

Some properties of two-norm spaces and a characterization of reflexivity of Banach spaces

· by

A. ALEXIEWICZ and Z. SEMADENI (Poznań)

In this paper we continue the investigations of [2] and [3]. The contents are divided into three sections. In the first we introduce the notion of quasi-normal two-norm spaces generalizing the concept of normal two-norm spaces. We show that all the main properties of normal two-norm spaces are preserved in this case. Introducing the notion of γ -semireflexivity we show that a two-norm space is γ -reflexive if and only if it is γ -semireflexive and quasi-normal.

In the second section we study the structure of the spaces \mathcal{Z}^* and \mathcal{Z}_{ν} . Since W. Orlicz and V. Pták ([14], p. 57) have proved that the space Ξ_{ν} is always closed in the space $\langle \mathcal{Z}, || || \rangle$ conjugate to $\langle X, || || \rangle$ but not every strongly closed subspace of \mathcal{E} is a possible space \mathcal{E}_{ν} , it seems worth while to study the structure of Ξ_{ν} . We consider the space $\langle X, || || \rangle$, whence also $\langle \mathcal{Z}, || || \rangle$, as fixed, and we show at first that, in general, there is no finest or coarsest starred norm $\|\cdot\|^*$ giving a fixed space Ξ_{ν} . Next, we give a characterization of starred norms $\| \|^*$ and of the possible spaces \mathcal{Z}^* ; however, we have not succeeded in giving such a characterization of its closures Ξ_{ν} , so we content ourselves with giving some sufficient conditions for a subspace of Ξ to be a possible space Ξ_{ν} , and with studying some examples of the possible situation of Ξ_r in Ξ . It may happen for normal two-norm spaces that only one space Ξ_{ν} exists (it is always so if the space $\langle X, || || \rangle$ is reflexive); it may happen that exactly two possible spaces \mathcal{Z}_{ν} exist. There may also exist spaces \mathcal{Z}_{ν} of finite deficiency in Ξ ; on the other hand, if $\langle X, || || \rangle$ is weakly complete, then the possible spaces \mathcal{Z}_{ν} have either infinite or null deficiency.

In the third section we apply the results obtained to give a characterization of reflexivity: a Banach space $\langle X, \| \| \rangle$ is reflexive if and only if, for every norm $\| \|^*$ coarser than $\| \|$, the space \mathcal{E}^* conjugate to $\langle X, \| \|^* \rangle$ is strongly dense in the space $\langle \mathcal{E}, \| \| \rangle$ conjugate to $\langle X, \| \| \rangle$.

Throughout this paper we adopt the terminology of [3]. In particular, the following notations and notions will be used without further reference.

Given a two-norm space $\langle X, || ||, || ||^* \rangle$, we shall always suppose the following condition to be satisfied:

$$||x||^* \leqslant ||x|| \quad \text{for} \quad x \in X.$$

A sequence $\{x_n\}$ is called γ -convergent to x_0 (written $x_n \overset{\gamma}{\to} x_0$) if $\|x_n - x_0\|^* \to 0$ together with $\sup_{n=1,2,\dots} \|x_n\| < \infty$. A functional ξ is called

 γ -linear if it is distributive and if $x_n \stackrel{\gamma}{\to} x_0$ implies $\xi(x_n) \to \xi(x_0)$. The totality of the γ -linear functionals will be denoted by \mathcal{Z}_{γ} . An operation Φ from a two-norm space into another will be called γ - γ -continuous if it transforms γ -convergent sequences into γ -convergent sequences; Φ is called a γ -isomorphism between X and Y if it is a distributive one-to-one operation from X onto Y, γ -continuous together with the inverse operation. The distributive functionals on X will be denoted by ξ , η , ζ ; $\langle \mathcal{Z}, \| \parallel \rangle$ and $\langle \mathcal{Z}^*, \| \parallel^* \rangle$ will denote the spaces conjugate to $\langle X, \| \parallel \rangle$ and $\langle X, \| \parallel^* \rangle$, respectively. Thus

$$\|\xi\| = \sup\{\xi(x) : x \in X, \|x\| \le 1\},$$

 $\|\xi\|^* = \sup\{\xi(x) : x \in X, \|x\|^* \le 1\}.$

We shall write

$$S = \{x : x \in X, ||x|| \le 1\}, \qquad S^* = \{x : x \in X, ||x||^* \le 1\},$$
$$\Sigma = \{\xi : \xi \in \Xi, ||\xi|| \le 1\}, \qquad \Sigma^* = \{\xi : \xi \in \Xi^*, ||\xi||^* \le 1\}.$$

Evidently $S \subset S^*$, $\Xi^* \subset \Xi$, $\subset \Xi$, $\Sigma^* \subset \Sigma$.

A subset Ω of Ξ is called *norming for* $\langle X, \parallel \parallel \rangle$ if there is a constant r>0 such that the functional

$$||x||_1 = \sup\{|\xi(x)| : \xi \in \Omega \cap r\Sigma\}$$

is a norm equivalent to $\|\cdot\|$. A subset Ω of Ξ is called *strictly norming* if each set $A \subset X$ satisfying $\sup\{|\xi(x)|: x \in A\} < \infty$ for every $\xi \in \Omega$ is necessarily bounded with respect to the norm $\|\cdot\|$. Every linear strictly norming set is norming; every linear, closed and norming set is strictly norming ([1], p. 109).

A two-norm space $\langle X, \parallel \parallel, \parallel \parallel^* \rangle$ is called normal if $\lim_{n \to \infty} \|x_n - x_0\|^* = 0$ implies $\|x_0\| \leqslant \lim_{n \to \infty} \|x_n\|$.

- 1. Quasi-normal two-norm spaces. The following proposition justifies the definition to be set below:
- 1.1. PROPOSITION. Let K be a positive constant; the following statements are equivalent:

 $1^{o} \ \left\| x_{n} - x_{0} \right\|^{*} \rightarrow 0 \ \ implies \ \left\| x_{0} \right\| \leqslant K \underbrace{\lim}_{\longrightarrow} \left\| x_{n} \right\|,$

2° there exists a norm $\|\cdot\|_1$ such that $\frac{1}{K} \|x\| \leq \|x\|_1 \leq \|x\|$ and such that the space $\langle X, \|\cdot\|_1, \|\cdot\|^* \rangle$ is normal,

$$3^{\circ} \sup \{\xi(x) : \xi \in \Xi^* \cap \Sigma\} \geqslant \frac{1}{K} ||x||,$$

$$4^{\mathrm{o}} \sup\{\xi(x)\colon \xi\,\epsilon\, \varXi_{\gamma}\!\smallfrown\! \varSigma\}\geqslant rac{1}{K}\, \|x\|\,,$$

$$5^{\circ}$$
 $\mathcal{Z}^* \cap \Sigma$ is dense in $\frac{1}{K} \Sigma$ for the topology $\sigma(\mathcal{Z}, X)$,

 $6^{o} \ \textit{for every} \ x_{0} \in X \ \textit{and} \ \varepsilon > 0 \ \textit{there exists a constant} \ \textit{M} \ \textit{such that} \\ \|x_{0} + z\| \geqslant \frac{1}{K} \|x_{0}\| - M \|z\|^{*} - \varepsilon \ \textit{for any} \ z \in X.$

Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Let us write

$$||x||_1 = \sup \{\xi(x) \colon \xi \in \Xi^* \cap \Sigma\};$$

then obviously $||x||_1 \leq ||x||$ (1). Let R denote the closure of the ball S in the space $\langle X, || ||^* \rangle$; the set R is convex and, by condition 1°, it is contained in the ball $K \cdot S = \{x : ||x|| \leq K\}$. Given any element $x \neq 0$ of X and arbitrary $\varepsilon > 0$, then the element $y = (K + \varepsilon) ||x||^{-1} x$ does not belong to R, whence, by a theorem of Eidelheit ([8], [5], p. 22), there exists a functional $\xi \in \mathcal{Z}^*$ such that $\xi(z) \leq 1 \leq \xi(y)$ for $z \in R$. Thus $||\xi|| \leq 1$, since $||z|| \leq 1$ implies $z \in R$. On the other hand, the inequality $1 \leq \xi(||x||^{-1}(K + \varepsilon)x)$ implies

$$\sup \{\xi(x) \colon \xi \in \Xi^* \cap \Sigma\} \geqslant (K + \varepsilon)^{-1} ||x||,$$

whence $||x||_1 \geqslant K^{-1}||x||$.

