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in (3) we see that the first term is negligible as compared with the third.
Thus, for M < 47"

Uy < ,n701'/1020+x~.
We easily see that the same result holds also for M > A7 Hence

B < ,'7/’101/1020-{—91

Thus, as is shown in [1], one can obtain

~

B 47
.}J =) = 217(3)

9
N3/2 . :__2 N'{' 0 (N7UI[1020 H) .

i=1
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Among many other important properties of Gauss sums it.is known
that the Gauss sum 7(y) of a congruence character y of an algebraic number
field F is essentially the same thing as the constant factor w(y) appearing
in the functional equation of Hecke’s L-function defined by the charac-
ter y. Thus interpreted, the Gauss sum z(y) is very naturally decomposed
into its local components z,(x), where p means a finite or infinite place
of F' (see Hasse [4]). We call 7,(x) a local Gauss sum. The aim of the present
note is to investigate some arithmetic attributes of the local Gauss sum.

Let us first congider the factor set

7y (%) 75 ()
T (29)

between local Gauss sums. It is well known that in many cases such
a factor set becomes a so-called Jacobi sum (Hasse [3], Weil [7]). But,
in the general case of local Gauss sums, in particular in the case where
the conductors of y, y are divisible by a higher power of p, there is no so
simple expression of j,(x,y) as ordinary Jacobi sums. ‘We shall prove,
however, the formulas (5), (12) of §1, which show that j,(x,%) is in
every case transformed into a generalized Jacobi sum.

In § 2, we deal with the explicit determination of the value of j,(x, v),
restricting y, ¢ to quadratic characters. In general, the problem of this
kind necessarily concerns a ‘“‘Grossencharakter’” (Weil [7]). But, if x,
are quadratic, then the square of the generalized Jacobi sum j,(x, )
is a natural number which is easily determined and the sign of j,(x, v)
itself is, as the formula (16) of § 2 shows, given by the quadratic norm
residue symbol.

The formula (16) is equivalent to a splitting formula (17) of the
quadratic norm residue symbol. For prime ideals prime to 2, the formula
(16) (or equivalently (17)) is easily proved by a simple computation, and
for prime ideals dividing 2, (17) is an almost immediate consequence of

Jpltsw) =
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the product formula of the norm regidue symbol and of the analytic
properties of L-functions.

The formula (17) is regarded as & local form of the fact that the
inverse factor such as (7‘;—) (ﬁ) of quadratic residue symbols is expressed

a

by a factor set between Gauss sums. (See e.g. Hecke [B], proof of quad-
ratic reciproecity in an arbitrary number field.)

For prime ideals dividing 2, it seems to be an interesting problem
to prove (17) by a precise determination of the value of a local Gauss
sum a8 in Lamprecht [6].

1. Let F be an algebraic number field of finite degree. A congruence
character y of F, considered as a character of the idéle group of I, deter-
mines its p-component g, for every finite or infinite place p of #. The
p-component y, of y is a character of the multiplicative group of non-
zero elements of the p-adic number field F,.

Assume 9 to be finite and let f, , be the conduetor of y,, d, the local
different of F, and let ¢, , be an element of F\, which generates the ideal
fr,p0p If M (s, z) is the product of Hecke’s L-function L(s, x) by a suitable
factor including gamma and exponential functions, then we have the
well-known functional equation

(1) Ms, z) = w(x) M (1—s,7)
and w(y) is decomposed into its p-components ,(y):
(2) w(g) = [ ] wy(x),

)

where the product runs over all places of F.
For p finite, we have

'%(X)
lzy(1)] 7
where N denotes the norm. For p infinite, we set always [7,(x)| =1L

The quantity t,(y) is the local Gauss sum of y and its explicit form is
given by

3) w,(y) = (%)l = VN, ,

1o (P 0) ™! Z‘ Zb(u)ep(;z;) (p finite),

wmod ix, )

4 7(xy) = uF0 )
—~i (p infinite and x,(—1) = —1),

1. (otherwise),
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where ¢,(u) = exp(2niS,u), 8, denotes the local trace and the sum is
extended over all prime residue classes modf,, in F,. (For proof, see
Hasse [4], c. f. also Dwork [1]).

Now we want to show that, for any two congruence characters y, ¢
of F, the factor set

Tp (x) Tp (y)
Tp(%‘l’)

is transformed into a generalized Jacobi sum. Since we restrict ourselves
to a fixed prime ideal p of F' in the rest of-this §, we write simply y, ¢
for x,, y,. Therefore y, v are continuous characters of the mnultiplicative
group of non-zero elements of F,. We write similarly f,, ¢,, D, e(x) and
z(y) for f, 4, @, 4y Oy, 6;(u) and 7,(x), respectively.

