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Some properties of two-norm spaces and a characterization of
reflexivity of Banach spaces

by
A. ALEXIEWICZ and Z. SEMADENI (Poznan)

In this paper we continue the investigations of [2] and [3]. The
contents are divided into three sections. In the first we introduce the
notion of quasi-normal two-norm spaces generalizing the concept of
normal two-norm spaces. We show that all the main properties of normal
two-norm spaces are preserved in this case. Introducing the notion of
y-semireflexivity we show that a two-norm space is y-reflexive if and
only if it is y-semireflexive and quasi-normal.

In the second section we study the structure of the spaces £* and 5.
Since W. Orlicz and V. Ptak ([14], p. 57) have proved that the space Z,
is always closed in the space (&, || ||> conjugate to (X, || |[> but not every
strongly closed subspace of 5 is a possible space Z,, it seems worth
while to study the structure of Z,. We consider the space (X, |||,
whence also (&, || >, as fixed, and we show at first that, in general,
there is no finest or coarsest starred norm || ||* giving a fixed space Z,.
Next, we give a characterization of starred norms | ||* and of the possible
spaces £*; however, we have not succeeded in giving such a character-
ization of its closures &,, so we content ourselves with giving some
sufficient conditions for a subspace of & to be a possible space &,, and
with studying some examples of the possible situation of £, in Z. It may
happen for normal two-norm spaces that only one space =, exists (it is
always so if the space (X, | ||> is reflexive); it may happen that exactly
two possible spaces &, exist. There may also exist spaces &, of finite
deficiency in Z; on the other hand, if (X, || ||> is weakly complete, then
the possible spaces =, have either infinite or null deficiency.

In the third section we apply the results obtained to give a character-
ization of reflexivity: a Banach space (X, || ||> is reflexive if and only if,
for every norm | |[* coarser than | |, the space 2* conjugate to <X, |||*>
is strongly dense in the space (&, | |I> conjugate to (X, | |>.

Throughout this paper we adopt the terminology of [3]. In particular,
the following notations and notions will be used without further reference.
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Given a two-norm space <X, |||, || |*>, we shall always suppose the
following condition to be satisfied:

(ny) ol < llol| for weX.

A gsequence {x,} is called y-convergent to w, (written w, 5 z,) if
e, — 2ol — 0 together with sup |jm,] < co. A functional ¢ is called

n=12,...
y-linear it it is distributive and-if @, 5 @, implies £(.) — &(x,). The
totality of the y-linear functionals will be denoted by &,. An operation &
from a two-norm space into another will be called y-y-continuous if it
transforms y-convergent sequences into y-convergent sequences; & is
called a y-isomorphism between X and Y if it is a distributive one-to-one
operation from X onto ¥, y-continuous together with the inverse
operation. The distributive functionals on X will be denoted by &,7,¢;
CE,II> and (E%||*> will denote the spaces conjugate to (X, | [>
and (X, | |[*>, respectively. Thus

1§l = sup{é(@): weX, || < 1},
1" = stp{&(2): weX, [ll* < 1}.
We shall write
8 ={o:2eX,|lp| <1}, 8 ={x:2eX, o <1},
Z={E:EE EI <1}, ¥ ={&:seE g < 1)
Evidently SC 8%, E*CE,C &, Z*C %

A subset 2 of Z is called norming for (X, | |> if there is a constant
+ > 0 such that the functional

llwll, = sup{|&(x)|: éeRArZ}

i8 a norm equivalent to |[. A subset ©Q of & is called strictly norming
if each set A C X satisfying sup{|£(@)|: wed) < oo for every £¢0Q is
necessarily bounded with respect to the norm || ||. Every linear strictly
norming set is norming; every linear, closed and norming set is strictly
norming ([1], p.109).

A two-norm space <X, |||, | *> is called normal if lim lp— @o|* = 0

N—>00
implies [l < Lm |j,|.
M—00 .

1. Quasi-normal two-norm spaces. The following proposition justi-

fies the definition to be set below:

1.1. PrOPOSITION. Let K be a pogitive constant; the following state-
ments are equivalent:
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1° [lwn—wol* — 0 implies |z, < K lim |jz, ],

1
2° there exists @ norm ||, such that ‘EHOSH < ol < |jef| and  such
that the space (X, | |ly, | Iy 4s normal,
1
3° sup{£(0): Ee57 ) > — a,

o - 1
4° sup{é(@): £eH,nZ) > f”m”’

5° Z*~X is dense in % X for the topology o(Z, X),

6° for every moe X and &> 0 there ewists a constant M such that
w2l > looll =M e~ for any seX.

Proof. 1°=>2° Let us write

llzll, = sup {&(x): ézs*mz};

then obviously |l#f, < [l«|| (}). Let R denote the closure of the ball § in
the space <X, | |[*>; the set R is convex and, by condition 1°,it is contained
in the ball K-8 = {#: ||zl < K}. Given any element = 50 of X and
arbitrary & > 0, then the element y = (K- ¢)||lz| "'« does not belong
to R, whence, by a theorem of Bidelheit ([8], [8], p. 22), there exists
a functional £¢5* such that £(¢) <1 < &(y) for zeR. Thus ||§]| < 1,
since (k| <1 implies ze¢R. On the other hand, the inequality
1 < &(lml ™" (K + &)) implies

sup (£ (0): 5" ) = (E+e) |l

whenee |z, > K |ja]. _
It remains to prove that the space <X, |||l || 1> 1s. normal. Let
|l — @o|* = 0, lim|a,|l, < oo; then @, is y-convergent in the space

N300 . .

