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Proof. This theorem easily follows from Theorem 1 by the use of
well-known methods (see, for ingtance, [1] and [4]).

’J.:HEOBEM 3. Let q be a prime nwmber satisfying the condition
exp (1) < ¢ < Nexp(—r®). Then we have

REN(N) = BRE(N)+0(N 4,),
where

Ay = (L)g4g/N)" 54 F-o2+a,

Proof. If we put o =1, & =0, v = Nexp(—~r®) in Theorem 2
we obtain the equality ’

ZH(N) = RY().
The theorem is proved. In the case y(a) = (ﬁ), 1 =1 we obtain the re-
sult of paper [3]. !
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ACTA ARITHMETICA
VI (1961)

On the representation of integers by binary forms
by

D. J. Lewis* (Notre Dame, Ind.) and K. MABLER (Manchester)

Let F(x,y) be a binary form of degree n > 3 with integral coeffi-
cients of height ¢ and with non-zero diseriminant, and let m be an integer
distinet from zero. FL. Davenport and K. F. Roth, in 1955, proved a gen-
eral theorem on Diophantine equations of which the following result
is a particular case.

The equation F(z,y) = m cannot have more than

" (4@ m )P+ exp (643n%)

integral solutions »,Y.

This result is of great interest becanse it gives an explieit upper bound
for the number of solutions. The proof depends on the deep ideas which
Roth introduced into the Thue-Siegel theory of the approximations of
algebraic numbers.

We establish in this paper a better upper bound for the number of
solutions of F(x,y) = m. Our proof does not depend on Roth’s method,
but uses instead the p-adic generalization of the Thue-Siegel theorem
discovered by one of us in 1932. We consider only primitive solutions
2, ¥, i. e. solutions where z and y are relatively prime; but this is not an
essential restriction.

Already in the original paper M, of 1933, it was proved that the equa-
tion F(2,y) = m has not more than

ot—i—l

solutions where ¢ > 0 is a constant independent of m, and ¢ denotes the
number of distinet prime factors of m. Since &t = 0(Im|®) for every
& > 0, this estimate is better than that by Davenport and Roth for all
sufficiently large |m|; but it does not show the dependance on the coeffi-
cients and the degree of F(z,y) of the number of solutions.

* National Science Foundation Fellow.
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This lacuna will now be filled in the present paper. Our main
result in that there are not more than

ey (am)eaVa-|- (ggm)t+l

pairs of integers x, y with # # 0,y >0, (¥, y) = 1 for which F(x, y) £ 0
has at most ¢ given prime factors py,..., p,. Here ¢, ¢, and ¢, are posi-
tive absolute constants which can be determined explicity and are not
too large. In particular, if |m| is greater than a certain limit which depends
on the coefficients and the degree of ¥ (x, y), the number of primitive go-
lutions of F(x,y) = m is not greater than
(6am)+*.

This upper bound depends only on m and on the degree of Tz, y), but
s independent of the coefficients of this form.

Our proof makes very essential use of the ideas of the old papers
M, and M,. It is based on three new theorems (Lemmag 1 and 2 and
Theorem 1) which perhaps have a little interest in themselves, Lemma 1
is an improvement of one by N. I. Feldman, while its p-adic analogue
Lemma 2 is due to F. Kasch and B. Volkmann.

1. Throughtout this paper, the following notation will be used.
is the field of complex numbers.
is @ prime.
» 18 the field of p-adic numbers.
C, is a finite algebraic extension of P,, with the divigor p.
la| is the ordinary absolute value in C.
lal, is the p-adic value in P, normed such that Iplp = 1/p.
~lal, is the p-adic extension of |a|, in 0,; thus

R o

lal, = lal, it aec P,.

Py ...y Py ave finitely many distinet primes.
Fys Oy 92y lalp,, and lal,, for = =1,...,1, are defined in analogy
to Py, Cy, ¥, laly, and laly, respectively.
Let

1,

ny ng
-7 -
f(.'vl, ...7508) = 2 Za'h]..,ham?l Ll._‘w:‘a Ny
hy=0 hg=0

be a polynomial in one or more variables with coefficients in 0. Then

H(f) = max [ay 5]
Ohy <

6ghs<ns

icm°®
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is called the height of f. Similarly, if the coefficients of the polynomial
lie in P, or C,, we call
H, = max |a, 1, and H,(f) = max |as, 3|
2(f) 931@111 71:..78[10 » f ?<h1<n1 1. lglp
l:]<hssns 6<hsgns
the p-adic height, and the p-adic height, of f, respectively. Further heights
H, (f) and H, (f) are defined correspondingly.
The resultant R(f, ) of two polynomials

HE) = apa™ + a0 ... Fa, and F(@) = @+ AV 4 Ay

with coefficients in an arbitrary field is defined as usual in terms of a de-
terminant. Provided that a, # 0, the descriminant D(f) of f(») is then
given by .

