed sub-
spaces generated by {m;) (iel') and {ys} (ieI"), respectively. If T is an iso-
morphism of U’ onto V' such that T'w; =1y, (iel’), then T' can be ewtended
to an isomorphism T' of U onto <V such that To; =y, (tel).

To begin with, it is evident that {w} (ieI’) and {y;) (fel’) are total
generalized bases in U’ and 9%, respectively. The existence of the isomor-
phism I” then ensures that these bases are similar. Since this plainly im-
pli.es similarity of the original bases {x;} and {y;}, there exists an isomor-
phism T of U onto <V carrying o; into y; (iel). That T is actually an
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extension of 7T* is immediate from the fact that these two linear mappings
coincide on a total subset of </'.

We turn now to a generalization of the classical Paley-Wiener theo-
rem (8). Here 9 is taken as & complete metric linear space having o as
a translation-invariant metric, and we use the notation of Banach:

loll = (@, 0).

THEOREM 5. Let U be o complete metric linear space and {z;} (ieI)
a total generalized basis in WU. If {y;} (i<I) is a family of points in U and 2
a real number (0 < A < 1) such that

w.) 1.3 antv,— )] < 2] 32t
N=1 N==1

holds for all finite sequences iy, iy, ..., tm Of ndices I and all finite se-
QUENCES Gy, Gy, .-y Om Of Scalars, then

() {s} is o total generalized basis in U,
and

(2) there emists an automorphism A om Qf such that y; = Awg (i<l)
and (1—A) |zl < ||4=| for oll x in U.

Proof. On the subspace X spanned finitely by {u;} we define a Ii-
near operator T by putting '

To = >l pi(e): (3s—a0)-

Since T is bounded on X by virtue of (4.1), we can consider 7' as extended
continuously onto U (= f). Condition (4.1) also yields
1T < 2wl (0 =0,1,...)
for all # in U.
By comparison with the corresponding geometric series in A we at
once infer convergence of the operator series

(4.2) U= (=T

and there follows
1Tz < (=2l (2eU).

(%) A somewhat restricted theorem of this sort has been stated by Markushe-
vich [12]. It should be mentioned also that the device of using the operator series
(4.2) to prove the Paley-Wiener theorem has been suggested by Buck [7], p. 410.
(For a discussion of the classical Paley-Wiener theorem and certain of its variants,

see [2]).
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Thus, U is & one-to-one continuous lincar operator on Q4. The expan-
sion (4.2) shows, in. fact, that U = (I+7T)™%, where I is the identity opera-
tor. Hence 4 = I+T(= U™") is an automorphism on QU carrying x; into
¥4, and the elementary direct assertion in Theorem 2 allows us t0 conclude
that {y;} is a generalized basis in <. This generalized basis is obviously
total, and the proof is complete.

A further result on total generalized bases is concerned with the
characterization of similar such bases directly by means of inequalities.
The following theorem is an extension of Theorem 4 of [1]:

TeEOREM 6. Let U and <V be Fréchet spaces with topologies defined
by sequences {u,} and {v,}, respectively, of continuous semi-norms, and let
{2:} and {y;} be total generalized bases in the respective spaces. Then a neces-
sary and sufficient condition for {w;} and {y;} to be similar is that to every
positive integer p there correspond a positive integer ¢ and a positive nuwmber
M such that

m

m
Uy (Zanw,-ﬂ) < M"vq( %%%)
n=1 n=1
and
m m
(4.3 Vp (2 a,,yi") < Mu, ( 2 a,,,win)
. n=1 =1

hold for all finite sequences iy, i, ..
CES Giyy Ggy +ivy Uy, Of sCalars.
Proof. (Necessity). This is an immediate consequence of Theorem
2, coupled with Propogition 9, p.100-101, of [5]:
(Syfflclency). Denoting by X the space spanned finitely by {w},
we define on X the linear transformation l

T(%’ a’nwin) == Z‘ “'n?/iﬂ'

Condition _(4-.3), 1:11 conjunction with Proposition 9 (cited above),
‘ensures thaﬁ T is continuous on X. By linearity, T must, in fact, be uni-
formly continuous and can therefore be extended to a continuous linear
mapping of YU (= X) into Y.

Now, let {p;} and {y;} be the families of coefficient functionals corres-

ﬁonding to {m} and {y;}, respectively. In as much as T, = y; (iel), we
ave ‘

-y tm Of indices in I and all finite sequen-

v (T0) = pi(0)  (iel)

for all » in X. Moreover, an evident imi i
passage to the limit shows t b
actually holds for all #in 9. That is, 1ovs ohat s

icm
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P[U]CW[V],

where @ and ¥ are the coefficient mappings determined by {p;} and {v}.
respectively. Symmetry of the given data then yields S[U] =P [V],
completing the proof.