(X, %>, Given & > 0, there exists a functional £, in the unit ball Z;
of the space (£, | [, conjugate to <X, [|[|s>, such that [legh—e < & (@)
= £0(@n)— £o(@n— o) < lols[@all+ |€0(@m—20)l, and this implies |izo| —e
< lim ||, since &/, <1and &, is y-linear. The above inequality is trivial

00
if Yim ||wy[l; = oo.

>0

(1) The existence of a norm equivalent to || || and satisl‘y.ing thg equality below
was deduced by J. Dixmier ([6], p. 1064) from general considerations.
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2°=3°% In this case |,—a|"— 0 implies [, < lim [z,]l,. Re-
N300
writing the first part of the proof of the implication 1° = 29 with K = 1
and with || || replaced by | Jl,, we obtain
sup {£(2): B A2} > (148) Mol = K7 (142) 7 ],

where %) denotes the unit ball of the space conjugate to <X, | I, and
3° follows, since obviously X, C J.

3° 2 4°. Obvious.
4° = 5°. Follows by a theorem of Dixmier ([6], p. 1062).
5°= 6°. Let vyeX, ¢ > 0; by the definition of the topology o(Z&, X)
1
and by 5° for any &EE there exists funetional (e¢5*~ Y such that
[C(xzo)— &(@0)| << &'. Thus ¢ satisfies the inequalities
{(@) <=

{(m) = — M a||*

for every zeX,
for every zeX,
L) = E(2p)— &,

M Dbeing a constant. By a theorem of Mazur and Orlicz ([11], p. 147)
the inequality

?

§(20)— &' — M |l < e+ 2|
. . 1
must be satisfied for all z¢ X. Choosing £ and ¢’ so as E(wy) = ?Elfmon and
¢ = ¢/K we obtain condition 6°,
6° = 1°. Setting z = x,—x, into 6° we get

lloll < K [l ~+ K D |jat, — o[+ Ke

whenee 1° follows.

In the spaces satisfying condition 1° with K — 1 we recognize
normal two-norm spaces; hence, for K — 1, proposition 1.1 gives
a characterization of normal two-norm spaces. The spaces for which
there exists a constant K such that 1° is satisfied will be called guasi-
-normal. By Proposition 1.1, part 2°, all the properties of two-norm spaces,
invariant under equivalent norms [l possessed by normal two-norm

spaces, are possessed also by quasi-normal spaces. In particular we have .

THEOREM A. For gquasi-normal spaces the set &, 18 identical with the
closure (in the space (&, || |>) of the set 5*.
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THEOREM B. Let (X,| |, |l I*> be quast-normal. Then E, = B* if
and only if the norms ||| and | I* are equivalent.
Let us notice that Proposition 1.1 is also valid

except for part 6°
in the case when (X, ||I*> is a By-space in which

o = VL _#h 7
%4:11 an l“l_ [m]n

[ ] denoting homogeneous pseudonorms. Since in [2] the space <X, || |*>
was supposed to be a Bj-space, we infer that our Theorems A and B
are valid also in this case.

Now let <% || || I> and ¢E®, || [, | I*> be the first and the second
y-conjugate two-norm spaces of KX I, T (181, p. 278). The normed
spaces CE% || "> and (X%, |||> are always complete. The y-canonical
mapping of X into X® is defined by

92(€) = &(a)

(if & varies over the whole of &, this mapping is recognized to be the
canonical embedding of the space (X, || into its second conjugate
space <%, || |>). By the definition of the norm | |* in %), we have

x -9, where for £eE*

19" = sup{&(z): £e5*~ 2% = [l2|l*;

moreover,
9.1 = sup {§(@): £e5* ~ 2} < sup {&(2): (e85 X} = ||,

whence the y-canonical mapping of (X, ||, | I[*> into <%, ||, [ I*>
i3 y-y-continuous. It is a p-isomorphism if and only if |9, = aljz| fo_r
some a > 0. Hence

1.2, PROPOSITION. The y-canonical mapping s o y-isomorphism if
and only if the space (X, |||, || II*> is quasi-normal.

1.3. PROPOSITION. Let the space (X, || |> be complete; then <X, |||, || I">
is quasi-normal if and only if the y-canonical image %, of X is closed in
CAANH .