Assume first that §, #{,. Without any loss of generality, we may
only treat the case where f, divides f,. There is an element 1 in p such that
ftA="%, »,A=¢, and we have f, =f,. So, under the additional
assumption f, # 1, we have

() Tw) =xle) ™" D x(u)e(%)'w(%)‘l > ,,,(,L,)g(%)

o * R
- - U _ v
=2(@) ' NHT ) x(u)e(—)'v(%) ) w(v)e(~—)
umod Py T [
uséoth'f

lu-}-v)
p .

v

=N 2le)  wle) ™ D) 2(w)p(v)e (
%2 )
Set Au+» =1 and ¢, = ¢,, which is naturally legitimate. Then,

w(DTl) = N W) gle)  wlp)™ Y x(u)w(z~xu)e(¢i)

t,umodfv
1=£0,u=k(y)
= Nt -1 -1 el _ }3‘_) (_f_)
A xlp) ™ (w,) ;’{%’x(t)w(l ; }xw(t)e -
=NATxA D awd—is)xp(e,) vaz(t)e(;;-)
Rl ‘ m
=3() D 2(s)p(L—7s).
o0t
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It fx =1, on the other hand, then =(y )—x(qox)“l and 7(yp) =

2(y) " T (w), whence < (z)1( )——x(%)"1 (pp) T (xw) = 2(A) T (xw).
Hence in either case We have

7(x)7(p)
RAYZ5AS s y) 1—2 A =T, Aep).
(5) " —mgdfxx(. s)yp(l—2s) (F, f )
as£0(p)

Next we consider the case of f, = f, = f. Let f, be any divisor of §
and %, be an integer in F, such that f, = f/4,. For any ¢eF, with
t =1 (modf,) and for any unit se¥,, we have

(i ol 5 = e ) (=)

Aop—8 A
= xw(t)x(:o) (l-l— wy— 7‘2) = qp(t)y (;o)g,,(__s;i._ﬂf’l):

where w, is an element in f,. If 4, is not a unit, then 14— s is a unit and
Jgwyef. Therefore we have y(dy—s—+Aw,) = p(—8) and

Ao—s—}—lowo)_ ( ~_§_)

(6) w(—-——-ﬁn =yl A

If }, is a unit, then (6) is of course true. Thus we have
8t 8t s

@ "(zo)"’( zo) s ) (-5 7

Let f, be a proper divisor of f,,, i. e., a divisor of f,, ditferent from f
itgelf, and consider the sum

> i) b-5)

smodf

8550 (p)

extended over prime residue classes mod f. Then, since 1, cannot be a unit

and since it gives a wnit in F, such that yyp(t) #1, t =1 (mod f,), the
above formula (7) gives

Sebeb- )= Dol 3ol b3}

x

This implies
2 2 ™ il P 0.
smodfy
a0 (p)

* ©
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After these preliminaries, we set f, =f, = f,,4, ¢ =¢, = ¢4 The
factor A is an integer in Fy, but not necessarily an element of p. Then,

we have
v
() T(w) = 1lp) ™ z{w)e ( )1/!(% T/)(ﬁ)e(~)
g umgdfz P 01% Po
w0 ) R0 ()

1 _ U+
v(p,) 2 x(u)w(w)e( -

%)
Putting u+v =%, we get
-1 \ t
(1) 7() = 2(p)  plw,)” E x(w)y(t—u)e (E)

%, 1mod T

sk, i—us20 ()

— -1 -1 K _

) = v S al]eft
8550, 5/n=£1(5)

holds for any unit y in F, and for ¢; = f,/n':

Let = be a prime element of p and set t+= ='t’ (¢ == 0 (mod P)). Moreover,
1,2
uz£0,1ku/nb’ ()
If §,/=* is a proper divisor of f,»» then we have ¢ > »' with the exponent r’
determined by (1) = »”, and (8) shows
12 "
e( ‘i) = e( y_i) Z e( _i) = 0.
' mod ag P Py T "mod ag Pr T

set f, = p". Then, ¢ running over 0,1,...,7 and ¢ moving mod f,/=*
= x(%)”‘w(%)"‘Z{ Z x(;)w(l—~)}1xw(n)2xw t)e(
(9) Zx(%)w(l—%)=0.