It remains to prove that the space $\langle X, \| \|_1, \| \| \rangle$ is normal. Let $\|x_n - x_0\|^* \to 0$, $\lim_{n \to \infty} \|x_n\|_1 < \infty$; then x_n is γ -convergent in the space $\langle X, \| \|, \| \|^* \rangle$. Given $\varepsilon > 0$, there exists a functional ξ_0 in the unit ball Σ_1

of the space $\langle \mathcal{Z}, || ||_1 \rangle$ conjugate to $\langle \mathcal{X}, || ||_1 \rangle$, such that $||x_0||_1 - \varepsilon \leqslant \xi_0(x_0)$ $= \xi_0(x_0) - \xi_0(x_0 - x_0) \leqslant ||\xi_0||_1 ||x_n||_1 + |\xi_0(x_0 - x_0)|$, and this implies $||x_0|| - \varepsilon \leqslant \lim_{n \to \infty} ||x_n||_1$, since $||\xi_0||_1 \leqslant 1$ and $|\xi_0||_1 \leqslant 1$ and $|\xi_0||_1 \leqslant 1$. The above inequality is trivial $||x_0|| - \varepsilon \leqslant \lim_{n \to \infty} ||x_0||_1 \leqslant 1$.

if $\underline{\lim} \|x_n\|_1 = \infty$.

 $n \rightarrow \infty$

⁽¹⁾ The existence of a norm equivalent to || || and satisfying the equality below was deduced by J. Dixmier ([6], p. 1064) from general considerations.

 $2^{\circ} \Rightarrow 3^{\circ}$. In this case $\|x_n - x_0\|^* \to 0$ implies $\|x_0\|_1 \leqslant \lim_{n \to \infty} \|x_n\|_1$. Rewriting the first part of the proof of the implication $1^{\circ} \Rightarrow 2^{\circ}$ with K = 1 and with $\|\cdot\|_1$ replaced by $\|\cdot\|_1$, we obtain

$$\sup \left\{ \xi(x) \colon \xi \in \Xi^* \cap \Sigma_1 \right\} \geqslant (1+\varepsilon)^{-1} \|x\|_1 \geqslant K^{-1} (1+\varepsilon)^{-1} \|x\|_1,$$

where Σ_1 denotes the unit ball of the space conjugate to $\langle X, \| \|_1 \rangle$, and 3° follows, since obviously $\Sigma_1 \subset \Sigma$.

 $3^{\circ} \Rightarrow 4^{\circ}$. Obvious.

 $4^{\circ} \Rightarrow 5^{\circ}$. Follows by a theorem of Dixmier ([6], p. 1062).

 $5^{\circ} \Rightarrow 6^{\circ}$. Let $x_0 \in X$, $\varepsilon' > 0$; by the definition of the topology $\sigma(\mathcal{Z}, X)$

and by 5°, for any $\xi \in \frac{1}{K} \Sigma$ there exists functional $\zeta \in \Xi^* \cap \Sigma$ such that $|\zeta(x_0) - \xi(x_0)| < \varepsilon'$. Thus ζ satisfies the inequalities

$$\begin{split} &\zeta\left(x\right) \; \leqslant \|x\| \quad \text{ for every } x \, \epsilon \, X \,, \\ &\zeta\left(x\right) \geqslant -M \, \|x\|^* \quad \text{ for every } x \, \epsilon \, X \,, \\ &\zeta\left(x_0\right) \geqslant \xi\left(x_0\right) - \varepsilon' \,, \end{split}$$

 ${\it M}$ being a constant. By a theorem of Mazur and Orlicz ([11], p. 147), the inequality

$$\xi(x_0) - \varepsilon' - M ||z||^* \leq ||x_0 + z||$$

must be satisfied for all $z \in X$. Choosing ξ and ε' so as $\xi(x_0) = \frac{1}{K} \|x_0\|$ and $\varepsilon' = \varepsilon/K$ we obtain condition 6° .

 $6^{\circ} \Rightarrow 1^{\circ}$. Setting $z = x_n - x_0$ into 6° we get

$$||x_0|| \leq K ||x_n|| + KM ||x_n - x_0||^* + K\varepsilon$$
.

whence 1° follows.

In the spaces satisfying condition 1° with K=1 we recognize normal two-norm spaces; hence, for K=1, proposition 1.1 gives a characterization of normal two-norm spaces. The spaces for which there exists a constant K such that 1° is satisfied will be called quasi-normal. By Proposition 1.1, part 2° , all the properties of two-norm spaces, invariant under equivalent norms $\|\cdot\|$, possessed by normal two-norm spaces, are possessed also by quasi-normal spaces. In particular we have

Theorem A. For quasi-normal spaces the set Ξ_{γ} is identical with the closure (in the space $\langle \Xi, || || \rangle$) of the set Ξ^* .

THEOREM B. Let $\langle X, \| \|, \| \|^* \rangle$ be quasi-normal. Then $\mathcal{Z}_{\gamma} = \mathcal{Z}^*$ if and only if the norms $\| \| \|$ and $\| \|^*$ are equivalent.

Let us notice that Proposition 1.1 is also valid except for part 6° in the case when $\langle X, || ||^* \rangle$ is a B_0 -space in which

$$||x||^* = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{[x]_n}{1 + [x]_n},$$

[]_n denoting homogeneous pseudonorms. Since in [2] the space $\langle X, || ||^* \rangle$ was supposed to be a B_0 -space, we infer that our Theorems A and B are valid also in this case.

Now let $\langle \mathcal{Z}^*, \parallel \parallel^*, \parallel \parallel \rangle$ and $\langle \mathfrak{X}^{(\prime)}, \parallel \parallel, \parallel \parallel^* \rangle$ be the first and the second γ -conjugate two-norm spaces of $\langle X, \parallel \parallel, \parallel \parallel^* \rangle$ ([3], p. 278). The normed spaces $\langle \mathcal{Z}^*, \parallel \parallel^* \rangle$ and $\langle \mathfrak{X}^{(\prime)}, \parallel \parallel \rangle$ are always complete. The γ -canonical mapping of X into $\mathfrak{X}^{(\prime)}$ is defined by

$$x \to \mathfrak{y}_x$$
 where $\mathfrak{y}_x(\xi) = \xi(x)$ for $\xi \in \Xi^*$

(if ξ varies over the whole of \mathcal{Z} , this mapping is recognized to be the canonical embedding of the space $\langle \mathcal{X}, || || \rangle$ into its second conjugate space $\langle \mathcal{X}, || || \rangle$). By the definition of the norm $|| ||^*$ in $\mathfrak{X}^{(\nu)}$, we have

$$\|\mathfrak{y}_x\|^* = \sup\{\xi(x)\colon \xi\,\epsilon\,\mathcal{Z}^* \cap \Sigma^*\} = \|x\|^*;$$

moreover.

$$\|\mathfrak{y}_x\| = \sup \{\xi(x) \colon \xi \in \mathcal{Z}^* \cap \Sigma\} \leqslant \sup \{\xi(x) \colon \xi \in \mathcal{Z} \cap \Sigma\} = \|x\|,$$

whence the γ -canonical mapping of $\langle X, || ||, || ||^* \rangle$ into $\langle \mathfrak{R}^{(\gamma)}, || ||, || ||^* \rangle$ is γ - γ -continuous. It is a γ -isomorphism if and only if $||\mathfrak{y}_x|| \geqslant a ||x||$ for some a > 0. Hence

- **1.2.** Proposition. The γ -canonical mapping is a γ -isomorphism if and only if the space $\langle X, || ||, || ||^* \rangle$ is quasi-normal.
- **1.3.** Proposition. Let the space $\langle X, || || \rangle$ be complete; then $\langle X, || ||, || ||^* \rangle$ is quasi-normal if and only if the γ -canonical image \mathfrak{X}_0 of X is closed in $\langle \mathfrak{X}^{(i)}, || || \rangle$.

Proof. Necessity follows by 1.2, sufficiency by Banach's inversion theorem applied to the γ -canonical mapping considered as an operation from $\langle X, \| \| \rangle$ onto $\langle \mathfrak{X}_0, \| \| \rangle$.

The space $\langle X, || ||, || ||^* \rangle$ will be called γ -reflexive if the γ -canonical mapping transforms X onto $\mathfrak{X}^{(\gamma)}$ in a γ -isomorphical fashion (2). Thus,

^(*) This definition is more general than an analogous one in [3], since in that case the space $\langle X, \| \|, \| \|^* \rangle$ was assumed a priori to be normal.

 γ -reflexivity implies completeness of the normed space $\langle X, \| \| \rangle$ and quasi-normality of $\langle X, \| \|, \| \|^* \rangle$. The space $\langle X, \| \|, \| \|^* \rangle$ will be called γ -semireflexive if the γ -canonical mapping transforms X onto $\mathfrak{X}^{(\gamma)}$.