Proof. Necessity follows by 1.2, sufficiency by Banach’s inversion
theorem applied to the y-canonical mapping considered as an operation
from (X, ||[> onto <K, | [-

The space (X, ||, | I*> will be called y-reflemive if the y-canonical
mapping transforms X onto X" in a y-isomorphical fashion (2). Thus,

(*) This definition is more general than an analogous omne in [3], since in that
case the space <X, | |, |*> was assumed a priori to be normal.
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y-reflexivity implies completeness of the normed space (X, | |> and
quasi-normality of (X, ||, || II*>. The space (X, |||l, || |*> will be called
y-semireflexive if the y-canonical mapping transforms X onto X,

1.4. PROPOSITION. The following statements are equivalent:

1° the space (X, || |I, || "> is y-reflewive,

2° the space <X, || Il, || "> 4s quasi-normal and y-semireflewive,

3° the space (X, || |I> is complete and the space <X, ||, | I*> s
y-semireflexive, : :

4° the space <X, |||, || "> s quasi-normal and the ball S s condi-

tionally compact for the topology o(X, E,) (or for o(X, E*), which amounis
to the same).

Proof. The implications 1°=> 2°=> 3°=> 1° follow by the foregoing
argument. The equivalency 1° (2> 4° may be proved in the same way as
Theorem 3.2 of [3], since y-reflexivity implies quasi-normality, and the
set £, is in this case strictly norming.

Let us now give a (non-effective) example of a space <X, | |, s
y-semireflexive and not y-reflexive. Given an infinitely dimensional
reflexive Banach space (X, || [*>, let £, be a distributive discontinuous
functional on X. Let us introduce the norm |lz| = |jz|*+ |& ()|, and
let ws consider the spaces (X, ||, | I*> and <% 5|/ >. Any func-
tional y linear over (&%, || ||> is linear with respect to the finer norm || I,
whence, by reflexivity of (X, | {*>, v is of the form y(&) = £(x). Thus
<X, [Il, | I*Y is y-semireflexive. However, by 1.4, the space (X, IR
i8 not y-reflexive, the space (X, ||> not being complete. Let us
notice that, by a well-known theorem, every linear functional on
(X, |[1> is of the form ¢(x)+ afy(x) with {e&*; since £, is closed in
(E,[[I> and since £*C &,, two possibilities may occur: g, = E* or
E, = E. The second case must be excluded because it implies ([3],
P. 290) the normality of <X, ||, || |*> and, in turn, the y-reflexivity
of <X, |||, ]lII*>, by Proposition 1.4. This shows that the hypothesis
of quasi-normality cannot be omitted in Theorem B.

Next, we shall give an (effective) example of a non-quasi-normal
two-norm space. The construction will be based upon an idea of Mazur-
kiewicz [13]. Let X be the space ¢, of null-convergent sequences @ = {,)

with |z = sup |z,|. In the space 5, conjugate to X, let us consider the
r=13,...
funectionals
z @ By .
(@) = 511 + ?2 +. % + Wi gy s

where (i, k) — N (i, k) is a one-to-one mapping of the set of pairs of

.
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positive integers onto the set of positive integers. Then let us write

o 1
ol = 3 léua).
=1

One can easily show (as in the proof of Theorem 2.5 below) that the space
(XL 1S is not quasi-normal, for the linear span of the elements &
is a total but not a norming set (Mazurkiewicz [13]).

2. On the structure of the space £ and E,. In this section we
shall deal with the problem which are the possible spaces =* and 5,
the space <X, | ||> being given.

Given a total subset 2 of the ball X, the functional
lel* = sup {|w(@)|: weQ)

is easily seen to be a norm in X satisfying (n,). W. Orlicz and V. Ptak
([14], p. 63) introduce in this way coarser norms in (X, || ||>, restricting
themselves, however, to strongly compact subsets 2 of (&, | [).

Let us observe that all the possible norms may be obtained in such
a manner. Indeed

llall* = sup {|¢(@)]: L2},

Z*C X, and, evidently, X* is weakly closed in 5 (with respect to the
topology o=, X)), whence it is weakly compact. Let us denote by £
the weak closure of the smallest symmetric’ convex set containing . Then

sup {[w ()| : w2} = sup {0 (®): we}
and, since 2, is weakly closed, we get

2.1. PrROPOSITION. Hwery norm | |* in <X, | |) satisfying condition
(n,) %8 of the form

ll* = sup {w(®): we},

where Q s a total convew symmetric subset of X, closed with respect to the
topology o( &, X). Conversely, every functional of this form is a norm satis-
Tying (n,).

The structure of all possible spaces &
that of Q.

2.2. PrROPOSITION. Let Q and || ||* be as in Proposition 2.1. Then the

set 5* is equal to the smallest linear set L(Q) spanned upon 2, i.e.
00

E*={J nQ. Moreover, the unit ball Z* induced by |/|* ds identical
n=1

with Q.

*

may simply be deduced from
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Proof. The inclugion £ C 2* is obvious. Let Ce.‘,*; then

12 ()|
for every xeX. Suppose, if possible, that ¢ ¢Q.-The closedness of 2 for the
topology o(5, X) implies (see e. g. [5], p. 22) the existence of an wyeX
such that

< )" = sup{w(®@): we}

sup{m(m,): wel} < {(zy),

2, and this implies £* = Un!)