=y (i) =0 (1)

we have
u i t )
- t)e -
ntt,)x'l’(ﬂ ) (‘pxn—z
i smodfy
If conversely ¢ < #', then, provided that f,, = 1, the following relation
Therefore we have

¢ . '
10 t')e -] = E e( — ) =0
o ‘TS'J () (%n"'”) ymif ) tmodn \e3d ’
xw i
r=5=0(p) U= (igy)
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and it follows from (9) and (10) that
(1) () = 2(@) " w(@,) T X

X 2 x(j—;—,)w(l—%)-xw(nw) Z xw(t’)e(%;_r,)

smodf, Vmod fyy

s5E0, 8/t 5 1(D) vE0 ()

=xw(¢m>'lxw(ﬂ)'12 X("}) ( ) (A Z’”’ (rpx,,)
xw)Z ( ) (1“‘”)

Hence, under the assumtpion f,, #1, we have

T(x)Tly) _ 8 ._i) - =
(1) T Z Z(A)V’(l 7 (f, = Tp = Afp)s

smodfy
s=£0,8/45E1(p)
where the sum iy extended over all prime residue clagses mod.f, with
the additional condition s/i == 1 (modp), which may be omifted unless
is & unit.
If we again use (7), the right hand side of (11) turns out

T Nolio SN 6—t i,
w EE-Nw ) AL li- D= f=

smod fyy
s$0 3/1%1 [65)
The formula (12) is proved whenever f,, 7= 1. But, as the matter of fact,
(12) is also valid even if f,, = L.
To show this, assume first f, =f, 1, f,, =1. Then it follows
from gy (') =1 that

() w(y) = x2(p,) vl " X

<20 3 -l X G

i smod fy 'mod fxlﬂ
8k, a/nlséx ® V50 (p)
Since
, 0 for i<r—1,
11 .
e _l)= —1 for ¢=r-—1,
ZT:

1 for d¢=r,
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we have

(1) T(y) = x(wx)“w(%)’l{—xw(w"l) 2 % (;f_—l)w(l—"y;f_—l) +
o Szl )
= lp vl = X aep =+ Y@t —a)

%(%)"lw(%)‘l{— Zs: w(n:l ) + 283 ;u(f;— —1)}

= 20 plo) p(—1) (- Zf pa—sa )+ 3 )
s inssff“—%u») zgod(;’f
Plp) " p(—1) (%—gﬁ +Np Ny ")
= Ny (00 = e ¥ 0[5 (13-

So, in this case, (12) is also true. If next f, = f, = f,, = 1, then z(x)z(y)
= 2(®) ()t = yw(d)™' = 7(xp). Thus, (12) holds in every case with-
out exception.

We call the sum in (5) or (12) a generalized Jacobi sum.

It must be noted that, if f, =f, =1, =1 and Np =2, then the
sum in (12) is nonsence. It is convenient to regard such a sum always
to be 1, although it plays no essential role.

2. Let x,y be congruence characters of F. We denote by j,(x, v)
the generalized Jacobi sum of p-components x,, v, of y, ». In. a explicit
form, we have

D)t s)py1—2s)

smodfy, p

18)  Gplz, w) =} 0

D w(nlt=2) = = )

smodf v,
$5£0,8/Az51(p)

As for the case where the relation f,, =, ,4 (A< p) holds, we may define
Jo(2s v) by setbing j,(x, w) = jy(v, ). It follows from (5) and (12) that

T (1) 7 (%) {jp(xﬂﬂ) FenlTops Tup #Fup)
Tp(%’/’) N(A)ju(x, w) (fx,b = fw,b = lfxv,b)'

(fx,p)* = fw,pa Aep) ’

(14)


GUEST


292 T. Kubota

Therefore (3) yields
(15) g (2> ) = Vrin (N, Ny Nl 0)

for any two congruence characters g, y.

Assume now that F containg all the m-th roots of unity. Then
2 non-zero element acF determines a congruence character yx, of I whose
p-component is given by the norm residue symbol

-(+)
Xay = P In

For such characters x., s, We seb

jp(a’ B) = jv(Za’ Xﬂ)-
For the sake of convenience, we write furthermore f, ,, z(a), 7(a), w(a),
and wp(a) for fzm,py 7(%a)s Tv(lu)a w(xa), and wb(%u)a respectively.
Now, the aim. of this § is to determine explicitly the value of jy(a, ),
provided that m = 2. The result is as follows:

jp(ay B) = ('O%E') Vmin(-Nfa,b’ Nfﬂ,b: Nfﬂﬂ,v) ’

(16)

where we write (ﬁéﬁ) for (%ﬁ) .
2
Since it follows from (3), (14), and (15) that (16) is equivalent with

(&qz%mmw
p wy (af)

it suffices to prove the latter relation.