1.4. Proposition. The following statements are equivalent:

1° the space $\langle X, || ||, || ||^* \rangle$ is γ -reflexive,

 2° the space $\langle X, || ||, || ||^* \rangle$ is quasi-normal and γ -semireflexive,

3° the space $\langle X, \| \| \rangle$ is complete and the space $\langle X, \| \|, \| \|^* \rangle$ is γ -semireflexive,

 4° the space $\langle X, || ||, || ||^* \rangle$ is quasi-normal and the ball S is conditionally compact for the topology $\sigma(X, \Xi_{\gamma})$ (or for $\sigma(X, \Xi^*)$), which amounts to the same).

Proof. The implications $1^{\circ} \Rightarrow 2^{\circ} \Rightarrow 3^{\circ} \Rightarrow 1^{\circ}$ follow by the foregoing argument. The equivalency $1^{\circ} \Leftrightarrow 4^{\circ}$ may be proved in the same way as Theorem 3.2 of [3], since γ -reflexivity implies quasi-normality, and the set \mathcal{E}_{γ} is in this case strictly norming.

Let us now give a (non-effective) example of a space $\langle X, || ||, || ||^* \rangle$ γ-semireflexive and not γ-reflexive. Given an infinitely dimensional reflexive Banach space $\langle X, || ||^* \rangle$, let ξ_0 be a distributive discontinuous functional on X. Let us introduce the norm $||x|| = ||x||^* + |\xi_0(x)|$, and let us consider the spaces $\langle X, || ||, || ||^* \rangle$ and $\langle \mathcal{Z}^*, || ||^*, || || \rangle$. Any functional \mathfrak{p} linear over $\langle \mathcal{Z}^*, || || \rangle$ is linear with respect to the finer norm $|| ||^*$, whence, by reflexivity of $\langle X, || ||^* \rangle$, \mathfrak{y} is of the form $\mathfrak{y}(\xi) = \xi(x)$. Thus $\langle X, || ||, || ||^* \rangle$ is γ -semireflexive. However, by 1.4, the space $\langle X, || ||, || ||^* \rangle$ is not γ -reflexive, the space $\langle X, \| \| \rangle$ not being complete. Let us notice that, by a well-known theorem, every linear functional on $\langle X, \| \| \rangle$ is of the form $\zeta(x) + a\xi_0(x)$ with $\zeta \in \Xi^*$; since Ξ_x is closed in $\langle \mathcal{Z}, \| \| \rangle$ and since $\mathcal{Z}^* \subset \mathcal{Z}_{\nu}$, two possibilities may occur: $\mathcal{Z}_{\nu} = \mathcal{Z}^*$ or $\mathcal{Z}_{\nu} = \mathcal{Z}$. The second case must be excluded because it implies ([3]. p. 290) the normality of $\langle X, || ||, || ||^* \rangle$ and, in turn, the ν -reflexivity of $\langle X, || ||, || ||^* \rangle$, by Proposition 1.4. This shows that the hypothesis of quasi-normality cannot be omitted in Theorem B.

Next, we shall give an (effective) example of a non-quasi-normal two-norm space. The construction will be based upon an idea of Mazur-kiewicz [13]. Let X be the space c_0 of null-convergent sequences $x = \{x_s\}$ with $\|x\| = \sup_{r=1,2,...} |x_r|$. In the space \mathcal{E} , conjugate to X, let us consider the functionals

$$\xi_{ik}(x) = \frac{x_1}{2^1} + \frac{x_3}{2^2} + \ldots + \frac{x_{2i-1}}{2^i} + ix_{2N(i,k)},$$

where $(i, k) \rightarrow N(i, k)$ is a one-to-one mapping of the set of pairs of

positive integers onto the set of positive integers. Then let us write

$$||x||^* = \sum_{i,k=1}^{\infty} \frac{1}{2^{i+k}} |\xi_{ik}(x)|.$$

One can easily show (as in the proof of Theorem 2.5 below) that the space $\langle X, || ||, || ||^* \rangle$ is not quasi-normal, for the linear span of the elements ξ_{ik} is a total but not a norming set (Mazurkiewicz [13]).

2. On the structure of the space \mathcal{Z}^* and \mathcal{Z}_{γ} . In this section we shall deal with the problem which are the possible spaces \mathcal{Z}^* and \mathcal{Z}_{γ} , the space $\langle X, || || \rangle$ being given.

Given a total subset Ω of the ball Σ , the functional

$$||x||^* = \sup\{|\omega(x)| : \omega \in \Omega\}$$

is easily seen to be a norm in X satisfying (n_0) . W. Orlicz and V. Pták ([14], p. 63) introduce in this way coarser norms in $\langle X, || || \rangle$, restricting themselves, however, to strongly compact subsets Ω of $\langle \mathcal{Z}, || || \rangle$.

Let us observe that all the possible norms may be obtained in such a manner. Indeed

$$||x||^* = \sup\{|\zeta(x)|: \zeta \in \Sigma^*\},$$

 $\Sigma^* \subset \Sigma$, and, evidently, Σ^* is weakly closed in Ξ (with respect to the topology $\sigma(\Xi, X)$), whence it is weakly compact. Let us denote by Ω_1 the weak closure of the smallest symmetric convex set containing Ω . Then

$$\sup \{ |\omega(x)| : \omega \in \Omega \} = \sup \{ \omega(x) : \omega \in \Omega_1 \}$$

and, since Ω_1 is weakly closed, we get

2.1. Proposition. Every norm $\|\cdot\|^*$ in $\langle X, \|\cdot\| \rangle$ satisfying condition (n_0) is of the form

$$||x||^* = \sup \{\omega(x) : \omega \in \Omega\},$$

where Ω is a total convex symmetric subset of Σ , closed with respect to the topology $\sigma(\Xi, X)$. Conversely, every functional of this form is a norm satisfying (n_0) .

The structure of all possible spaces \mathcal{Z}^* may simply be deduced from that of Ω .

2.2. Proposition. Let Ω and $\| \|^*$ be as in Proposition 2.1. Then the set Ξ^* is equal to the smallest linear set $\mathcal{L}(\Omega)$ spanned upon Ω , i. e. $\Xi^* = \bigcup_{n=1}^{\infty} n\Omega$. Moreover, the unit ball Σ^* induced by $\| \|^*$ is identical with Ω .

Two-norm spaces

Proof. The inclusion $\Omega \subset \Sigma^*$ is obvious. Let $\zeta \in \Sigma^*$; then

$$|\zeta(x)| \leq ||x||^* = \sup \{\omega(x) \colon \omega \in \Omega\}$$

for every $x \in X$. Suppose, if possible, that $\zeta \notin \Omega$. The closedness of Ω for the topology $\sigma(\mathcal{Z},X)$ implies (see e. g. [5], p. 22) the existence of an $x_0 \in X$ such that

$$\sup \{\omega(x_0) : \omega \in \Omega\} < \zeta(x_0),$$

which is impossible. Thus $\Sigma^* = \Omega$, and this implies $\Xi^* = \bigcup_{n=0}^{\infty} n\Omega$.

Now we shall be concerned with the study of the possible spaces \mathcal{Z}_{γ} , the space $\langle X, \| \| \rangle$ being fixed. First we shall be concerned with the norms $\| \|^*$ yielding a given space \mathcal{Z}_{γ} . Simple examples show that several norms which are non-equivalent (even on \mathcal{S}) may exist leading to the same class \mathcal{Z}_{γ} of γ -linear functionals. Thus, the question arises whether or not there exists a finest and a coarsest norm $\| \|^*$ leading to a given set \mathcal{Z}_{γ} . Both questions will be answered in the negative: the first by 2.3 and the second by 2.4.

2.3. Proposition. Let the space $\langle X, \| \|, \| \|^* \rangle$ be quasi-normal and let the norms $\| \| \|$ and $\| \|^* \|$ be non-equivalent. Then there exists a norm $\| \|_1^* \|$, essentially finer than $\| \|^* \|$, giving rise to the same set \mathcal{Z}_{γ} as $\| \| \|^* \|$ and such that the convergences γ in the spaces $\langle X, \| \|, \| \|^* \rangle$ and $\langle X, \| \|, \| \|_1^* \rangle$ are equivalent.

Proof. By Theorem B, the sets \mathcal{Z}_{γ} and \mathcal{Z}^* are different. Let $\xi_0 \in \mathcal{Z}_{\gamma} \setminus \mathcal{Z}^*$, $\|\xi_0\| = 1$ and let us introduce a new coarser norm $\|\omega\|_1^* = \frac{1}{2}(\|\omega\|^* + |\xi_0(\omega)|)$. Then the convergences γ in $\langle X, \| \|, \| \|^* \rangle$ and in $\langle X, \| \|, \| \|_1^* \rangle$ are identical. Since ξ_0 is continuous with respect to $\| \|_1^*$ but not with respect to $\| \|^*$, the norms $\| \|^*$ and $\| \|_1^*$ are not equivalent.