N=1

Now we shall be concerned with the study of the possible spaces E,,
the space (X, || ||> being fixed. First we shall be concerned with the norms
[l I* yielding a given space Z,. Simple examples show that several norms
which are non-equivalent (even on §) may exist leading to the same
class =, of y-linear functionals. Thus, the question arises whether or not
there exxsts a finest and a coarsest norm || ||* leading to a given set =,.
Both questlons will be answered in the negative: the first by 2.3 and the
second by 2

which is impossible. Thus 2* =

2.3. PROPOSITION. Let the space (X, ||, | |*> be quasi-normal and
let the morms || || and || |[* be mon-equivalent. Then there exists a norm || |},
essentially finer than || ||*, giving rise to the same set = , as || |I* and such
thai the comvergences y in the spaces (X, |||, || II*> and XL TIE are
equivalent.

Proof By Theorem B, the sets =, and £* ave different. Let
&eEN\EY |I& =1 and let us introduce a new coarser norm lloo| ¥
= %(]]m]l —Héo a:)[) Then the convergences y in (X, ||, | I*> and in
<X, [, 1> are identical. Since &, is contintous with regpect to || |}
but not with respect to || |*, the norms || |[* and [l If are not equivalent.

The negative answer to the second question will be obtained by
considering the following example.

Let ¢ denote the space of all convergent sequences z = {x,}, let
llef} = sup lz,|, and let || [|* be any coarser norm in <c, | [I>. We ghall denote

by e, the n-th unit veetor in ¢ and by %, the a-th functional on ¢, biortho-
gonal to {e,}. The space (&, | ||> conjugate to e, 1> is eqmvalent to the
space I* ([4], p. 66), and %, is the n-th unit vector in Ii.
Let A denote the set of all functionals on (c, lII> of the form
Zanwn with Z ay| < oa.

Re==]

2.4. PROPOSITION. There emists mo coarsesi norm I
<e, |1) such that 5, = A.

m the space
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Proof. At first, let us remark that if, for a coarser norm | |*, the
set &, is equal to A, then (e, |||, || |*> is normal (by 1.1). Let || {{* be
such a norm; we shall prove the existence of a norm || |[** in ¢ such that
lef** < llo|l* for all @, yielding the set 4 as the corresponding space 5,
and essentially coarser than | |, By Theorem A, the set 5* is dense in A

with respect to the norm ||| = Zl%l Thus, for every =, m, there exists

a funetional {,, such that ||Cnm|| < 1 and ||{pm— 7l < 1/m. Every linear

functional on (¢, || [|> is of the form ([4], p. 66)

£(w) = alima, + 25 €)%,

r=1

a = a(&) being independent of x, and ||&|| = lal—kglf(e,)l. Hence

1
{ Cnm)l"l"z |Cnm e, [ <=

1
- nn(en)l < -,’7': and =, m

‘ Cum (e’n)

Obviously the set {{ym:n,m =1,2,...} is total. Let us choose

positive numbers @, so that

oo o0 0?’
Noa,<1,  Yalil <1 and D el <1
=1 py=1 por=1

Then |jz|** = § @ |0, (@)] is & norm in ¢ (since {{y,) is total), and
=1

co

el < ) o lGull* ol < llal* < el

By=1

We shall prove that the norm || [** is essentially coarser than | [|*.
Indeed, let 2, = é,/|len||". Then llza]* = 1 and, on the other hand,

lewl** 2 2 Gy |, ()]

m—1 m—1 m—1 oo

I= Y+ 2+

_2 = Li+I,+1,

DM

p=1 »=1 n=1 r=1 p=1 vam H=m y=1
and
m~—1 o m e '
! *
=3 Yol < Y Yol >0 as m oo,
u=1 »=1 p=1 p=m
ol oo © ©
*
I = Z 2 o | Z Z a,lltLl" =0 as m— oo,
w=m y=1 s |
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uniformly with respect to n. Since 1 = (£, = 3 |{.(e.)| for every u
Ne==1
and v, we have lim{,(e,) = 0, whence I, -0 as n - co. We have
N—rc0

thus proved that [lz,|™ — 0.

It remains to prove that the set of all y-linear functionals on
ey |y I "™y is identical with A. Sinee ||[** is coarser than | |* the
space 5™ conjugate to (c, || [**> is contained in 4. On the other hand,
the functionals {,, belong to A, their strong limits 7, belong to g,
(by Theorem A); whence =, = A.

We shall now give a sufficient condition for a subset of & to be
a possible space Z,.

2.5. THEOREM. Let Y be a linear, closed, norming and separable subset
of <&, I>. Then there exists a coarser norm I* in X such that the space
L W s normal, y-precompact (%) and such that g, =T

Proof. Let &, &, ... be a sequence strongly dense in Y~ and
let us write

1 {6u(@)]

* 1 ¥

I = — = .
Il = ) g leatals ot 2 ¥ 5@

The space (X, || |/} is of Bj-type. The y-convergences in (X, | ||, || |[*>
and in <X, |||l, || |}> coincide, whence £, is the same for both spaces.
Evidently 5,37, whence, by 1.1, the spaces (X, |||, |[I*> and
<X, 0, 1 7> are quasi-normal. By a theorem of Mazur and Orlicz ([12],
D- 139), the space & conjugate to (X, || [I*> is identical with the smallest
linear set spanned upon the functionals £,, &4y ..., Whence, by Theorem A,

&, = Y. The usual diagonal method shows that XL I is y-pre-
compact.