If p is infinite, then (16) is clear from the definition. If p iy finite
and does not divide 2, then, instead of (17), (16) iy proved directly by the
defining formula (13) of the generalized Jacobi sum. Namely, since in
this case

(17) (ay BeF'y a #£0, f 0),

mj-n(Nfu,p: -N.fﬂ,w -Nfa ,b) = 17
we have gimply to show

(18) ia,p) =(%E).

Tf the exponents of p in a, § are both even, then (Lpﬁ) =1 and by the

formula of (18), we have j,(a, §) = 1. (Put A = 1 and let s be any unit
#1(p).) If the exponent of p in a is even and that of f is odd, then

icm
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(%) =(%) and by the upper formula of (13) we have j,(a,f) =

= (ﬂ;a) = (%), where x is a prime element of . (Set A = m and s = 1.)
If finally the exponents of p in « and g are both odd, again the lower
formula of (13) shows

=5 -5

(Set A ==, 8 =1.)

It remains therefore to prove (17) in the case where p divides 2.
Let I, ..., [; be all the prime divisors of 2 in F and ['be any one of them.
Then, for non-zero «, g¢F, it follows from the approximation theorem of
valuation that there exists o” ¢ F such that a/a* is a square in F; and o*
itself is a square in every F; with I; % [. We choose similary a §* for 8.
Then, as direct consequences of (3) and (4), we have

wy, (o) = wy (") = wy(¢"F*) =1 (L #10),
w (%) = wi(f), w(d*pf) = wi(af),

EE)-(52). (5E)=r o

On the other hand, since y,, xs x5 are all quadratic, the general
theory of Hecke’s L-function shows that w(a) = w(B) = w(af) = 1.
(See, e.g. Hasse [2].)

Hence we have

w(a®)w(p") wy (oY, (67) _ (a*, 5") (a*, B*\ wi(a"yor (6)
i w(d B [1 P Q P | w(a®f)

b2

w(a*) = wi(a),

Therefore, because of the product formula of the norm residue symbol,
we have

( a*r /3*) _ ’Wx(a*)wr(ﬁ*)
{ wi(a* %)
This means
(&g=wmmﬁ>
{ wi(af)

Thus the formula (16) is completely proved and at the same time the
splitting formula (17) of the norm residue symbol is verified.
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We add here a numerical example of the splitting formula in the
simplest case where F' = £ is rational number field and p = 2. Let O
be the multiplicative group of non-zero elements of the 2-adic number
field £,. Then, for every representative of 03/0;? the value of w,(a)
is given by

a =1, 5, —1, —5, 2, 10, —2, —10
wy(a) =1, 1, 4, 4, 1,—1, 4 —i.

Thig gives, for example,

(10,—2)= —..i= 1

2 q
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On the existence of primes in short
arithmetical progressions

by

E. FoeeLs (Riga)

Introduction. In 1944 Linnik (see [4]) proved the existence of an
absolute constant ¢ > 0 such that the smallest prime in any arithmetical
progression ku-+1, (k,1) =1, . =0,1,2,... does not exceed %°. In
1954 Rodosskii (see [6]) gave a shorter proof in which a fundamental
lemma of Linnik was replaced by a weaker result (see further (10)).
Introducing a new parameter in Rodosski’s proof in 1955 I proved
(see [2]) the existence of an absolute constant ¢ >0 such that there is
at least one prime p =1 (modk), (k,1) = 1, in the interval
1) (, a%%) for all o>1

and I proved that there are other absolute constants ¢, ¢, (¢a >¢; > 0)
such that
(@) w(@;k, 1) >ak~t  for all we(k2, ¥,
if (k,1) =1 and z(z; k, ) denotes the number of primes p =1 (modk)
not exceeding .

The estimates (1) and (2) are of some importance for o < expk®,
&, denoting (throughout this paper) an arbitrarily small positive constant.
In this case the uncertainty about the existence or nonexistence of the
real exceptional zero of Dirichlet’s function L(s, ) with a real character y
modulo % is the reason why the existing estimates of =(w;%,1) and
estimates of the difference of consecutive primes = I (modk) fail to give
us any positive information. For x > expk® and k > ky(s;) according to
Tehudakoff ([3]) there is at least one prime =1 (modk) in the interval

3) (o, (1407,
and (2 k, 1) > ¢s(e) 2 /p(k)loga, where (k) is Euler's function denoting
the number of natural numbers I < % with (I, k) =1 (%).

(1) For these results see, for example, K. Prachar [5], IX Satz 2.2, IV Satz 8.2;
IX Satz 3.2, 1X Satz 4.2. (Roman numbers denoting the chapters, A the appendix).
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