The negative answer to the second question will be obtained by considering the following example.

Let c denote the space of all convergent sequences $x = \{x_r\}$, let $\|x\| = \sup_{r=1,2,...} |x_r|$, and let $\|\cdot\|^*$ be any coarser norm in $\langle c, \|\cdot\| \rangle$. We shall denote by e_n the n-th unit vector in c and by η_n the n-th functional on c, biorthogonal to $\{e_r\}$. The space $\langle \mathcal{E}, \|\cdot\| \rangle$ conjugate to $\langle c, \|\cdot\| \rangle$ is equivalent to the space l^1 ([4], p. 66), and η_n is the n-th unit vector in l^1 .

Let \varLambda denote the set of all functionals on $\langle c, \| \| \rangle$ of the form $\xi(x) = \sum_{n=1}^{\infty} a_n x_n$ with $\sum_{n=1}^{\infty} |a_n| < \infty$.

2.4. Proposition. There exists no coarsest norm $\|\cdot\|^*$ in the space $\langle c, \|\cdot\| \rangle$ such that $\mathcal{Z}_{\gamma} = \Lambda$.

Proof. At first, let us remark that if, for a coarser norm $\|\cdot\|^*$, the set \mathcal{E}_{γ} is equal to Λ , then $\langle c, \|\cdot\|, \|\cdot\|^* \rangle$ is normal (by 1.1). Let $\|\cdot\|^*$ be such a norm; we shall prove the existence of a norm $\|\cdot\|^{**}$ in c such that $\|x\|^{**} \leq \|x\|^*$ for all x, yielding the set Λ as the corresponding space \mathcal{E}_{γ} , and essentially coarser than $\|\cdot\|^*$. By Theorem A, the set \mathcal{E}^* is dense in Λ with respect to the norm $\|\xi\| = \sum_{n=1}^{\infty} |a_n|$. Thus, for every n, m, there exists a functional ζ_{nm} such that $\|\zeta_{nm}\| < 1$ and $\|\zeta_{nm} - \eta_n\| < 1/m$. Every linear functional on $\langle c, \|\cdot\| \rangle$ is of the form ([4], p. 66)

$$\xi(x) = a \lim_{v \to \infty} x_v + \sum_{v=1}^{\infty} \xi(e_v) x_v,$$

 $a=a(\xi)$ being independent of x, and $\|\xi\|=|a|+\sum_{\nu=1}^{\infty}|\xi(e_{\nu})|$. Hence

$$|\zeta_{nm}(e_n) - \eta_n(e_n)| < \frac{1}{m} \quad \text{ and } \quad |a(\zeta_{nm})| + \sum_{v \neq n} |\zeta_{nm}(e_v)| < \frac{1}{m}.$$

Obviously the set $\{\zeta_{n,m}: n, m=1,2,\ldots\}$ is total. Let us choose positive numbers a_{nr} so that

$$\sum_{\mu,\nu=1}^{\infty} a_{\mu\nu} < 1 \,, \quad \sum_{\mu,\nu=1}^{\infty} a_{\mu\nu} \|\zeta_{\mu\nu}\| < 1 \quad \text{ and } \quad \sum_{\mu,\nu=1}^{\infty} a_{\mu\nu} \|\zeta_{\mu\nu}\|^* < 1 \,.$$

Then $||x||^{**} = \sum_{\mu_{\nu}=1}^{\infty} a_{\mu\nu} |\zeta_{\mu\nu}(x)|$ is a norm in c (since $\{\zeta_{nm}\}$ is total), and

$$||x||^{**} \leqslant \sum_{\mu,\nu=1}^{\infty} |a_{\mu\nu}||\zeta_{\mu\nu}||^{*} ||x||^{*} \leqslant ||x||^{*} \leqslant ||x||^{*}$$

We shall prove that the norm $\|\cdot\|^{**}$ is essentially coarser than $\|\cdot\|^{*}$. Indeed, let $z_n = e_n/\|e_n\|^{*}$. Then $\|z_n\|^{*} = 1$ and, on the other hand,

$$||z_n||^{**} = \sum_{\mu=1}^{\infty} \sum_{\nu=1}^{\infty} a_{\mu\nu} |\zeta_{\mu\nu}(z_n)| = \sum_{\mu=1}^{m-1} \sum_{\nu=1}^{m-1} + \sum_{\mu=1}^{m-1} \sum_{\nu=m}^{\infty} + \sum_{\mu=m}^{\infty} \sum_{\nu=1}^{\infty} = I_1 + I_2 + I_3$$

and

$$I_2 = \sum_{\mu=1}^{m-1} \sum_{r=1}^{\infty} a_{\mu r} |\zeta_{\mu r}(z_n)| \leqslant \sum_{\mu=1}^{m} \sum_{r=m}^{\infty} a_{\mu r} ||\zeta_{\mu r}||^* \to 0 \quad \text{as } m \to \infty,$$

$$I_3 = \sum_{n=m}^{\infty} \sum_{n=1}^{\infty} a_{\mu\nu} |\zeta_{\mu\nu}(z_n)| \leqslant \sum_{n=m}^{\infty} \sum_{n=1}^{\infty} a_{\mu\nu} \|\zeta_{\mu\nu}\|^* \to 0 \quad \text{as } m \to \infty \,,$$

uniformly with respect to n. Since $1 \geqslant \|\zeta_{\mu\nu}\| \geqslant \sum_{n=1}^{\infty} |\zeta_{\mu\nu}(e_n)|$ for every μ and ν , we have $\lim_{n\to\infty} \zeta_{\mu\nu}(e_n) = 0$, whence $I_1 \to 0$ as $n \to \infty$. We have thus proved that $\|z_n\|^{**} \to 0$.

It remains to prove that the set of all γ -linear functionals on $\langle c, \| \|, \| \|^{**} \rangle$ is identical with Λ . Since $\| \|^{**}$ is coarser than $\| \|^{*}$, the space \mathcal{E}^{**} conjugate to $\langle c, \| \|^{**} \rangle$ is contained in Λ . On the other hand, the functionals ζ_{mn} belong to Λ , their strong limits η_{n} belong to \mathcal{E}_{γ} (by Theorem A), whence $\mathcal{E}_{\gamma} = \Lambda$.

We shall now give a sufficient condition for a subset of $\mathcal Z$ to be a possible space $\mathcal Z_\gamma.$

2.5. THEOREM. Let Υ be a linear, closed, norming and separable subset of $\langle \mathcal{Z}, \| \| \rangle$. Then there exists a coarser norm $\| \|^*$ in X such that the space $\langle X, \| \|, \| \|^* \rangle$ is normal, γ -precompact (3) and such that $\mathcal{Z}_{\gamma} = \Upsilon$.

Proof. Let $\xi_1, \, \xi_2, \, \dots$ be a sequence strongly dense in $\Upsilon \cap \Sigma$ and let us write

$$||x||^* = \sum_{n=1}^{\infty} \frac{1}{2^n} |\xi_n(x)|, \quad ||x||_1^* = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|\xi_n(x)|}{1 + |\xi_n(x)|}.$$

The space $\langle X, \| \parallel_1^* \rangle$ is of B_0^* -type. The γ -convergences in $\langle X, \| \|, \| \|^* \rangle$ and in $\langle X, \| \|, \| \|_1^* \rangle$ coincide, whence \mathcal{E}_{γ} is the same for both spaces. Evidently $\mathcal{E}_{\gamma} \supset \Upsilon$, whence, by 1.1, the spaces $\langle X, \| \|, \| \|^* \rangle$ and $\langle X, \| \|, \| \|_1^* \rangle$ are quasi-normal. By a theorem of Mazur and Orlicz ([12], p. 139), the space \mathcal{E}_1^* conjugate to $\langle X, \| \|_1^* \rangle$ is identical with the smallest linear set spanned upon the functionals ξ_1, ξ_2, \ldots , whence, by Theorem A, $\mathcal{E}_{\gamma} = \Upsilon$. The usual diagonal method shows that $\langle X, \| \|, \| \|^* \rangle$ is γ -precompact.

2.6. Proposition. Let $\langle X, \| \ \| \rangle$ be separable, and let $\langle \Xi, \| \ \| \rangle$ be non-separable. Then there exist uncountably many coarser norms $\| \ \|_{\tau}^*$ such that $\langle X, \| \ \|, \| \ \|_{\tau}^* \rangle$ are normal for all τ and such that the spaces Ξ_{τ} are different for different τ .