D(f) = (—1)"" V2R (f, 1),

where f'(z) is the derivative of f(x). A simple calculation allows to show
that D(f) may be written as the determinant

D(f) =
na, (n—1)a, ... 2ay_y  Op_j 0 0
: : : : : Pt ~1rows
F -0 0 0 N, (n—1)a; ... 20,5 Gy
a, 2a, vee (n—1)a,_, NG, 0 0
: n—1rows
0 0 ay 2t o (n—1)a,_; na,

2. One can establish simple upper bounds for |D(f)| and |[D(f)[, when
(») has coefficients in ¢ or Cy, respectively. .
Firgt let f(«) be in O[z]. By Hadamard's theorem on determinants,
it follows immediately from the last expression for D(f) that
ID(HE <020 D nag*+ [(n—1) a2+ ..+ a2} X
X {[64)24 1262+ . .+ |nay [P}
Here
a2+ (n—1) a3 |24 4 |Gy f?
@2+ 1205 ... + [ [?
Hence

< H(P)PL+ 204+ 03) < H{f)n-n.

[D(Hp < 0w~ (pp H (2 D+ 0D,
and therefore
@ D() < w T E G
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Secondly let f(z) be in Cy[#]. From its definition, .D(f) is a homo-
geneous polynomial in a,, 4, ..., &, of dimension 2(n—1), with numerical
coefficients which are rational integers. Hence

(2) 1Dy < Hy ()™

3. For the moment, let f(z) have coefficients in an arbitrary field
K, and let £ be a zero of f(») in K. Then f(#) is divisible by #—(; denote

by

1

g(@) = ,ﬂ__é.'f(«”) = boa" ™ b byt A by
the quotient polynomial. Since, formally,

11 c+:“ _ (1+$_|m2 )

z—{ =itEts T = ety Te)s
it is easﬂyf geen that
k n

3) b= Yat"=— Mol (h=0,1,..,0-1).

2=0 w=k+1

First assume that both ¢ and the coefficients of f(w) lie in C. On apply-
ing the first or the second formulae (3) according as |{] <1 or [{] >1,
it follows immediately that

4

a result due to C. L. Siegel.
Secondly, let both { and the coefficients of f(x) belong to C,. The
same method now leads to the inequality,

(6) Hy(9) < Hy(f).

Next, these formulae, together with (1) and (2), immediately give
the estimates

H(g) < nH(f),

6) D) <(—1P"H(gy"™* <A™ "H(f™™* it fa)eO[w], {0
and )
(7 ID(9)ly < Hy(@y ™ <Hp(H™* it f(@)e0y[a], (O,

The discriminants of f(») and g(z) are connected by the idemtity
D(fy = D(g)f (0)*,

a8 follows at once on expressing the two diseriminants in terms of the zeros

icm°®
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of f{x) and g(x), respectively. By means of (6) and (7) we arrive then at
the estimates,

(D)

(8) I (0 >nz—n:m—Hsz it f(@)eClw], Le0, f({) =0,
and /

, .D )12 .
O VoL EEE @0, 10, 10 =0

4. These two lower bounds imply the following two lemmas.

LevMA 1. Let f(z) be a polynomial in C[x] of the esact degree n and
with the diseriminant D(f), the height H (f), and the zeros (i, ..., L, tn C.
For every z in C,

(1DHN*"*

1) = 5W1m [2—¢,]

<r<n
LeMMA 2. Let f(x) be a polynomial in C,[x] of the exact degree n and
with the discriminamt D (f), the p-adic height H,(f), and the zeros L1,y ..., (p
in Cy,. For every z in G,
D 1/2 )
DU~ i gy,
Hy(f)*™ 1cran
Both lemmas will be proved in the same manner, using the inequa-
lities (8) and (9). .
Proof of Lemma 1. Without loss of generality, the minimum

7 (&)ly =

1rsn

is attained for the zero { = {,, hence
8= [e—Cu = R—¢].
The decomposition
f@) = ap(@—{1) .o (@ — L) (@~ 0)
implies therefore that

n—1

(=) = lagl 8 [ | le—2.-

y=1

Renumber now the zeros (i, ..., {,_, such that, say,
<2 it v=1,2,...,N,
>28 i »=N+1,N42,...,0—1,

where we put N = 0 if none of the first inequalities hold, and N = n—1
if none of the second ones is satisfied.

|C_Cvl

Acta Arithmetica VI 22
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By the definition of §,

le—&l 28 (n=1,2,...,n—1)

whence
N

N
[Tt = 8" =2 [[1=¢l.

r=1 =1
Further, i v=N+1,N-+2,...,n—1, hence |£—¢,| = 28 =2|2—(|, then
—t| = (e—E)+ (L= 8 = =0l — =] = §|E—C)

and therefore

-1 Mo L
[]le—tl =270 [] =4l
r=N+1 p=N+1
Hence
n—1 -1
[Te—el =270V [ e~2l.
Y=l V=]

Here the identity

n-1

w[[(E=5) =1

Y=l

(10)

holds, and so the assertion follows immediately from. (8).
Proof of Lemma 2. Now, without loss of generality, the minimum

8, = min jp—{,,
1<rsn

is attained for the zeio ¢ = {,, hence
8y = le—Clulp = l2—Lly.
Therefore, by the same decomposition of f(x) as above,
n—1
()l = lacly 8y [ [12— /)
Vel

Renumber again the zeros (, ..., {,.; such that, say,

) <8, i v=1,2,..., N,
Pl>8 H v=N+1,N42,..,0-1,

with conventiong for N similar to those above.
As in that proof,

\z_§v|p>‘5y (v =1,2,...,n—1),

icm
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30 that
N N
[ =2l =& = [le—=t),
=1 =1
Further, if v = N+1,N¥+2,...,n~1, hence [{—{], > & = [¢—{]y,
then
le—1Ll, = [(z—0)+ (=L = w"cﬂ]p’
and hence
-1 n—1
[ ==t =[] 12—=2)-
r=N+1 v=N+1
Therefore

n

-1 n—1
[]e—th = ie—tl,
=1

] =]
The assertion follows now immediately from (9) and (10).