We make use next of the notion of inductive limit of a sequence of
locally convex topological linear spaces (see [3, D. 61-697).

TemorEM 7. Let U be the inductive limit of am increasing sequence (°)
{Q¢,} of locally convex topological linear spaces, and let {w;} be a family of
points in Uy. Then ;

(1) if {@} is o total generalized basis in each U,, then {w;} is a total
generalized basis in U. :

(2) if {z;)} is an ewtended Schauder basis in each W,,, then {z;} is an
extended Schauder basis in U.

Proof. To establish (1), let us denote by {¢{?} the family of coeffi-
cient functionals corresponding to {s;} relative to the space U,. Since
{U%,} is an increasing sequence and, the coeificient family for each of these
spaces is unique, it is evident that each @ is an extension of the corres-
ponding ¢f™ provided n > m. Hence, for each el there exists a linear
functional ¢; on U coinciding with ¢f? on U, (n =1,2,...).

Since the continuity of ¢; on each A, forces continuity of ¢; on U,
the sequences {z;}, {¢;) form a biorthogonal system over Y. That ¢; (@) =0
(all i<I) implies = 0 is then apparent from the corresponding property
for any of the subspaces U, in which  lies. To prove (2), it suffices to ob-
serve that each  in 9 is given by a unique series expansion in some sub-
space Qf, and that convergenece in this subspace results in convergence
in .

As an application of Theorem 6 we proceed to exhibit a Schauder
basis in a non-metrizable space. Let us take {E,} as any sequence of po-
sitive numbers decreasing to some number R > 0 and denote by on the
closed dise of radius R, about the origin in the complex plane. For each n,
¢, will then be defined as the space of all complex functions continuous
on o, and analytic on its interior, the topology being that given by the
sup norm. With the convention that we identify any two functions coinei-
ding on some neighbourhood of the origin, it is clear that the hypotheses
of Theorem 7 are satisfied. Thus, the functions f,(2) =" (n =0,1,...)
comprise a Schauder basis in the inductive limit space 2. That Qf is non-
metrizable follows easily from Exercise 13 a), p. 36, of [6] (with #, = U,
and B = F = Y).

(*) More generally, the theorem remains valid for directed families.
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‘.3. Translational bases. A broad class of total goneralized bases ig
provided by translates of certain functions on the L2 space over a discrete
abelian group I. (

For # in Z*(I) and ¢ in I, we shall use @; to denote here the tr

0 § ranslat
of # by 4. That is, i

2 (t) = w(@+d)  (tel),

the group op?ration being written as addition. Also, £ will signify the dual
group of I, & the Fourier transform of #, and u the Haar measure on I

Questions relating to independence of the tranglates have been in:
vestigated in [9]. Using results developed there, we examine the transla-
tes now from the point of view of generalized bases.

TeroREM 8. The condition 1/zeI*(I) s necessary and sufficient
for {a} to be o iotal generalived basis in L2(I). A

Proof. Theorem 3 of [9] asserts that the above condition is necessary
and, sufficient for {z;} to be linearly independent. Moreover, as noted in
[9, p. 39], this condition makes {x;} total in L*(I), and there then exists
a unique funection w in L*(I) such that
fwiwd/,a _ 1 fori=0

0 otherwise.

Setting

(8.1) @) = [ymdy  (iel;y<Ir(I)),

we obtain (by means of the Parseval formula) the inequality

lpa)! < llyllfiz].

Hence, eagh @ 18 a continuous linear functional on L2(I), and we observe
that {p;} is biorthogonal to {z;}. There remains only to establish that
P:(y) =0 (all iel) =y = 0.

’ljhls, however, follows from (5.1) and the conditions on p. 38-39 of [9]
since the symmetry of these conditions shows that {w;) shares with [w}’
the ﬁoperty of being total in L2(I). *

ig an open problem whether the condition 1/7 <L® forc

{#;} to be an extended Schauder basis, that is, wlmthex{ it is éfx)'oigoeizfgﬁ
to ensure the I? convergence of Yo(y)w; to y for every y in IL2(I). The
problem is a special case of the following one. Let & be a éompzuct al;olia,n
group, and let & be a positive integrable function on @ such that (54 is
algo integrable. Construct the L* Hilbert space relative to the measure
with density 6. Is each f in this space the L® sum of ity Fourier series?