Proof. Let x_1, x_2, \ldots be a sequence dense in S with respect to $\| \ \|$, and let ζ_1, ζ_2, \ldots be functionals linear on $\langle X, \| \ \| \rangle$ satisfying $\zeta_n(x_n) = \|x_n\|$ and $\|\zeta_n\| = 1$ for $n = 1, 2, \ldots$ Obviously, the smallest strongly closed linear set Υ spanned upon ζ_1, ζ_2, \ldots satisfies the assumptions of Theo-

rem 2.5 and the family of all separable over-sets of Υ , inducing various starred norms in $\langle X, \| \parallel \rangle$ following Theorem 2.5, is, by non-separability of $\langle \mathcal{E}, \| \parallel \rangle$, uncountable.

The next example shows that, as regards a normal two-norm space, in some cases there may exist exactly one non-trivial space \mathcal{E}_{ν} , and that the space \mathcal{E}_{ν} may have deficiency 1.

2.7. THEOREM. Let $\| \|^*$ be a coarser norm in $\langle \mathbf{c}, \| \| \rangle$. Then $\langle \mathbf{c}, \| \|, \| \|^* \rangle$ is normal if and only if the set \mathcal{Z}_{γ} contains all the functionals η_n ; thus all the possible spaces \mathcal{Z}_{γ} for normal $\langle \mathbf{c}, \| \|, \| \|^* \rangle$ are either $\mathcal{Z}_{\gamma} = \Lambda$ or $\mathcal{Z}_{\gamma} = \mathcal{Z}$.

For every n there exists a coarser norm $\|\cdot\|_n^*$ in \mathbf{c} such that the corresponding space Ξ , has deficiency n (in the case n>1, of course, the space $\langle \mathbf{c}, \|\cdot\|, \|\cdot\|^* \rangle$ is not normal but only quasi-normal). Moreover, there exists a coarser norm $\|\cdot\|_{\infty}^*$ in \mathbf{c} such that the corresponding space Ξ , has infinite deficiency.

Proof. We prove first that $\eta_n \epsilon \mathcal{Z}_{\gamma}$ if $\langle c, || ||, || ||^* \rangle$ is normal, $n=1,2,\ldots$ By Proposition 1.1, $\mathcal{Z}^* \cap \mathcal{Z}$ is dense in \mathcal{Z} for the topology $\sigma(\mathcal{Z},\mathcal{X})$, whence, for every $\varepsilon > 0$ and k, there exists a functional

$$\zeta(x) = b_0 \lim_{n \to \infty} x_n + \sum_{n=1}^{\infty} b_n x_n$$

belonging to $\mathcal{Z}^* \cap \Sigma$ and such that $|1-b_k| = |\eta_k(e_k) - \zeta(e_k)| < \varepsilon/2$. Since $1 \geqslant ||\zeta|| = |b_k| + \sum_{i \neq k} |b_i|$, we get

$$\sum_{v
eq k} |b_v| \leqslant 1 - |b_k| \leqslant |1 - b_k| < rac{arepsilon}{2}.$$

Hence, for any $x \in S$,

$$|\eta_k(x) - \zeta(x)| = |(1 - b_k)x_k - \sum_{\nu \neq k} |b_{\nu}x_{\nu}| \leq |1 - b_k| \cdot ||x|| + ||x|| \sum_{\nu \neq k} |b_{\nu}| < \varepsilon;$$

it follows that $\|\eta_k - \zeta\| < \varepsilon$. The number $\varepsilon > 0$ being arbitrary, η_k belongs to the closure of \mathcal{Z}^* in $\langle \mathcal{Z}, \| \parallel \rangle$, i. e. to \mathcal{Z}_{γ} .

The proof of the second part will be preceded by the following considerations. Let $\langle X, \| \|, \| \|^* \rangle$ and $\langle Y, \| \|, \| \|^* \rangle$ be two quasi-normal spaces. Their Cartesian product $Z = X \times Y$, with the norms $\|z\| = \|x\| + \|y\|$ and $\|z\|^* = \|x\|^* + \|y\|^*$ for z = (x, y), is easily seen to be a quasi-normal two-norm space (4). One may easily prove that the general form

^(*) $\langle X, || ||, || ||^* \rangle$ is called γ -precompact if every bounded set in $\langle X, || || \rangle$ is conditionally compact with respect to the metric $\varrho(x,y) = ||x-y||^*$. This theorem is closely related to a theorem of Orlicz and Pták ([14], p. 64).

⁽⁴⁾ If the initial spaces are normal, their product, although quasi-normal, does not need to be normal. On the other hand, if the finer norm in Z is defined by $\|z\|=\max(\|x\|,\|y\|)$ and if $\langle X,\|\|,\|\|^*\rangle$ and $\langle Y,\|\|,\|\|^*\rangle$ are normal, then, for any starred norm $\|\|^*$ such that $\|z_n\|^*\to 0$ is equivalent to $\|x_n\|^*\to 0$ with $\|y_n\|^*\to 0$, the space $\langle Z,\|\|,\|\|^*\rangle$ is also normal.

of γ -linear functionals on $\langle Z, || ||, || ||^* \rangle$ is

$$\zeta(z) = \xi(x) + \eta(y),$$

where ξ is a γ -linear functional on $\langle X, \| \|, \| \|^* \rangle$ and η is a γ -linear functional on $\langle Y, \| \|, \| \|^* \rangle$.

Let n be finite. Then the space c is isomorphic to its n-tuple Cartesian product (see [4], p. 182). Thus, by the foregoing argument, there is a coarser norm $\|\cdot\|_1^*$ in c such that the corresponding space \mathcal{E}_{γ} is of deficiency n.

Now let us pass to the case $n=\aleph_0$. Let E be the set of the ordinals $\leqslant \omega^2$, with the order topology. The space C(E) of real continuous functions on E is a Banach space with the norm $\|x\|=\sup\{|x(t)|:t\,\epsilon\,E\}$ and any linear functional on C(E) is of the form

$$\xi(x) = \sum_{arphi \leqslant oldsymbol{\omega}^2} a_{arphi} x(arphi) \quad ext{ and } \quad \|\xi\| = \sum_{arphi \leqslant oldsymbol{\omega}^2} |a_{arphi}| < \infty \, .$$

Next, let E_0 be the set of the isolated points of E (i.e. the set of non-limit ordinals), let $t_1,\,t_2,\ldots$ be any arrangement of all elements of E_0 into a sequence, and let

$$||x||^* = \sum_{m=1}^{\infty} \frac{1}{2^m} |x(t_m)|.$$

It is obvious that $\langle C(E), \| \|, \| \|^* \rangle$ is a normal two-norm space, and every γ -linear functional on $\langle C(E), \| \|, \| \|^* \rangle$ is of the form

$$\xi(x) = \sum_{m=1}^{\infty} a_m x(t_m) \quad ext{with} \quad \sum_{m=1}^{\infty} |a_m| < \infty.$$

Thus, in this case \mathcal{Z}_{γ} is of infinite deficiency in \mathcal{Z} . It is known that the space $\langle C(E), \| \ \| \rangle$ is isomorphic to the space c; this isomorphism induces in c a norm $\| \ \|_{\infty}^*$ (corresponding to the norm $\| \ \|_{\infty}^*$ defined above). Obviously $\| \ \|_{\infty}^*$ is the required one.

For the space c_0 of null-convergent sequences we obtain by the preceding considerations:

2.8. Proposition. Let $\|\cdot\|^*$ be a coarser norm in $\langle \boldsymbol{c}_0, \|\cdot\| \rangle$ such that $\langle \boldsymbol{c}_0, \|\cdot\|, \|\cdot\|^* \rangle$ is normal. Then $\Xi_{\gamma} = \Xi$.

The following propositions give further information about the possible spaces $\mathcal{Z}_{\gamma}.$

2.9. Proposition. Suppose $\langle X, || ||, || ||^* \rangle$ to be quasi-normal and let the deficiency of Ξ , be finite and greater than m-1; then there exist at

least m+1 coarser norms $\| \|^*, \| \|_1^*, \ldots, \| \|_m^*$ in $\langle X, \| \| \rangle$ leading to different classes $\mathcal{Z}_{\nu}, \mathcal{Z}_{\nu}^{(1)}, \ldots, \mathcal{Z}_{\nu}^{(m)}$ of γ -linear functionals.