5. From now on we impose on f(z) the restrictions that its coefficients
are rational integers and that

(11) ay #0
Then not only f(x), but also
(@) = a+a,+...+a,a"
is of exact degree n. Let
Plw,y) = apa™+ a2 y+.. .+ a,y"
be the binary form associated with f(x). Evidently

Plo,y) =9 (g) = wf(%)

and @, #O.

(12)

and, conversely,
f(@) = F(w, 1),

It is obvious that

(@) = F(1, ).

H(F) = H(f) = H(f").

Algo, as is easily verified, f(z) and f*(x) have the same discriminant.
‘We therefore put
D(F) = D(f) = D(f*)

and demand from now on that
(13) D(F) #0.

Thus D(F) is a rational integer distinct from zero.
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Denote by Py, ..., p finitely many distinct primes. Then, for each
suffix v =1, ..., %, let P,_be the p.-adic field and |al,, the p.-adic value.
Further denote by C, a finite algebraic extension of P, in which f(x)
and hence also f*(#) and F(x, y) split into products of linear factors. Also
let p, be the prime divisor of 0, , and let |al,, be the p.-adic continuation
of |alp, in Oy, so that
la'lpr if

[@ly, = ae Py .

PFinally write {;, ..., {, for the zeros of f(x)in O and (,,..., ¢,
for its zeros in C,, ; all these zeros are distinet from 0 because it is assumed
that a, 7% 0. It follows that

f(m) = “Oﬁ(w-cv) = a‘o[y‘](m“cw)
f’"(m):anﬁ(w-—%):anﬁ(mmzl;) (r=1,2,...,1)
F(z,y) = a0 ﬁ(w——ay) = aoﬁ(m—f:wy)
v=1 y=1

for all rational numbers » and y since such numbers lie in all ¢-41 fields
C, Gy -eny Oy,

6. Let from now on « and y be rational integers distinct from zero.
By means of the two Lemmas 1 and 2 we shall establish simple lower

bounds for |F(z,y)| and |F(z, Y)lp, in. terms of & and y. We begin. with
the absolute value.
For shortness, put

(D))"

A= T

and write
|@,y| = max(la], y), o =max(L,|l,...

1 18al).
From Lemma 1 and by the identities (12),

(144) [F(2,9)] > AlyP min |~ —¢,],
1rsn | Y

(14B) |F (2, y)| > A|a® min vy_1
1ogn | @ "

‘We must now distinguish several cases.

icm
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If |o] < |y| and hence |z, y| = ly|, from (14A)

(16A) (@, )l

. @
>A]w,y|”*mm(1,\§~cv)

I<vn

Next let |#| > |y| and therefore |x,y| = |@|. First assume that

1
2——%— >—— for all suffixes +»=1,2,...,n.
(4 »
Then (14B) implies that
1
(15B)  |F(z,9)| > Alo, g™ 5 > myw |~—a
Secondly, let
y 1 Y 1
= ——|, =|=——| Bay, be <—.
s T Tl Tl P S,
Since
1 >1
CN /0"
we have
1 1 1 1 . 1 1
y =|_+(z___) S| Ll-jg_Lisi L1,
@ {n z Ly In z Iy 20 20
and hence’
y 1 yl(mz)lll‘ﬁc
r Iy z Cy N7 20 gy ¥

Therefore in the present case,

(150) | (2, )| = ——0

)

For all integers # # 0 and y 0 one of the estimates (15) holds;
furthermore, o > 1. Hence it follows that
(16)
|F (2, y)| =

AimMmm(

1sr<n

2217 yl” for all integers @ #0, y #0.

==

7. A lower bound for |F(z,y)|, may be obtained in a very similar
way. It suffices, for our purpose, to consider integers & 0 and y #* 0
that are relatively prime.

Since F(w,y) has rational integral coefficients, the p.-adic heights

H, (F) =H, () = Hp,(f") (r=1,2,...,1)
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are all at most 1. For shortness, put

4, = (IDE))" (1=1,2,...,1)
and
a,=max(1, \Cr1|p,7---,lCm!b,) (’L’=1,2,,_,’t)‘

From Lemma 2 and by the identities (12),

(174A) 1B (@, 9)lp, = 4, (19lp,)" —w|
1 J b

(17B) P (@, 9)ly, > uwymnl -
1cran | @ Coy o

Again several cases will be distinguished.