2.6. PrROPOSITION. Let (X, | ||> be separable, and let (5, || [[> be non-
-separable. Then there ewist uncountably many coarser norms | |¥ such

that <X, |||, || > are normal for all v and such that the spaces E, are
different for different 7.

Proof. Let @, z,,... be a sequence dense in § with respect to | ||,
and let {y, s, ... be functionals linear on (X y 111> satistying &, (@,) = ||o,||

a.nd lCal =1 for n =1,2,... Obviously, the smallest strongly closed
linear set Y spanned upon £, ¢, ... satisfies the assumptions of Theo-

N () <X, 111 is called y-precompact it every bounded set in (X, it> is con-
ditionally compact with respect to the metric g(z,y) = |lo— y|*. This theorem is
closely related to a theorem of Orlicz and Ptik ([14], p. 64).
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rem 2.5 and the family of all separable over-sets of Y, inducing various
starred norms in (X, || |> following Theorem 2.5, is, by non-separabil-
ity of (&, || >, uncountable.

The next example shows that, as regards a normal two-norm space,
in some cases there may exist exactly one non-trivial space &,, and that

-

the space &, may have deficiency 1.

2.7. TuporEM. Let || |* be a coarser norm in {c, || [[>. Then (e, |1, | 1™
is normal if and only if the set E, cowlains all the functionals u,; thus all
the possible spaces E, for mormal (¢, || ||, | |*> are either 5, = A or B, = 5.

Tor every n there exists a coarser norm || |5 in ¢ such that the correspond-
ing space 5, has deficiency n (in the case m > 1, of course, the space
ey 1N, NI is mot mormal but only quasi-normal). Moreover, the're' ea.ms‘ts
a coarser norm || | in ¢ such that the corresponding space 5, has infinite
deficiency.

Proof. We prove first that #,eZ, if e, |i |, |l II> is normal,
n=1,2,... By Proposition 1.1, £*~X is dense in X for the t'opology
o(&, X), whence, for every &> 0 and k, there exists a functional

L(@) = by lim 2+ ) butn

=1

belonging to &*~Z and such that [1—byl = |mw(ee)— (el < &/2.

Sinee 1 > ||Z|| = Wb;c\+§c\byly we get

£
Dbl <1— bl < 1—bil <
vtk

Hence, for any weS, .
I (@) — £ (@) = i(l—bk)mk—;k b3, < |1 — by - ] + [lc] %ﬁ Ib,| < &3

it follows that ||l7z— &|| < & The number ¢ > 0 being arbitrary, n; belongs
to the closure of Z* in (&, | D, i.e. t0o Z,. .
The proof of the second part will be preceded by the ff)]lowmg
considerations. Let <X, | II, |l I*> and <X, |, |.1 |*» be two quasi-normal
spaces. Their Cartesian product Z = XX ¥, ‘Wlth .the norms |2f = ||90|H'
Lyl and el = ||l=[*+llyl* for 2 = (#, y), is easily seen to be a quasi-
-normal two-norm space (¢). One may easily prove that the general form

(4) If tho initial spaces are normal, their product, althoug}? qua.s‘i-nurm_a,l, does
not need to be normal. On the other hand, if the ﬁpet imrm in Z is defined by
llell = max (e, lyl) and if <X, LI { %> and <X, 1L LI are normal, theli, f(:]r
any starred norm || i* such that [i2nlf* = 0 is equivalent to |@al* — 0 with llymll* — 0,

the space <Z, [|ll, || |*> is also normal.
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of y-linear functionals on (Z, ||, || II*> is
{(2) = &@)+ ),

where ¢ is a y-linear functional on (X, |||, | |*) and # is a »-linear fune-
tional on (¥, |, IHI)-

Let n be finite. Then the space ¢ is isomorphic to its n-tuple Carte-
sian product (see [4], p. 182). Thus, by the foregoing argument, there
is a coarser norm ||} in ¢ such that the corresponding space &, is of
deficiency n.

Now let us pass to the case n =8,. Let E be the set of the ordinals
< o°, with the order topology. The space ¢ (E) of real continuous functions
on E is a Banach space with the norm ||z = sup {|=(t)|: tell} and any
linear functional on C(F) is of the form

el = 3 la,| < ov.

E(x) = E a,x(p) and

p<o? &

Next, let H, be the set of the isolated points of E (i.e. the set of

non-limit ordinals), let ¢,, ¢5, ... be any arrangement of all elements of B,
into a sequence, and let

1
E E’n—L [‘I“(tm)‘ .

m=1

el =

It is obvious that (C(B), |, | I*> is a normal two-norm space, and
every y-linear functional on (C(E), || |I, | [*> is of the form

&) = 2 o T (b)) with Z [an| < oo,

m=1 m=1

Thus, in this case 5, is of infinite deficiency in 5. It is known that the
space (C{H), || |I> is isomorphic to the space ¢; this isomorphism induces
in ¢ a norm || |If, (corresponding to the norm | |* defined above). Ob-
viously || [|% is the required one.