Proof. Let $\eta \in \mathbb{Z} \setminus \mathcal{Z}_{\nu}$ and let $||\eta|| = 1$. Then the norm

$$||x||_1^* = \max(||x||^*, |\eta(x)|)$$

is finer than $\|\cdot\|^*$ and coarser than $\|\cdot\|$, and the space $\langle X, \|\cdot\|, \|\cdot\|_1^* \rangle$ is quasi-normal. Let ξ be any γ -linear functional on $\langle X, \|\cdot\|, \|\cdot\|_1^* \rangle$. Then, by Theorem A, there exist linear functionals ξ_n on $\langle X, \|\cdot\|, \|\cdot\|_1^* \rangle$ such that $\|\xi - \xi_n\| \to 0$. We may write $\xi_n(x) = \zeta_n(x) + \lambda_n \eta(x)$, where ζ_n are linear functionals on $\langle X, \|\cdot\|^* \rangle$. If $\lambda_n \neq 0$, then the closedness of \mathcal{Z}_γ in \mathcal{Z} implies

$$\|\xi_n\| = \|\zeta_n + \lambda_n \eta\| = |\lambda_n| \|\lambda_n^{-1} \zeta_n + \eta\| \geqslant |\lambda_n| \inf \{\|\eta - \zeta\| : \zeta \in \Xi_{\nu}\} = |\lambda_n| \cdot \delta,$$

whence $\sup_{n=1,2,...} |\lambda_n| \leqslant \delta^{-1} \sup_{n=1,2,...} \|\xi_n\| < \infty$, for $\|\xi_n\| \to \|\xi\|$. Thus there exists a subsequence $\lambda_n \to \lambda_0$ such that

$$\zeta_{n_k} = \xi_{n_k} - \lambda_{n_k} \eta \to \xi - \lambda_0 \eta = \zeta_0$$

and $\zeta_0 \in \mathcal{Z}_{\gamma}$, which means that the space $\mathcal{Z}_{\gamma}^{(1)}$ of all γ -linear functionals on $\langle X, \| \| \|, \| \|_1^* \rangle$ is identical with the smallest linear set spanned upon \mathcal{Z}_{γ} and η .

In this way we may construct starred norms

$$||x||_1^* \leq ||x||_2^* \leq \ldots \leq ||x||_m^* \leq ||x||$$

such that $\mathcal{Z}_{\nu}^{(1)} \subset \mathcal{Z}_{\nu}^{(2)} \subset \ldots \subset \mathcal{Z}_{\nu}^{(m)}$ and $\mathcal{Z}_{\nu}^{(i)} \neq \mathcal{Z}_{\nu}^{(i+1)}$.

2.10. THEOREM. Let $\langle X, \| \| \rangle$ be a weakly complete (5) Banach space. Then, for any coarser norm $\| \|^*$, either $\Xi_{\gamma} = \Xi$ or the quotient space Ξ/Ξ_{γ} is non-separable.

In particular, if $\langle X, || || \rangle$ is weakly complete and if Ξ_{γ} has finite deficiency in Ξ , then $\Xi_{\gamma} = \Xi$.

Proof. Let us assume $\mathcal{Z}/\mathcal{Z}_{\gamma}$ to be separable. $\mathcal{Z}/\mathcal{Z}_{\gamma}$ consists of the cosets with respect to the relation;

$$\xi_1 \sim \xi_2$$
 if $\xi_1 - \xi_2 \epsilon \Xi_{\gamma}$.

The norm of the coset $\bar{\xi}$ corresponding to a functional ξ is defined by

$$\|\bar{\xi}\| = \inf\{\|\xi + \eta\| \colon \eta \in \Xi_{\gamma}\}.$$

The coset corresponding to 0 is identical with Ξ_{γ} . Let ξ_n be a sequence of linear functionals on $\langle X, \| \| \rangle$ such that the corresponding cosets $\bar{\xi}_1 = \xi_1 + \Xi_{\gamma}$, $\bar{\xi}_2 = \xi_2 + \Xi_{\gamma}$, ... are dense in $\langle \mathcal{Z}/\mathcal{Z}_{\gamma}, \| \| \rangle$. Let x_n

⁽⁵⁾ i. e. sequentially weakly complete.

be a sequence γ -convergent to 0, and let $x'_n = x_{k_n}$ be an arbitrary subsequence. The sequence x'_n contains a subsequence $x''_n = x'_{l_n}$ such that every sequence $\xi_k(x''_n)$ is convergent $(k=1,2,\ldots)$. Since $x''_n \stackrel{\vee}{\to} 0$, $\zeta(x''_n) \to 0$ for every $\xi \in \mathcal{E}_{\gamma}$. It is easily seen that the set Γ of all functionals of the form $\xi + \xi_k$ with $\xi \in \mathcal{E}_{\gamma}$ and $k=1,2,\ldots$ is strongly dense in $\langle \mathcal{E}, \| \| \rangle$. Since the sequence $\eta(x''_n)$ is convergent for every $\eta \in \Gamma$ and $\sup \|x''_n\| < \infty$, by the Banach-Steinhaus theorem, the sequence x''_n is weakly fundamental. $\langle X, \| \| \rangle$ being weakly complete, there exists an element x_0 such that $\xi(x''_n - x_0) \to 0$ for every $\xi \in \mathcal{E}$. Since \mathcal{E}_{γ} is total and $\zeta(x_0) = 0$ for all $\zeta \in \mathcal{E}_{\gamma}$, x_0 must be equal to 0.

Thus, we have proved that x_n'' tends weakly to 0; x_n' being an arbitrary subsequence of x_n , x_n tends weakly to 0, and, by Proposition 6.2 of [3], we obtain $\mathcal{Z}_* = \mathcal{Z}$.

2.11. Proposition. Let $\langle X, \| \| \rangle$ be a Banach space such that the canonical image \mathfrak{X}_0 of X in the biconjugate space is of finite (a) deficiency k in \mathfrak{X} . Then, for any coarser norm $\| \|^*$ in $\langle X, \| \| \rangle$, either Ξ_{γ} is of deficiency not greater than k in Ξ_{γ} or $\Xi_{\gamma} = \Xi$.

Proof. Let us suppose that $\|\cdot\|^*$ is a coarser norm in $\langle X, \|\cdot\| \rangle$ such that the space \mathcal{Z}_{γ} is of deficiency greater than k in \mathcal{Z} . Since \mathcal{Z}_{γ} is closed in $\langle \mathcal{Z}, \|\cdot\| \rangle$, this implies the existence of a closed subspace $\Gamma \subset \mathcal{Z}$ of deficiency p = k+1 with $\mathcal{Z}_{\gamma} \subset \Gamma$. Thus every linear functional $\xi \in \mathcal{Z}$ may be uniquely represented as $\xi(x) = \eta(x) + \alpha_1 \zeta_1(x) + \ldots + \alpha_p \zeta_p(x)$, where $\eta \in \Gamma$ and ζ_1, \ldots, ζ_p are fixed. Let us write $\mathfrak{z}_{\nu}(\xi) = \alpha_{\nu}$ ($\nu = 1, 2, \ldots, p$); \mathfrak{z}_{ν} are obviously linear functionals on $\langle \mathcal{Z}, \|\cdot\| \rangle$ and they are linearly independent. No functional $\mathfrak{y}_x \neq 0$ is equal to a linear combination $\beta_1 \mathfrak{z}_1 + \ldots + \beta_p \mathfrak{z}_p$ of $\mathfrak{z}_1, \ldots, \mathfrak{z}_p$, since if it were so, we should have $\mathfrak{z}_{r}(\eta) = 0$ and consequently $\mathfrak{y}_x(\eta) = \eta(x) = 0$ for $\eta \in \Gamma$, which implies x = 0, Γ being total. This means that the deficiency of \mathfrak{X}_0 in \mathfrak{X} is greater than k, contrarily to our hypothesis.

3. A characterization of reflexivity of Banach spaces. In this section $\langle X, \| \parallel \rangle$ will stand for a Banach space; $\langle \Xi, \| \parallel \rangle$, $\langle \mathfrak{R}, \| \parallel \rangle$, Σ , S, \mathfrak{y}_x , \mathfrak{X}_0 etc. will preserve their previous meaning.

3.1. LEMMA. Let $\mathfrak{z} \in \mathfrak{X}$ be a linear functional on $\langle \mathfrak{S}, \| \parallel \rangle$ not belonging to the canonical image \mathfrak{X}_0 of X. Then the set

$$\Omega = \{ \xi \colon \xi \in \Xi, \, \mathfrak{z}(\xi) = 0 \}$$

is strictly norming for the space $\langle X, || || \rangle$ (7).