If p, does not divide y, (17TA) implies that
(184) (@, ), = 4 ( ‘——Cw )
gu(n

Next let p, divide y and hence not divide . First assume that

_y~_1

1
>-— for all suffixes »=1,2,...,n.
gl '

b‘l 0’1

Then, by (17B),

1 A
(18B) |F (@, y)p, = A+ — = —" min (1, ?—~Cﬂ )
0y Oy 1gv<n Yy Py
Secondly, let
y_1 ¥y_ b 1
1<rgn |8 Cow loe” & Cemv Ie S0y, be < *
Then
¥ 1 +(£ 1 ) 1 1
T |y C-:N o C':N 17 CrN P = _&:‘
so that
z_i_=311(w¢) 1.1 o
& Con lbe @ Ly \y = 123 /7‘:‘—;’:. ZMCTNP
Therefore in the present case,
(18c) 7 Ao
1B (@, 4)lpe = min (1, .
TF 1cran Y b
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For all integers @ == 0 and y # 0 that ave relatively prime one of
the estimates (18) holds; furthermore o, > 1. Hence

)

for all such integers, and for all suffixes v = 1,2,...,t

8. On forming the product of the relation (16) and the ¢ relations
(19), we obtain the inequality

19 7 s A min(l ‘f—c
(19) |F (@, Y)lp, = 7 1 "y p

i
20) (P, [ [IF@ ), >

b
@
)[]mmb4~wu y
Ty l<n ¥ br

> Mo, yl" min ‘—_Cv

where M denotes the expression

¢
an,... 4 PF I TT(ID )
2&6%...0% T gnyin-T2 H(F)n_2(0'0'1 )R -

M=

It has advantages ‘to replace M by a simpler, although slightly smaller

number, as follows.
First, D(F) is a rational mteger not zero; hence

(21) 1mmﬂwwm>1
=1
Secondly,
02 o<Zd W, Ll =120
laq| | a v,

Tor in the case of the complex zeros {, of f(w),
o= — oy (agh agl a7,

Hence, if |{,| >1,

H(F) W 4.0 )
6] < T O I BT ) = T gy

giving the assertion for o.
Next let £, be a p-adic zero of f(x), and let 1 = oLy Then

7t a4 N S ag ey = 0,
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and 5o 7 is an algebraic integer and hence also a p,-adic integer, whence
the assertion for o,.
By hypothesis, @, is a rational integer not zero; therefore

t
laol [ ] aol, > 1

Pl

The estimates (22) imply then that
00y 2H(F).
On combining this with (21), it follows that

1

> - .
M (2H(‘F))3'2”%2""7123'(17’)%“2

From now on we shall be concerned only with'the case when n > 38
and therefore certainly .
‘ n'? > 24,
Hence M allows the lower bound

M > (2w H (F))™",

and we arrive at the following result.
TeEEOREM 1. Let

Fa,y) = a2"+0,5" g+ ...+ a,y"”, where a, £ 0 and a, %0,
be a binary form of degree n > 3 with rational integral coefficients and disori-
minant distinct from zero; demote by a = H(F) the height of F (w, y). Let
D1y --.y Pt be finitely many distinct primes; let Py, for v =1,.,.,1, be the
P, adw field, and let Oy, be a finite algebraio emtension of P, in which the
equation F(v,1) =0 has n roots Lo, ..., Lm; let further 4'1, oy Ln be the
 roots of the same equation in the complen field C. If & and y a/re any two
rational mtegers which are relatively prime and distinct from zero, then

\F(, y)| H @, 9)lp, >

T=1

> @nta) o, o7 min 1,12 s, ﬁ min(, |2,

9. For shortness, put

)

!D(m, ?/) lF (wi y)l an », ?I 111,, k= (‘2%’(‘1)‘”‘.;‘.

==l
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Let further y and & be two constants depending on » which will be chosen
later and are such that
y>0, 6=0, y+é=n.
Any pair of integers », y is said to be admissible if

@ #£0,y #£0, (@,y) =1, F(w,y) #0 and hence f(g)“'

Our aim is to find an upper bound for the number of admissible pairs
®, y for which ®(2,y) =1
- b

thus which have the property that the integer F(w, y) # 0 possesses only
the given prime factors py, ..., p;. It hag some advantage to study a slightly
more general problem, and we shall therefore also establish- an upper
bound for the number of admissible pairs @, y satisfying

(23) ®(2,y) < |z, yl’.
By Theorem 1, such pairs have also the property
t

@
T T by i ‘11
lgvgn ‘ C )]_].12-;%;(

_..__Cw

Y

) <Flo, Y~
Pr

and hence even more the property

; .

(24) ) [] min @, lo—g2ah) <wio, 1.
1<vn

T==]

i

lgvgn (

TFor the latter inequality is weaker than the first because

— =l
) Y

10. The solutions of (24) can be subdivided into nt! classes which,
in general, need not.all be disjoint.

Let ¢ stand for any one of the n zeros fy, ..., {, of f(«) in C; also,
it =1,...,1, let {? stand for any one of the % zeros ., ..., {m of /(®)
in 0, . Thus there are ! digtinet sets of t4-1 zeros

(&, t0, ..., .

Tt is obvious that every solution x, y of (24) satisties at least one of the
n*t! inequalities

<

127

—

o — 9Ll = Wl | —
f’/rvy,—yp.,y %-

. 13
(28) min(l, ‘% —Cl)!;[ min(1, lp—y¢®,,) < klo,y|™”

that correspond to these sets of {41 zeros.
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11. Let f denote a further constant depending on n which will be
chosen later and ig such that
0<f<y.
Put

and denote by v the smallest positive integer for which
1
== (t+1).
Aggume now that ®, y is any admissible solution of (28) with
(26) o 9l > w0,
Since ¢ >0 and % >1, we have

klo, y|7" = 57 (kla, yI )" < (klo, y| ).

Hence there exist ¢--1 non-negative numbers i
? depending on
2 and y such that P PSR ¢

. @
o [l
min(1, lo—y, ) = (klo, g (z=1,2,...,1)
and therefore also
min(l ’ﬁ_g)qk\w =f)lt-+0)
(28) ) v % » YI77)

min(l, lw~y§")lp,) < (klw, f’/lﬂﬂ)%(lw) (r=1,2,...,1).