For the space ¢, of null-convergent sequences we obtain by the
preceding considerations:

2.8. PROPOSITION. Let || |[* be a coarser norm in oy Il 1> such tha
oy M, 1II*> is normal. Then 5, = 5.

The following propositions give further information about the
possible spaces Z,.

2.9. ]:)l?OPOSITION. Suppose (X, ||, | I[*> to be quasi-normal and
let the deficiency of E, be finite and greater than m—1; then there exist at
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least m-1 coarser norms || [ | I3, ..., || I in (X, Iy leading to different
classes E,, 50, ..., B of y-linear functionals.

Proof. Let neZ\ Z, and let [y = 1. Then the norm
ol = max (Jell*, 7 (x)])

is finer than | |[* and coarser than | l, and the space <X, |||, I is
quasi-normal. Let & be any y-linear functional on (X, ||, || |i>. Then,
by Theorem A, there exist linear functionals &, on (X, || |}> such that
|6—&nll 0. We may write &,(x)= {,(z)-+ A,n(x), where {, are linear
funetionals on <X, || |*>. If 4, # 0, then the closedness of £, in 5 implies

Iéul = 1Zn+ Aamll = |4l 142 Cat7ll = 2nlint {llg— 1z e &)} = 1] -,
whence sup |4, < 07" sup ||&,]]| < oo, for ||£,] — [|£]. Thus there exists

n=12,... =12

a subsequence Aw, = Ao such that .

eee

an = E'nk_j-nk’? - E”"{Oﬂ = ZD
and ,¢Z,, which means that the space 5{’ of all y-linear functionals
on (X, |l | If> is identical with the smallest linear set spanned upon
Z, and .
In this way we may construct starred norms

llelly < llolly < .. < el < ]

such that ZMC EP C...C 8™ and 5 5+ 5+, ,

2.10. TuroreEM. Let (X, || ||} be a weakly complete (°) Banach space.
Then, for any coarser norm | |, either E, = 5 or the quotient space E|E,
18 non-separable.

In particular, if <X, || |> is weakly complete and if =, has finite de-
ficiency in 5, then 5, = &.

Proof. Let us assume Z/Z, to be separable. Z/Z, consists of the
cosets with respect to the relation;

51 ~ '59. if
The norm of the coset £ corresponding to a functional £ is defined by
I8l = inf {||+nll: neZ, ).

The coset corresponding to 0 is identical with £,. Let £, be a se-
quence of linear functionals on (X, | |[> such that the corresponding
cosets & = &,+ 5, & = &+ 5,,... are dense in (&[5, || |>. Let x,

£ — 52551,.

(®) i. e. sequentially weakly complete.
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be a sequence y- convergent to 0, and let z, = oy, be an arbltra,ry sub-
sequence. The sequence @, contamg a subsequence &y = m, such that

every sequence &(a,) is convergent (k=1,2,...). Since 5o,
£(xy) — 0 for every (e&,. It is easily seen that the set I'of all funetionals
of the form ¢+ &, with <&, and & = 1, 2, ... is strongly dense in <H, .
Since the sequence 7 (2, ) 1s convergent for every neF and sup |a;, || < 0o,
by the Banach-Steinhaus theorem, the sequence x, is weakly funda-
mental. (X, ||||> being weakly complete, there exists an element x, such
that £(w@, —2,) = 0 for every £e5. Since &, iz total and {(w,) = 0 for
all (e&,, #, must be equal to 0.

Thus, we have proved that z, tends weakly to 0;x, being an arbitrary
subsequence of zy,, #, tends weakly to 0, and, by Proposition 6.2 of [3],
we obtain Z, = &.

2.11. ProrosITION. Let (X, | ||> be a Banach space such that the
canonical image %X, of X in the biconjugate space is of f@mte ) deficiency k
in X. Then, for any coarser norm || |* in (X, |||>, either 5, is of deficiency

not greater thawn k in 5, or E, = 5.

Proof. Let us suppose that | ||* is a coarser norm in (X, | ||> such
that the space &, is of deficiency greater than %k in 5. Since =, is closed
in (&, ||l>, this impkies the existence of a closed subspace I' C & of
deficieney p = k-+1 with &, CTI. Thus every linear functional £e¢Z
may be uniquely represented as &(x)= n(®)+ a li(@)+. ..+ apl,(2),
where nel” and ¢, ..., £, are fixed. Let us write 3,(&) =a, (» = 1,2, ...

p); 3 are obviously linear functionals on (&, | |> and they are
linearly independent. No functional p, 0 is equal to a linear combination
Bidrt. .-+ Bpdp Of 31, ..., §p, since if it were so, we ghould have 3,.(n) = 0
and consequently v,(n) = n(x) =0 for nel, which implies # =0, I
being total. This means that the deficiency of %, in % is greater than %,
contrarily to our hypothesis.

3. A characterization of reflexivity of Banach spaces. In this
seetion (X, || |[> will stand for a Banach space; {5, >, <X, >, %
8, 9., %, ete. will preserve their previous meaning.

3.1, LeMMA. Let 3¢X be a linear functional on (E,| ||> not belonging
to the canonical image X, of X. Then the set
={&: £<8,3(8) = 0]
is strictly morming for the space (X, | > (%)
(*) The existence of such spaces has been proved by R.C. Fames [10].