Proof. We may suppose freely that $\|\mathfrak{z}\|=1$. Ω being linear and closed in $\langle \mathcal{Z}, \| \| \rangle$, it is sufficient to prove that Ω is norming. Let $\delta=\inf\{\|\mathfrak{z}-\mathfrak{y}\|:\,x\,\epsilon X\}$; then $0<\delta\leqslant 1$. We shall prove that, for every $x_0\,\epsilon X$, there exists a functional $\zeta\,\epsilon\Omega\cap\Sigma$ such that $\zeta(x_0)=\frac{1}{4}\,\delta\|x_0\|$, or, which amounts to the same, that a functional $\zeta\,\epsilon\,\Xi$ exists such that

$$\|\zeta\| \leqslant 1$$
, $\mathfrak{z}(\zeta) = 0$, $\mathfrak{z}(\zeta) = \frac{1}{4}\delta$, where $x_0 = z \cdot \|x_0\|$, $\|z\| = 1 = \|\mathfrak{z}\|$.

By a theorem of Helly (see [9], [11], p. 171, [5], p. 38), such a functional exists if the inequality

$$|\lambda_1 \cdot \frac{1}{4}\delta + \lambda_2 \cdot 0| \leq (1-\varepsilon) \|\lambda_1 \mathfrak{y}_z + \lambda_2 \delta\|$$

is satisfied for every pair λ_1 , λ_2 of real numbers and for an $\varepsilon > 0$. For $\lambda_1 = 0$ this inequality is obvious; if $\lambda_1 \neq 0$, then setting $t = \lambda_1^{-1} \lambda_2$ and $\varepsilon = \frac{1}{2}$ we obtain the inequality $\delta \leqslant 2 \|\mathfrak{p}_z + t_{\overline{\delta}}\|$, which will be proved now. If $|t| \geqslant \frac{1}{2}$, we have

$$2\|\mathfrak{y}_{z}+t\mathfrak{z}\|=2|t|\|t^{-1}\mathfrak{y}_{z}+\mathfrak{z}\|\geqslant 2|t|\cdot\delta\geqslant\delta;$$

if $|t| < \frac{1}{2}$, then $2\|y_x + t_{\delta}\| \ge 2(\|y_x\| - |t|\|\|y\|) \ge 2(1 - \frac{1}{2}) \ge \delta$.

Now, let X_0 be a closed subspace of $\langle X, || | \rangle$ and let $|| ||_0^*$ be a norm in X_0 satisfying $||x||_0^* \leqslant ||x||$ for $x \in X_0$; let us write

$$S_0^* = \{x \colon x \in X_0, \|x\|_0^* \leqslant 1\}, \quad S^* = \operatorname{conv}(S \cup S_0^*),$$

and let $||x||^*$ be the Minkowski functional of S^* in X.

3.2. Lemma. Under the above notation

(a) the functional $\| \|^*$ is a norm satisfying $\|x\|^* \leq \|x\|$ for $x \in X$ and $\|x\|^* = \|x\|_0^*$ for $x \in X_0$,

(b) every linear functional on $\langle X_0, \| \|_0^* \rangle$ may be extended onto X with the preservation of both norms: relative to $\langle X_0, \| \|^* \rangle$ and relative to $\langle X_0, \| \| \rangle$,

(c) the space $\langle X, \| \|, \| \|^* \rangle$ is quasi-normal if and only if $\langle X_0, \| \|, \| \|_0^* \rangle$ is so (8).

Proof. Since S and S_0^* are convex, S^* is identical with the set of all elements of form $z=ts+(1-t)s_0$ with $s \in S$, $s_0 \in S_0^*$, $0 \le t \le 1$. We shall prove first that $S^* \cap X_0 = S_0^*$. The inclusion $S_0^* \subset S^* \cap X_0$ being obvious, let us assume that $z \in S^* \cap X_0$, whence $z=ts+(1-t)s_0$, $s \in S$, $s_0 \in S_0^*$, $0 \le t \le 1$. If t=0, then $z \in S_0^*$; if $t \ne 0$, then $s=t^{-1}[z-(1-t)s_0]$ belongs to X_0 , whence $s \in X_0 \cap S \subset S_0^*$, which implies $z \in S_0^*$.

The identity $S^* \cap X_0 = S_0^*$ implies $||x||^* = ||x||_0^*$ for $x \in X_0$. The inclusion $S \subset S^*$ implies $||x||^* \leqslant ||x||$ in X.

⁽⁶⁾ The existence of such spaces has been proved by R. C. James [10].

⁽⁷⁾ This lemma may be deduced from a general result of J. Dixmier ([6], p. 1064). We give here an elementary and effective proof.

^(*) One can easily verify that the extension of norm $\|\cdot\|_0^*$ by this method coincides with that given by A. Sobczyk [15].

We shall prove now that $\|\ \|^*$ is a norm. Suppose that $\|z\|^*=0$. Then $nz \, \epsilon \, S^*$ for $n=1\,,2\,,\ldots$, whence $nz=\vartheta_n x_n+(1-\vartheta_n)y_n$ with $x_n \, \epsilon \, S,\, y_n \, \epsilon \, S_0^*,\, 0\leqslant \vartheta_n\leqslant 1$, which implies

$$\inf\left\{\|z-u\|\colon u\in X_0\right\}\leqslant \left\|z-\frac{(1-\vartheta_n)y_n}{n}\right\|=\frac{\vartheta_n}{n}\left\|x_n\right\|\leqslant \frac{1}{n}.$$

It follows that $z \in X_0$, since X_0 is closed in $\langle X, || || \rangle$. Therefore $||z||_0^* = ||z||^* = 0$, which gives z = 0.

To prove (b) let ζ be any linear functional on $\langle X_0, \| \parallel_0^* \rangle$. We shall prove that its Hahn-Banach extension $\overline{\zeta}$ (preserving the norm $\|\zeta\|_0 = \sup\{\zeta(x) \colon x \in X_0 \cap S\}$) satisfies the desired conditions. It is to be proved that the norm $\| \|^*$ defined by $\|\zeta\|^* = \sup\{\zeta(x) \colon \|x\|^* \leqslant 1, \ x \in X_0\}$ does not increase as well. Indeed, if $z \in S^*$, then $z = ts + (1-t)s_0$, $s \in S$, $s_0 \in S_0^*$, $0 \leqslant t \leqslant 1$, whence, by $\|\overline{\zeta}\| = \|\zeta\| \leqslant \|\zeta\|^*$,

$$\bar{\zeta}(z) = t\bar{\zeta}(s) + (1-t)\zeta(s_0) \leqslant t\|\bar{\zeta}\|\|s\| + (1-t)\|\zeta\|^*\|s_0\|^* \leqslant \|\zeta\|^*.$$

Let \mathcal{Z}_0^* be the space conjugate to $\langle X_0, \| \parallel_0^* \rangle$, let \mathcal{Z}^* be the space conjugate to $\langle X, \| \parallel^* \rangle$. To prove (c) it is sufficient to show that the set \mathcal{Z}^* is norming for $\langle X, \| \parallel^* \rangle$ if \mathcal{Z}_0^* is norming for $\langle X_0, \| \parallel_0^* \rangle$. Thus, let us assume that there exists an A > 0 such that

$$\sup \{\zeta(x) : \zeta \in \Xi_0^* \cap \Sigma\} \geqslant A \|x\| \quad \text{for} \quad x \in X_0.$$

By Proposition 1.1, it is sufficient to prove that there is a constant K such that $||x_n|| \leqslant 1$, $||x_n - x_0||^* \to 0$ implies $||x_0|| \leqslant K$. Since $||x_n||^* \leqslant ||x_n|| \leqslant 1$, we infer that $||x_0||^* \leqslant 1$, i. e. that $x_0 \in S^*$, whence $x_0 = ts + (1-t)s_0$, $s \in S$, $s_0 \in S_0^*$, $0 \leqslant t \leqslant 1$. Let $\zeta \in \mathcal{E}_0^* \cap \Sigma$ be such that $\zeta(s_0) \geqslant A ||s_0||$, and let $\bar{\zeta}$ be the extension of ζ as in (b). Then $|\bar{\zeta}(x_n)| \leqslant 1$, since $\bar{\zeta} \in \Sigma$, and $\bar{\zeta}(x_n) \to \bar{\zeta}(x_0)$, since $\bar{\zeta} \in \mathcal{E}^*$, whence $|\bar{\zeta}(x_0)| \leqslant 1$. On the other hand, $1 \geqslant \bar{\zeta}(x_0) = t\bar{\zeta}(s) + (1-t)\zeta(s_0)$ and $|\bar{\zeta}(s)| \leqslant 1$, for $\bar{\zeta} \in \Sigma$, $s \in S$. Thus $(1-t)A||s_0|| \leqslant (1-t)\zeta(s_0) \leqslant 1 + t|\bar{\zeta}(s)| \leqslant 2$, and

$$||x_0|| \leqslant ||ts + (1-t)s_0|| \leqslant t||s|| + (1-t)||s_0|| \leqslant t + \frac{2}{A} \leqslant 1 + \frac{2}{A} = K.$$

3.5. Theorem. A Banach space $\langle X, \| \| \rangle$ is reflexive if and only if, for every norm $\| \|^*$ coarser than $\| \|$, the space \varXi^* conjugate to $\langle X, \| \|^* \rangle$ is dense in $\langle \varXi, \| \| \rangle$.