To elaborate on the above remarks, we develop certain convergence
results for I taken as the diserete additive group of integers and 1 [@ in
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I>(D). Let y be fixed as any element of L2(I), so that (with the aid of
Parseval’s formula) we can write

L0 atgy ()

o = Pn(y) = % {i(t)

for all » in I (see [9], p. 39-40); ¢, is thus the ' Fourier coetficient of
the function ¥ /# in L(—m=, ). :

Tn discussing convergence of the series gy to y, it 18 natural to
deal with the symmetric partial sums

o= Y cat

[ni<k

(k=1,2,...).

Since the Fourier transform of s; is
(1) = D ene™a(t) = Su(t)a(1),
i<k
where 8 is the k™ symmetric partial sum of the Fourier series for 9 [z,
Parseval’s formula yields

Ed

1
27:f

-

2
— 8| |@|2d.

[ly — sgll® =

8>2<ﬁ»

(5.2)

Thus, the convergence of Yeau, to y is governed by the degree of
approximation to § [# (in the I? space relative to the measure of density
|#1?) afforded by the partial sums Sy of the Tourier series for § /. In par-
ticular, we have

THROREM 9. In order that sp—y in L2(I) it is

(1) necessary that Sy -4z in L}(—m, ),
and

(2) sufficient that {Si} converge boundedly a. e.

Further, convergence takes place whenever & is essentially bounded and 7@
belongs to L2(—m, n) (comvergence therefore takes place for all y in L*I),
provided that both & and 1|& are essentially bounded).

Proof. In the case of (1) we neeed only note that, for any measu-
raple funetion f on [—m=, ], '

funa= [ i< (eiaead™] Ly
= . dt < 2 g ;
A A ? _J, Joqerl
this is then applied, in conjunction with (5.2), to the function
7 =14 |#— 8. On the other hand, (2) follows at once from the principle

of dominated convergence.
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If 4 )& belongs to L*(—m,m), then 8 —>4/& in this space. If also &
ig essentially bounded, then the right-hand member of (5.2) tends to 0
as & — oo. Finally, if 1/# is essentially bounded, then 9/ belongs to
I*(—m,w) for each y in L2(I). This completes the proof. (Note that in
these latter cases the argument holds when I is replaced by an arbitrary
diserete abelian group; the series development is then unconditionally
convergent, i. e. convergent according to the increasing directed. family
of finite subsets of the discrefe group in question).

6. Continuity of the coefficient functionals. So far, the relationship
of ordinary bages with Schauder bases has received only brief mention.
Tt is known that every basis in a Banach space must be a Schauder basis,
and the same result has been established by Newns [14, p.431-432]
for the more general case of a Fréchet space.

On the other hand, it is not true that bases in all topological linear
spaces are Schauder bases. For example, if U is taken as the space of
all real functions expandable as power series on the interval (-1, 1),
the topology being that of uniform convergence on compact sets, then the
functions ,(f) = 1" (n = 0,1,...) are easily seen to form 2 basis which
is not a Schander basis. The only coefficient functional continuous on U
is, in fact, @, (*?).

The space 9 in the above example is certainly not complete (it it
were complete, it would be a Fréchet space and the basis a Schauder
basis). Moreover, the completion of 9f is the space of all real functions con-
tinuous on (—1, 1), and {z,} is not a basis in the latter space. An example
can, however, be given of a Schauder basis for which the space gpanned
(in the infinite-series sense) by the basis elements fails to be complete.
For this we have but to take 9/ as the space introduced in Example 3 and
consider the subspace consisting of all functions on the open umit dise
representable as infinite series in the functions f,. The resulting subspace
is nob complete, since {f,} itself converges to a function in U but not in
the subspace.

Two recent generalizations of Newns’ theorem deserve mention.
Theorem 2 of [2] states that every basis in a complete melric linear space
over the real or complew field is a Schauder basis. That is, the local con-
vexity hypothesis in Newng’ theorem can be omitted. The second genera-
lization retains local convexity but relaxes the basis requirement. This

(29) To show that @y (n 2= 1) is not everywhere continuous, take § as a conti-
nuous function on (—1, 1) vanishing except for a narrow tapered unit step centered
at the origin. Then & can be uniformly approximated by polynomials, and the n-fold
integrals of these polynomials are funetions approximating 0 in % but having nt® de-
rivatives converging to 1 at the origin.
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result, due to Bessaga and Pelezyriski [4], asserts that every weak basis
in a Fréchet space is a Schauder basis (it thus represents an extension to
Fréchet spaces of the classical weak basis theorem of Banach).