(") This lemma may be deduced from a general result of J. Dixmier ([6], p. 1064).
We give here an elementary and effective proof.
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Proof. We may suppose freely that |3 = 1. Q being linear and
closed  in (&, | ||>, it is sufficient to prove that Q is norming. Let
0 = inf{llz—y||: z<X}; then 0 < § < 1. We shall prove that, for every
x,¢X, there exists a functional [eQ ~2 such that {(z,) = 14|z,l, or,
which amounts to the same, that a funetional f¢Z exists such that

Il <1, 3(0) =0, 9.(f) =46, where =z, =2"|lwl, Izl =1 = IIv.l-

By a theorem of Helly (see [9], [11], p. 171, [5], p. 38), such a funec-
tional exists if the inequality

141304250 < (1—£) 149+ 23l

is satigfied for every pair 1,, A, of real numbers and for an ¢ > 0. For
2, = 0 this inequality is obvious; if 1, 7 0, then setting t = A{'4, and
& = % we obtain the inequality 6 < 2|lp,+ t3ll, which will be proved now.
If t| > 4, we have

2[0.+ 13l = 218l [t7'9s+3ll > 2186 >

if 2| < 4, then 2, -+l > 2(llgali— 2l 3ll) = 2(1—3) = 9.
Now, let X, be a closed subspace of (X, || |[> and let || |l be a norm in
X, satisfying |zll; < |jz] for zeX,; let us write -

85 = {z: 2eX,, Jaly <1}, 8" = conv(8w85),
and let |jz|* be the Minkowski functional of §" in X.

3.2. LeMMA. Under the above notation

(a) the functional | |* is a norm satisfying |zi* < ||z|| for <X and

lell* = llally for @ eXo, 3
(b) every linear functional on (X, | 5> may be extended onto X with
the preservation of both norms: relative to (X, || I*> and relative to {X,, | |I>,
(¢) the space <X, || ||, | I*} is quasi-normal if and only if <Ko, |l ;115>
8 so (®).

Proof. Since § and §f are convex, §* is identical with the set of all
elements of form z = s+ (1—1)s, with sef, s,e8;, 0 <1 <1. We shall
prove first that S8*~X, = S8;. The inclusion 8;C S*nXo being
obvious, let us assume that 2e8* ~X,, whence z = ts+ (1—1)s,, seS,
S0e8%, 0 <t< 1. If t =0, then ze8y; if £ 5 0, then s =7 [z—(1—1)s,]
belongs to X,, whence seX,~ S C 8%, which implies zeS;.

The identity §*~X, = 8; Jmphes llell* = jlzjly for xeX,. The
inclusion 8 C 8* implies |jz]* < [lz]| in X.

(%) One can easily verify that the extension of norm || ii¥ by this method coin-
cides with that given by A. Sobezyk [15].

Studia Mathematica XIX, . 9
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We shall prove now that || |* is a norm. Suppose that [j2* = 0.

Then nze8* for =n =1,2,..., whence nz = 9,2,+1—3,)y, with
e, YpeSy, 0 <9, <1, which implies
. 1—49, 3, 1
inf {|le— ull: ueX,) < |le— =90 || _ O gl < —.
; n n n

It follows that zeX,; since X, is closed in (X, | |>. Therefore ||k
= |l¢|* = 0, which gives z = 0.

To prove (b) let ¢ be any linear functional on (X,, || [i>. We shall
prove that its Hahn-Banach extension ¢ (preserving the norm |||, =
= sup{{(z):xeX, OAS}) satisfies the desired conditions. It is to be proved
that the norm | [* defined by [|* = sup{{(2): ol <1, xeX,} does
not increase as well. Indeed, if z¢8*, then ¢ = ts+(1—1)s,, seS,
soe8g, 0 <t <1, whenee, by ||| = [1£l < Il

E(2) = 1L (s)+ (A=) (s0) < sl -+ (L= ) 12" hsoll* << f121*.

Let 55 be the space conjugate to (X,, | [¥>, let £* be the space
conjugate to (X, || [*>. To prove (c) it is sufficient to show that the set
E* i3 norming for (X, || |[*) if &} is norming for ¢(X,, || [*>. Thus, let us
assume that there exists an 4 > 0 such that

Sup{i(@):teErnZ) = Alw| for zeX,.

By Proposition 1.1, it is sufficient to prove that there is a congtant K
such that [z, || < 1, @, — 24" — 0 implies [l,|| < K. Since |2,]* < || < 1,
we infer that [|* <1, ie. that x,eS8*, whence @, = 1s +(L—1)s,,
88, 8pe85, 0 <t <1 Let feSf~X be such that ¢(s,) = Aliso|l, and
l_et { be the extension of ¢ as in (b). Then [f(z,)| < 1, since feX, and
{(2n) = C(wq), since CeZ*, whence [€(zo)] < 1. On the other hand,

12 {(m) = t€(s)+ (1—1)L(s,) and |E(s)] <1, for ZeX, seS8. Thus
(L= 1) As] < (1—1)(s0) < 14 1[E(8)] < 2, and
2 F
el < s+ (1=} < sl (1=l < b4 5 < T4 - =

3.3. THROREM. A Banach space (X, || |> is reflemive if and only if,
for every morm || |* coarser than |||, the space E* comjugate to (X, 1
is dense in (E, || |>.