From (25) and (27) it follows that

-+ =1
Write Pt @1t g =

”(1+0)‘P1=91+71 (T=0,1,...,t)

where gy, g1, ..., §; are non-ne

gative integers, w] .
numbers such that gars, While 4o, 73, -, 74 ave veal
Then 0<y<1l (vr=0,1,..,1.

2.%—”(1-1-0)2% Z'y, v(1+0)— (1) > v

T=0 T=0 '
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This means that there exists at least one set of t--1 non-negative
integers f,, f1, ..., f; for which
fotfito =2, FH<g. (=0,1,..,9

and therefore also

fvi <ﬁ <A+)p.  (r=0,1,...,10).

The inequalities (28) imply then that also
; d ~Bytolv
min (1, |——{|] < (kle, y|7F)'®
(29) Yy

min (1,lo—y®,) < (Bla, y|7)" (r=1,2,...,9).

From its definition, the set of ?--1 integers fo, fi,...,f; has only

v+t
t
possibilities. Therefore every solution z, y of the two conditions (25)
and (26) satisfies one of the ”‘H) possible sets of inequalities (29).
On combining this result with that of § 10, we find:
LEMMA 3. Every admissible pair @, y satisfying the two inequalities (23)
and (26) is a solution of at least one of the

N = (v+t) l+]
sets of inequalities (29) that are obtained if (1) the set of zeros (£, WL, )
of f(x) runs over all ils ntt! possibilities, and (ii) the inlegers fo, fl, ey fi

v+ 1

K ) solutions of

run over all (

S0,/ 30, ooy 120, fokfibotfi=0.

12. The following result holds.

LmvMA 4. Let the notation be as before, and let further s be one of the
integers 1,2, ...,n—1 while B, 0,8 and = are four comstamis such thai

B=si+1+s+@<n, 0<9<3 O6>Bs =x>=1

Put

(a+1 +9) (‘”9) 1+“""f§
K= (404) min (1, —B?) v 6B ,
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., Iy non-negative constants such that
I+ =1,

Let there emist admissible pairs of integers w, y for which

and denote by Iy, I'y, ..

min(l, —;0« —c‘) < (o, :'/!";)’wo

(30) o,y > K,

min(1, [p—yO,) < (4o, I (v =1,2,...,1),

and let 1y, Y, be such o pair with smallest [y, yo|. Bvery admissible solution
a, y of (30) then satisfies the inequalities
(31) Lo, ol < 1@, 91 < (#18g, ol o'lo.

With a slight change of notation, this lemma iy essentially the Hilfs-
satz 3 of the paper M, pp. 709-10. However, this Hilfssatz is proved
in M, only with the following two regtrictions.

RESTRICTION A: The zero { of f(w) is a real number; further, for
T=1,...,1 the gero {? of f(z) is a p,-adic number. _

' RESTRICTION B: The polynomial f(z) is irreducible over the rational
field.

The lemma remains valid without these resirictions. In fact, the proof
of Hilfssatz 3 is given on pp. 693-709 of M,. An ingpection of this proof
shows that the Restriction A is entirely unnecessary and is used nowhere.
It was imposed for the insufficient reason that non-real numbers
in ¢ and non-p.-adiec numbers in 0)_cannot be approximated arbitrarily
closely by rational numbers.

The Restriction B is required in the paper M, only once, in the proof
of Hilfssatz 1 on pp. 696-699. However, a very glight alteration of this
proof makes it again valid for all polynomials f(w) with integral coefficients
that have non-zero diseriminant. The proof so changed can be found,
with-all its details, in the paper P, pp. 22-25, where it is used to prove
an even more general result than Lemma 4.

13. We also require the following result.
LaMuma 5. Let the notation be as in Lemma 4. Let further oy, y, and o,
Ya be two admissible pairs satisfying the conditions
oy
Y1
.and, for j =1 and j = 2,

&g
#* ”?'/';7 101, 1| < Jog, ¥l

@y
E—C ) < (o, 4] =B,

l m.in(l,
(32)
min(1, & —y; ¢, ) < (xlay, y;|~B) ™

(r=1,2,..
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Then

1 -
[y Yol 2 _2‘;'\“"17 7

The proof of this lemma is given in the paper M,, pp. 39-40. Although
this proof again imposes the Restriction A, this restriction once more
is not required and may again be omitted.

From now on, assume that

B >2.
The assertion of the lemma takes then the form,
X A
(33) (2%) BT (@, 9l = {(2) P77 oy, yal)P

which is more convenient for the following application.
Let

Boy Yoi By Yrj «-o9 Try Yr

be finitely many admissible pairy satisfying the inequalities (32) and

with the additional properties that
@; Xy
Yi Y;

if 0<i<jsr

and
A K 1wy Yol S |21y Y0] <000 < ]_a’nf’/r| <B

where A and B are two constants such that

1
(2%)®* < A < B.