In general, the qualification “weak”, applied to any of the types of
bases previously considered, means simply that the topology on U is to
be taken as the weak topology in the basis definition.

We give two further results related to the weak basis theorem.

TrEoREM 10. If U is o locally comvex topological linear T',-space,
then every weak extended Markushevich basis in U is an extended Markushe-
vich basis for the imitial topology.

TEmoREM 11. Let U be o locally comvem topological linear T'-space.
If U is a t-space (11), then every weak extended Schauder basis in U is an
ewtended Schauder basis for the initial topology.

Theorem 10 is based on the important observation that the concept
of an extended Markushevich basis is the same for all locally convex Haus-
dorff topologies (on o given linear space) which yield the same dual. This is
clear since continuity of the coefficient functionals is obviously unchanged
and (by [6], p. 67, Proposition 4) the total subsets are the same for all
such topologies. In applying the above observation to the proof of Theo-
rem 10, we use the following facts: (i) the 7', requirement ensures that U
is a Hausdortf space ([16], p. 126), and (ii) the dual under the weak topology
coincides with that under the initial topology ([61, D 63).

To prove Theorem 11, we take {x,} 28 & weak Schauder basis in .
There then exists a biorthogonal sequence of continuous (= weakly con-
tinuous) linear funetionals p, on U such that

o= D pald)an (2cU)

n=1

in the sense of weak convergence. Hence, the partial sams

N
sw(@) = > ea(@)n

n=1
are continuous endomorphisms on 9 having the property that sy(@) >
weakly for each » in /. Pointwise convergence under the weak topology
results in pointwise boundedness for the weak topology and thereby for
the initial topology, in view of the corollary of Mackey’s theorem ([6],
p. 70). By the Banach-Steinhaus theorem ([6], p. 27, Theorem 2) coupled
with the assumption that 9 is a i-space, it follows that the family of func-
tions sy(z) is equicontinuous under the initial topology.

(11 An espace tonnelé in the terminology of Bourbaki [6].
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Now, taking cognizance of the fact that {w,} is @ weak Markushevich
Dagis in 9, we infer from Theorem 10 that {z,} is 2 Markushevich basis
for the initial topology. The finite sums sy(z) are therefore dense in .
Since they have been shown to be equicontinuous, there results

v = Z‘Pn(w) D,
M=l
(velative to the initial topology) for all 4 in Q. Thus completes the proof
for the Schauder case, and the extended Schauder case is dealt with
similarly.

Our next result serves to extend Newns® theorem to certain inductive
limits of Fréchet spaces.

THEEOREM 12. Let U be the inductive lomit of an increasing sequence
{U,) of Fréchet spaces with the following properties:

(i) every bounded subset of U is a bounded subset of some Uy;

(i) for each n, every bounded sequence in U, which converges in U also
converges in WUy ‘

Then every basis in U is a Schauder basis.

Proof. Let {#;} be a basis in U, and denote by ¢; the coefficient func-
tional corresponding to #; (i = 1,2, ...). Our object is to show that each
@; is continuous on U, and it suffices to show that ¢ U, is continuous with
regpect to the topology 1, on U, (n=1,2,...). .

‘We put .

N
sylo) = Y ouma (N =1,2,..)
i=1
and define ¢, (n =1, 2,...) as the linear subspace of U formed of those
elements » for which the points sy(#) (¥ = 1,2, ...) comprise a ,-boun-
ded subset of . Olearly, &, C Epyy (m =1,2,...). Also, by (i) and the
basis properties we have

% = U U,
Ne=l
and by (ii)
E,CU, (n=1,2,...).

Thoe next step is to introduce a topology #, on C, a8 follows. Leb
{Ph)2, e a sequence of semi-norms defining the topology ¢,, and pub

di(o) = suppalsw(@)] (A=1,2,..)
N1

for all # in &,. Then {gA}2, is a sequence of semi-norms defining a locally
convex topology ¢, on &y,. The resulting topology is finer than thab induced
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on &, by t,, since hypothesis (i) yields }(») < ¢i(w) for # in &, and
A =1,2,... This implies ([8], p. 97) that &, is metrizable under the to-
pology in-
TFurthermore, it is evident that ¢;(#)a; lies in U, for all # in &,,
so thatb
mle@) el <2@) (A=1,2,..).

There are then two possibilities: given any index 4, either x; belongs to
U, or ¢; = 0 on &,. In the former case we have

(6.1) lpa(@) | phim) < 20h(0) (A=1,2,..)

_and also ph(m;) # 0 for some A Hence, in all cases the functionals ¢;

(i=1,2,...) are iy-continuous on &,.