Proof. Necessity is stated in Theorem 3.7 of [3]. Let X, > be
any non-reflexive Banach space. To prove the sufficiency we shall show
that there exists a norm || |[*in (X, || |> coarser than [/l and such that the

space &* is not dense in (&, |||> and is norming for (X, || .
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From the non-reflexivity of <X, | |> it follows, as a consequence
of a theorem of Eberlein ([7], [5], p.56), that there exists a closed,
separable, non-reflexive subspace X, of X. Let =, denote the conjugate
space of (X, | >, and let x,, x,,... be a sequence dense in {(X,, | [[>.
By assumption, there exists a linear functional § on (5, || ||> which does
not belong to the canonical image of <(X,, |||> in its second conjugate
space. By Propogition 3.1, the set

Q = {£:&eh,, 3(£) = 0}

is norming for (X,, || ||>. Hence there exist functionals {,e2 (n =1, 2,...)
and a constant K > 0 such that

lEall =1, [Cn(zn)| = K”"vn”

Let Y denote the smallest linear and strongly closed subset of 5,
spanned upon the functionals (,, {,,... Evidently, Y is norming. By
Theorem 2.5, there exists in X, a norm || ||; coarser than | ||, such that
the space (X, || I, || 5> is quasi-normal and such that the closure of the
space S, conjugate to (X,, | |l;> is identical with Y.

We take into account the extension || |[* of the norm || |y, aceording
to Lemma 3.2, The norm || |* is coarser than | ||, and |jo|* = |jz|; for
zeX,. Let 1 be any fixed funetional belonging to £,\ 2 and let '17 be its
Hahn-Banach extengion on (X, || ||>. Then, for every £<5* the restrieted
functional &|X, belongs to Z; and Z; C Y C £, whence

(n=1,2,..).

6=l = sup {£(z)—q(2): ze8} = sup|{&(2)—n(z): el ~ X}
> int (¢ —nll: £eQ) = 6 > 0,
which means that # does not belong to the closure of £* in (&, | ||>.

3.4. Remark. If (X, | ||> i a non-reflexive Banach space, then there
exists a coarser norm || |[* in X such that the space (X, | |, || "> is quasi-
-normal and Z, # Z.

This immediately follows by condition (c) of Lemma 3.2. Let us notice
that the statement that <X, | ||, || II*> 48 quasi-normal cannot be replaced
by the statement that (X, |||, |||*> 4 mormal, in virtue of Proposi-
tion 2.8.
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Charakterisierung von Fourierkoeffizienten mit einem
Summierbarkeitsfaktorentheorem wund Multiplikatoren

von

G. GOES (Ludwigsburg)

1. Einleitung (). Die Absicht dieser Note ist es zu zeigen, wie der
bekannte Satz von Schur-Bosanquet iiber Summierbarkeitsfaktoren mit
einem Schlag verschiedene bekannte und neue Kriterien fiir Fourierkoeffi-
zienten liefert, wenn man die in den Arbeiten [13] und [14] eingefiihrte
Theorie komplementérer Fourierkoeffizientenriume heranzieht. Ab-
schnitt 2 enthélt einige Raumdefinitionen, Abschnitt 3 enthilt Aussagen
iiber Fourierkoeffizienten, welche das bekannte Kriterium von Kolmo-
goroff [26] und seine Verallgemeinerungen durch Moore [30], [31] und
Cesari [7] enthalten. Abschnitt 4 enthélt neue Aussagen tber Multipli-
katoren, welche teilweise auch mit dem Satz von Schur-Bosanquet be-
wiesen werden und Verallgemeinerungen bekannter Aussagen. Abschnitt 5
enthilt erginzende Bemerkungen und auch erginzende Literaturhinweise
zu den Arbeiten [11], [13] und [14]. .

2. Definitionen. Wir verwenden die in den Arbeiten [13] und [14]
eingefiihrten Symbole und Vereinbarungen und verweisen auf die dortigen
ausfiihrlichen Raumdefinitionen fir E = L, (1 <p < o), Ly, 0, V, 4,
die zugeordneten komplementiren Réume E* und die zugeordneten
Stieltjes-Rdume dF. Die in [13] und [14] mit (0,—E)* bezeichneten
C,-komplementdren Réume bezeichnen wir hier — wie in [16] —
kiirzer durch das Symbol E™. Neu hinzu kommen die folgenden
Réume:

1) Ist ECP, (P, = Menge der trigonometrischen Reihen) und F
ein BK-Raum, 80 ist iy (0 < k < oo) die Untermenge von F in der das
trigonometrische Orthogonalsystem eine C;-Basis bildet, d.h. es ist
genau dann

F=(a,0) = D (aconjt+bysingtye By (0 <k < o),
j=1

(1) Der Verfasser dankt der Deutschen Forschungsgemeinsehaft fir ihre

finanzielle Unterstitzong bei der Abfassung der vorliegenden Note.
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