By (33),
1 -
@x) By, Yyl = {@%) B m, P G=0,1,...,7—1).
Therefore, . : .
1 [ a—
(2%) B jmy, uel = {(2%) P70 |, wol}E-
and so also .
1 -
@%) BB = {(2%) PEA}E-Y >1.
Hence .
log((2%) ®* B
Jog og|((2%) : )
log({(2%) ®* A4

log(B—1)
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14. We procede now to the closer study of the nuniber of admissible
pairs @, y that satisfy one of the systems of inequalities (20) to which our
problem. has already been reduced. To do so, we apply the Lemmas 4
and 5 where we pub ;

[

B =8, % =k, Iy=—, Iy =*>=,.., rtm-'v‘.

This choice of parameters is valid because § will soon be fixed as a quan-
tity greater than 2, and it is obvious from the definition that % is greater
than 1. s

For convenience, we shall from now on nog diptinguish between two
admissible pairs of the form

#,y and —u, —y,

and of two such pairs only one will be counted, say that with y > 0. It
follows that if @, ¥, and @,, y, are two distinet admissible pairs, the
rational numbers @;/y, and »,/y, arve likewise distinct.

Denote by

8 = s(fi, h ...,—f‘-)
v v v
the set of distinet admissible pairs @, y that satisty (29). This set we divide
in three disjoint subsets S, S,, and S, as follows.
8, consists of those admissible pairs in 8 for which
92 .
I, yl < (2%)°%,

8, of those pairs for which
2 .
@0 <o,y <K,

and. 85 of those pairs for which
¢,y > K.

Let Ny, N,, and N, denote the numbers of elements of Sy, §, and §;,
respectively.
‘We note that the pairs w, y in §, and 8, satisfy the inequality (26)

because
LI
(2k) >kP .
15, The Thue-Siegel method does not seem to lead to any non-
trivial estimate for N,. It i3, however, obvious that
4

(35) Ny < 2(2k)%-2,

e ©
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For every pair », ¥ in §; has coordinates of the form

2

@,y = F1, F2,..., [(F2k)"7],

2
and only the pairg with positive y need be counted; also |z, y| < (2%) P2,
Evidently

P (5, ¥) < (n+l)alz,y™ for all & and y in C.
It follows that, if m can be written in at least one way :a.s

m = F(z,y) where #,y is a pair in §,,

necessarily
b3

Im| < (n+1)a (2P, = O say.

Conversely, if |m| = C, all admissible representations of m in the form
m = F(x,y) belong to either S, or Ss.

16. For the two remaining numbers N, and N, upper bounds are
obtained by means of the formula (34). Its right-hand side augmented
by 1 evidently is an upper bound for the number of admissible pairs
x, y for which |z, y| lies between A and B and which satisfy (29).

First put

2
A= (2k)*?, B=K.
1
Then A >(2k)"~%, and we shall soon fix the parameters such that the
second condition 4 < B is also satisfied. It follows then from (34) that

1

=3
1og Jol2R) TTE)

log{(2k)7—*}
log(p—1)

In a similar way, Lemma 4 enables us to find an upper bound for N,.
By the lemma, every pair @, y in S, satisfies the inequality

(36) N, < +1.

1 2nd
[@g, Yol < |2, 4| < (kﬂ %0y Hol) *

where |z, y,| is an integer greater than K. We may therefore put

on3

1
A =G, %], B= k"2, %) ? ,
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1
and then the inequalities (2k) A-2' ~ 4 < B are again satisfied. Hence
by (34),

1 nd

log{(2k) - 2(k"lavo,.%l) }
log

log{(2k) 7 [0, Yol}
log(f—1)

17. Both estimates (36) and (37) take a more explicit form on fixing
the parameters. We ghall discuss two different choices of these parame-
ters, one corresponding to & = 0, and one to a rather large value of 4.

For shortness, put

+1.

(37) N, <

Then

o =

bt By e 1(h+1 + )

Zl/;b_—l <a

and
<Van+1-1.

As a first choice of the parameters, put

1 9= 1

y=" n’ 2(an+1)

§=0,

1
= a+——,
n
go that

Thg constant K of Lemma 4 becomes then

(a+1+ )(M'o) 1+‘9"'§
= (4a) 6-po L o-P0
where '
k= (2n2a)".

Now l/4n+1 < 2I/'E+1, hence

Vint+1i—1 -~
s < Vénti—1 <Vn a+l ,
2 2
whence ‘
" n a—1
3 = q— .
L TP T

icm°®
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On the other hand,

n
s+1
It follows that

+9=a—(—P) <a Dbecauge IF<1 s

L
s+1 +
6—po

(a—1)n < < 2an.

Further

o)
2an2 |’

= Zop2
-

For a assumes its smallest value when n = 3, s = 1, and then a =3,
For the same reason,

1 2 3a
—1l=all——)Zall——=] = —.
a—1 a( a)/a( 5) 5

Therefore, finally,
+o)p+3)

6—pd

3+ 20n2+2n-+3 =2an5(1+——-|~

%ES

so that
3

2xix3?

1
2am? < 3+% < 2(mf~(1+§

( s+1

ga%x2¢m’ < <2a’n><]gza’nﬂ.