Our immediate task is to prove that &, is complete in the topology
#,. Thus, suppose that {2} is a t,-Cauchy sequence in ¢,. The inequality
(6.1) then shows that {p;(2)}i., is a Cauchy sequence of scalars, so that
the quantity

a; = limg;(2)
k-0

exists finitely for each 4. Since @; =0 holds on ¢, whenever #;¢U,, it
follows that the sums

N
o= daz (N=1,2,.)
Fe=1

all lie in 9,. By t,-continuity of the coefficient functionals on €, we see
also that

limsy(2) = oy (N =1,2,...)
ko0

for the topology t,.
Let 4, j, k, and » (< N) be arbitrary positive integers. Then

N .
wh{ ;‘ Lo (e — g (o) T} < 20 (25— ),

and in the #-limit as § - co this yields

N
(6:2) i Y Ta— ()] < ch(B),

(4
where

e (k) = liﬂiupﬁ(z,~zk) =0
Thus,
N N

(6.3) Ph (2 ag) < e (k) + 0% X2 CALAR

iy =y
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Using (ii) together with the basis expansion for #; and the completeness
of U,, we ascertain the existence of a point z in 9, such that

2 =

Qi gy

s

-

=

the series' converging in Y, and thereby in /. The bagis properties then,
ensure that a; = @;(2) (i =1, 2,...), and a glance at (6.3) shows that this
makes z lie in. &,. Convergence of {#,} t0 2 in the topology 1 is now appa-
rent from (6.2), proving that &, is complete in this topology.

We proceed to show that any given ¢/, is contained in some &,.
Tn the first place, U, is the union of its subspaces WUp~ Ey (1 =1, 2,...).
Also, each of these subgpaces is complete under the topology induced by
t,. Indeed, if {2} is a Cauchy sequence in 9, ~ &, under this topology,
then there exists a point 2 in &, such that ¢, -> = for ¢, and a fortiori for
t,. Moreover, all 2, belong to the closed subspace U, of U, and the con-
vergence of {2;} to 2 in 9 forces # to lie in Y. The subspaces U, E,
are thus Fréchet spaces under the topology indueed by t,. Now, the in-
jection mapping of U, ~ &, (so topologized) into Uy, is easily seen to
have a closed graph (12) and is therefore continuous (by the closed graph
theorem ([5], p. 37). There remains but to apply Exercice 13 a), p. 36,
of Bourbaki [6] to conclude that U, = U, ~ &, for some index .

We have now at our disposal the following facts: (a) for any posi-
tive integer m there is a corresponding positive integer » such that 9, C &,,
and (b) each ¢; is continuous on 9, under the topology induced by %,.
The theorem will follow if we can show that this topology is coarser than
tm. This, however, amounts to showing that the injection mapping of
U, into &, (under 1) is continuous, and the proof is again an easy con-
sequence of the closed, graph theorem (12). This completes the demonstra-
tion that the coefficient functionals ¢; are all continuous on Q.

Condition (i) is satisfied whenever 9 is sequentially complete. To see
this, suppose that B is & bounded subset of 9, and let 4 bo the closed,
convex, and circled envelope of B in 9. Arguments suggested by Bour-
baki [6], p. 36, Exercice 13 a), b), show that there exists an index n for
which 4 C 9, and such that A is absorbed by each t,-neighbourhood
of 0in Y, (i. e. such that A is {,-bounded). A fortiors ,then, B is t,-bounded.
Bourbaki’s suggested arguments depend on his Lemma 1 ([67], p. 21). and it

(**) Lot {25} be any sequence of points in WUm ~ Cn, and suppose that {z) con-
verges to a point z relative to the topology induced by tm, and to a point #' relative
to the topology induced by 7. Since 2k — 2’ in U, and thereby in ¢, condition (ii)
guarantees that 2r -2 in Uy. Hence 2’ = 2.
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is readily verified that completeness of A in this lemma can be replaced
by sequential completeness('s). :

Condition (ii) is automatically satisfied whenever < is the strict in-
ductive limit of {9,}. Moreover, as pointed out by Bourbaki [6], p. 9,
the strict induetive limit 9/ of a sequence of quasi-complete spaces closed,
in 9 is itgelf quasi-complete. Since quasi-completeness obviously implies
gequential completeness, we have

COROLLARY 12.1. If U 4s the sirict inductive limst of an increasing
sequence of Fréchet spaces, then every basis in U is & Schauder basis.

(%) The precise result required is stated as (b) of Theorem A in [10].
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