Proof. Necessity is stated in Theorem 3.7 of [3]. Let $\langle X, \| \| \rangle$ be any non-reflexive Banach space. To prove the sufficiency we shall show that there exists a norm $\| \|^*$ in $\langle X, \| \| \rangle$ coarser than $\| \|$ and such that the space \mathcal{Z}^* is not dense in $\langle \mathcal{Z}, \| \| \rangle$ and is norming for $\langle X, \| \| \rangle$.

From the non-reflexivity of $\langle X, \| \| \rangle$ it follows, as a consequence of a theorem of Eberlein ([7], [5], p. 56), that there exists a closed, separable, non-reflexive subspace X_0 of X. Let \mathcal{E}_0 denote the conjugate space of $\langle X_0, \| \| \rangle$, and let x_1, x_2, \ldots be a sequence dense in $\langle X_0, \| \| \rangle$. By assumption, there exists a linear functional \mathfrak{z} on $\langle \mathcal{E}_0, \| \| \rangle$ which does not belong to the canonical image of $\langle X_0, \| \| \rangle$ in its second conjugate space. By Proposition 3.1, the set

$$\Omega = \{ \xi : \xi \in \Xi_0, \ \chi(\xi) = 0 \}$$

is norming for $\langle X_0, \| \| \rangle$. Hence there exist functionals $\zeta_n \in \Omega$ (n = 1, 2, ...) and a constant K > 0 such that

$$||\zeta_n|| = 1, \quad |\zeta_n(x_n)| \geqslant K ||x_n|| \quad (n = 1, 2, ...).$$

Let Υ denote the smallest linear and strongly closed subset of \mathcal{Z}_0 spanned upon the functionals $\zeta_1,\,\zeta_2,\ldots$ Evidently, Υ is norming. By Theorem 2.5, there exists in X_0 a norm $\|\cdot\|_0^*$ coarser than $\|\cdot\|_0$, such that the space $\langle X_0,\,\|\cdot\|,\,\|\cdot\|_0^*\rangle$ is quasi-normal and such that the closure of the space \mathcal{Z}_0^* conjugate to $\langle X_0,\,\|\cdot\|_0^*\rangle$ is identical with Υ .

We take into account the extension $\| \|^*$ of the norm $\| \|^*_0$, according to Lemma 3.2. The norm $\| \|^*$ is coarser than $\| \|$, and $\|x\|^* = \|x\|^*_0$ for $x \in X_0$. Let η be any fixed functional belonging to $\mathcal{E}_0 \setminus \Omega$ and let η be its Hahn-Banach extension on $\langle X, \| \| \rangle$. Then, for every $\xi \in \mathcal{E}^*$, the restricted functional $\xi | X_0$ belongs to \mathcal{E}_0^* and $\mathcal{E}_0^* \subset \Upsilon \subset \Omega$, whence

$$\begin{split} \|\xi-\eta\| &= \sup\left\{\xi(x) - \eta(x) \colon x \, \epsilon \, S\right\} \geqslant \sup\left\{\xi(x) - \eta(x) \colon x \, \epsilon \, S \, \cap \, X_0\right\} \\ &\geqslant \inf\left\{\|\zeta-\eta\| \colon \zeta \, \epsilon \, \varOmega\right\} \, = \, \delta \, > \, 0 \, , \end{split}$$

which means that η does not belong to the closure of Ξ^* in $\langle \Xi, || || \rangle$.

3.4. Remark. If $\langle X, \| \| \rangle$ is a non-reflexive Banach space, then there exists a coarser norm $\| \|^*$ in X such that the space $\langle X, \| \|, \| \|^* \rangle$ is quasi-normal and $\Xi_* \neq \Xi_*$

This immediately follows by condition (c) of Lemma 3.2. Let us notice that the statement that $\langle X, \| \|, \| \|^* \rangle$ is quasi-normal cannot be replaced by the statement that $\langle X, \| \|, \| \|^* \rangle$ is normal, in virtue of Proposition 2.8.

References

[1] A. Alexiewicz and W. Orlicz, On analytic vector-valued functions of a real variable, Studia Math. 12 (1951), p. 108-111.

[2] A. Alexiewicz and Z. Semadeni, Linear functionals on two-norm spaces, ibidem 17 (1958), p. 121-140.

p. 275 - 293.

- [3] The two-norm spaces and their conjugate spaces, ibidem 18 (1959),
- [4] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [5] M. M. Day, Normed Linear Spaces, Ergebnisse der Mathematik 21, Berlin 1958.
- [6] J. Dixmier, Sur un théorème de Banach, Duke Math. Journal 15 (1948), p. 1057-1071.
- [7] W. F. Eberlein, Weak compactness in Banach spaces, Proc. Nat. Acad. of Sci. 33 (1947), p. 51-53.
- [8] M. Eidelheit, Zur Theorie der konvexen Mengen in linearen normierten Räumen. Studia Math. 6 (1936), p. 104-111.
- [9] E. Helly, Über Systeme linearer Gleichungen mit unendlichen vielen Unbekannten, Monatshefte Math. Phys. 31 (1921), p. 60-91.
- [10] R.C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), p. 518-527.
- [11] S. Kakutani, Weak topology and regularity of Banach spaces, Proc. Imp. Acad. Tokyo 15 (1939), p. 169-173.
- [12] S. Mazur and W. Orlicz, Sur les espaces métriques linéaires (II), Studia Math. 13 (1953), p. 137-179.
- [13] S. Mazurkiewicz, Sur la dérivée faible d'un ensemble de fonctionnelles linéaires, ibidem 2 (1930), 68-71.
- [14] W. Orlicz and V. Pták, Some remarks on Saks spaces, ibidem 16 (1957), p. 56-68.
- [15] A. Sobczyk, On the extension of linear transformations, Trans. Amer. Math. Soc. 55 (1944), p. 153-169.

Reçu par la Rédaction le 11. 5. 1959

VOI

G. GOES (Ludwigsburg)

- 1. Einleitung (¹). Die Absicht dieser Note ist es zu zeigen, wie der bekannte Satz von Schur-Bosanquet über Summierbarkeitsfaktoren mit einem Schlag verschiedene bekannte und neue Kriterien für Fourierkoeffizienten liefert, wenn man die in den Arbeiten [13] und [14] eingeführte Theorie komplementärer Fourierkoeffizientenräume heranzieht. Abschnitt 2 enthält einige Raumdefinitionen, Abschnitt 3 enthält Aussagen über Fourierkoeffizienten, welche das bekannte Kriterium von Kolmogoroff [26] und seine Verallgemeinerungen durch Moore [30], [31] und Cesari [7] enthalten. Abschnitt 4 enthält neue Aussagen über Multiplikatoren, welche teilweise auch mit dem Satz von Schur-Bosanquet bewiesen werden und Verallgemeinerungen bekannter Aussagen. Abschnitt 5 enthält ergänzende Bemerkungen und auch ergänzende Literaturhinweise zu den Arbeiten [11], [13] und [14].
- 2. Definitionen. Wir verwenden die in den Arbeiten [13] und [14] eingeführten Symbole und Vereinbarungen und verweisen auf die dortigen ausführlichen Raumdefinitionen für $E=L_p\,(1\leqslant p\leqslant \infty),\ L_{\varPhi},\,C,\,V,\,A,$ die zugeordneten komplementären Räume E^* und die zugeordneten Stieltjes-Räume dE. Die in [13] und [14] mit $(C_1-E)^*$ bezeichneten C_1 -komplementären Räume bezeichnen wir hier wie in [15] kürzer durch das Symbol E^{1*} . Neu hinzu kommen die folgenden Räume:
- 1) Ist $E \subset P_{\infty}$ ($P_{\infty} =$ Menge der trigonometrischen Reihen) und E ein BK-Raum, so ist E_{kN} ($0 \le k < \infty$) die Untermenge von E in der das trigonometrische Orthogonalsystem eine C_k -Basis bildet, d. h. es ist genau dann

$$\mathring{f} \equiv (a_j, b_j) \equiv \sum_{j=1}^{\infty} (a_j \cos jt + b_j \sin jt) \epsilon E_{kN} \quad (0 \leqslant k < \infty),$$

⁽¹⁾ Der Verfasser dankt der Deutschen Forschungsgemeinschaft für ihre finanzielle Unterstützung bei der Abfassung der vorliegenden Note.