The exponent of % has the trivial lower and upper bounds,

s 1+9—(s/B) ( 1 1)
<ll——)x2ng—— |1 ——X2n < 2n.
\(l a)X”\ o=pp S\ gan )RS
Since k¥ > 1, it follows then that
6 23 24 2,3
(e <K < (40)5 B

A gimple upper bound for % is obtained as follows. Since n >3,

logn _log3
logn _log3
n 3
because
d logm) .
—— 0 if x>e.
dw( m < =
Hence

n = 410gn./log4 < 4(7110g3)l(3log4) < 4%/3 < (4@)“’3,

Acta Arithmetica VI %3
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and so
n 9
I — (4a)n (’/Lj) < (4a)n,n2n, < (4&)”’*'2”2/3 < (4&)7;2/3 R - ('ila)% .
2
This inequality implies that

8 2

2 a
< () = (4 < (da)E"

and so, since
.8 <6
TtE < b,
finally

6 in3
~5~“ "’

(e < K < (da)™ .

18. The right-hand sides of (36) and (37) can now easily be evaluated.

In the formula (36),

-1
CRFEE < K < (4a)*™,
Algo

b= tdar (3] > vy
and hence .
(270)5’1"2 > 4a
because f—2 < n. It follows that

log{ (4"}
log
log (44) +1.
P log(p-1)
Bince f > a, we find that
log (6a2n?)
38 L — 1
(38) P Tlog(a—1)
19. Put
2L =1 wy, 5
then

L>K.
The upper bound for N, may be written as

—~1
 logl@nFir)

1o, 5
log{(2k)P=2% =4 I}
log(p—1)
Also this expression will now be simplified.

Na <
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Since f >a >3, we have
2

1 1

22
(2h)F2 kb < 4K K <4(4a)(“*s) ? < (4a)
so that, by the lower bound for K,

12 o 12 1
TERS | L )n?
AP < (dayn?,

1 L 3a23 2y 2x G223
D>K2/>,(4@)5an =(4al)5'n,><5 2(4(1/)3%)( 5

> (4(1«)3”2

1, 1
= (2k)F2 KA,
It follows then that ,

(2k)ﬁ?lzk‘%1: > L'

heunce that
o 8L
log(l}”z)_ 1

'S Thogp—n T

‘whence
log (ﬁ)
9 log{8mn3(an+1)}
S log(-1) " T log(a—1) 1.
Here
a = min (l—]—h) <ﬁ—|—1 =n—n———2 <fn—»]~,
h=12.n-1\h+1 2 2 2

and hence

—2
an+1 < (n—Hn-t+l = 'n,”——q?—é—- < n?.

Thus, finally,

log(8n°)
39 — 1.
(39) * S Tog(a—1)
On adding (38) and (39), we obtain the further estimate,
log(48a’n%)
0 <
(40) FutNy S0

20. We had chosen
. 1

ﬁ p— a-|- ;;, Y =n.

The quantity o is then given by

_y—B n*—an—1
T8 a1

o
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and v is the smallest positive integer satisfying
1
v == (t-+1).
o

Tet us now apply Lemma 3 to the equation

D, y) = 1.
But instead of congidering only the admissible pairs w, y with
(26) o, y| > P

et us impose the stronger condition
2

(41) o, y| > k=2

In other word, we assume that #, y belongs to one of the subsets 8, or
8; of S, and we exclude the elements of the subset S,.
The inequality (40) gives an upper bound for the number of such

admissible pairs. We have exactly the same bound for all (”;‘t) choices
of the 11 integers fy, f, ..., f;, and for all n'*? choices of the t--1 zeros

LW, ., of f(o).
‘We obtain thus the result that there are mot more than
10g(48a n%) ] PRI
42 — +
(42) log(a —1) +2 ( ) "

admisgible pairs @, y for which

n
Pz, y) =1, |o,y| > (2n*a)-2

Here again only one of the two pairs @, y and —», —y, say the pair with
y >0, has been counted.

21. The integer » was chosen such that

— (t+l) V< — (t+1)—|—1
and hence that

1
(43) ENRY (— +1) (t+1).
Hence, when 1 is small, it is advantageous to use the obvmus estimate
v- 13
o< < (v—; ! o (_ _'_1) (Ht—‘l)

for the binomial coefficient. If, however, ¢ iy large, there is a better estimate
which is obtained as follows.

{44)
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By Cauchy’s theorem, applied to the function (14-2)°*,

(A2

v+t
() = g &

Y =)

where O denotes, say, the circle of radius ¢ with centre at z =
in positive direction. Therefore,

0, deseribed

1 (149" (149"
0 1)+t) <. 9mp. _ 4
< ( S Ame o P
and on chooging ¢ = t/v,
oty _ (03t
0 <( ¢ ) < v

Hence, by (43),

0< (”“) < (1

t4+1

+ %)t (t+1) {(% +1) (o+1)1/"}

11
(1 +%) <e

for all positive integers t, it follows then that

Since

t41

o< < )

Here, by definition,

(45)

n2—an—1 n 1 ne
= 1= ="
an+1 + ant1’ o T mi—am_1

On substituting these upper bounds in (42), we obtain the following
result.

THEOREM 2. Let F(x,Yy) be a binary form of degree m
tegral coefficients and non-zero diseriminant satisfying

F(1,0) 20 and F(0,1) #0.
Let a = H(F) be the height of F(x,y); let

>3 with in-

o = (—n—— h) = 1
N Nagg T Pty

) Py be any finite number of distinct primes.

min
h=12,.,.,n—

and let py, ...
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(i) There are nmot more than

B2 an
252 (2n* a)P—2 4
log(48d*n°®) { np ( nt )(«m F1)(n? ~-un-1>}t+1
. +e(t+l)[log(a-1) 2] W—an—1 \ an+1
pairs of integers s, y satisfying
x#£0, y>0 (@,9) =1, P(w,y) #0,
for which F(x,y) has no prime factor dislinct from Py, ...y Pr.

(i) There are mot more than

2 8 2
e(t+1)[log(48a%)+2]{ n® ( G

log(a—1) nt—an—1 \ an--1

J

)(rm FIY /(0P amy - 1)}t A1

pairs of integers », y satisfying
@ #0, (w,9) =1, Fl@,y) #0,

for which F(z,y) has no prime factors distinet from py, ..., Py
(iii) If p is a sufficiently large prime, there are nol more than

b1

y >0, o,y = (2nta)i-t,

2p8 2
[log(‘48a ns) +2] ( W )n“
log (a—1) nA— an—1)
pairs of integers m, y satisfying
@ #0, ?/>0y (w,y)=1,

for which FF(z,y) is equal to p or o power of p.

22, The upper bounds in the second and the third parts of the theo-
rem are of particular interest because they do mnot depend on the coef-
ficients of the form,.but only on its degree.

Computation. shows that the factor

log (48a2n8)
[ log(a—1) +2]

is equal to 37 for » = 3, 26 for n = 4, and 22 for n = B. With increasing
n it first decreases to a minimum 16 and then increases again, first to
17 and 18 and then to 19. The latter value it retaing for all sufficiently
large .
The expression
na ( 03

)(m+1)/(n2_an—1)
n2—an—1 \an-+1

?

e ©
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that occurs both in the first and the second part of the theorem. as a factor
of the basis of the (¢+1) st power, is about 47.7 for n = 3, 13.1 for n = 4,
and 9.1 for » = 5. It has the limit 1 as » tends to infinity and is always
less than 2 when n > 43.

In a weakened, but simpler form, the theorem may thus be sta-
ted as follows.

There exist four positive absolute constants ¢, ¢,, ¢5, and ¢, i. e.
numbers which do not depend on the binary form F(x, y), on the primes
Dyy 0.y Pyy OF On their number ¢, such that the upper bound in the first
part of the theorem is not greater than

o1 (an)?™ + (eyn)**
that in the second part is not greater than
(%”)Hl:
and that in the third part not greater than
‘ omE.

We see, in particular, that if m is an integer of sufficiently large ab-
solute value and with exactly ¢ distinet prime factors, there cannot be more
than

(esm)*+
pairs of integers @, y satisfying

x #0, y >0, (m;y)—:ly F("”?y)“_“m"

23. As a second choice of the parameters, let

4 4
y=at-—, Od=n—0a———

1
ﬂ=a+-ﬁ’ 3n 3n’

0 = i, P = -~—1———
n 2(an+1)
Since the congideration in §§ 17-19 do not depend on the values of y and
8, we obtain the same upper bounds (35) for N, and (40) for N,+ N,
a8 before.
On the other hand, ¢ now has the value
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Hence, by (45), the binomial coefficient ( 'H) satisfies the inequality

1 3(an+1))+1
0<(”;") t—|—1){(3om+4( ———-3(an+1)) }
Here
1 3(an-1)
(1+3(m+1) <e

The following result is then obtained by repeating the discussion in
§§ 20-21.

TumorEM 3. Let the notation be as in Theorem 2.
(i) There are not more tham

e

pairs of integers x, y such that

##0, y>0, (2,9)=

t 4
O<I|F@ ][ IF@, )y, <o,y

T=1

(il) There are not more than

log (48a*n®)

6(t+1)[ log(a—1)

—l—2]{6n(3a—|— 4y

pairs of integers w, y such that
27

z2#0, y>0, (#,9)=1 |o,y]>@nlay-2

t S
0<iF@ N [[IP@ 9, <o,y ™.

T=l
If ¢; denotes a further positive absolute constant, the upper bound
in (i) has the form
¢y (‘m)c”ﬁ + (s ns/z)t+1 y
while that in (i) has the form
(s,

24. We conclude this paper with an application of Theorem 2.
Let )

Puay ooy Prey Pary -+oy Dasy Pary ooy Pz
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be r4s4t fixed distiret primes of which the smallest and the largest
are P and @, say. Further let

{0y} = {11, ..., By Bary +oey Bagy Bapy oey Dy}

be a gystem of r-4 s+t non-negative integers such that
(46) Pﬁu B 1r+p“‘21 zs i psﬂial . p;;st_

Our aim is to give an upper bound for the number of solutions {#;} of
this equation.

Denote by » >3 an infeger which will soon be chosen equal to 12.
For each pair of suffixes ¢ and j =1 or 2 write

@y = nXy+ Yy

where X, is a non-negative integer while ¥;; is one of the numbers
0,1,...,n—1; further put

o =pFu .. pr, y=pin..p,
=Pt PR, G = o . p.
The equation (46) becomes then
(47) 4"+ 6 y" = PP ... P
where evidently
4% >0, a, >0, 2>0, y>0, (z,9) =1 az"+a,y" >0.

The binary form on the left-hand side of (47) has the height
a = max (aoy a‘n)
which satisfies the inequality
( 48) a < Q(n—l)max(r,s).
Also the pair of coefficients a, and a, has only
ntte

possibilities.
For each pair of coefficients a, and a, we divide now the solutions
@, y of (47) into two classes 0, and C, according as

21 20
o, 9] < (2IQE-IIENTT  or g, y| > (2n2Qr—Vmexia)5,
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and we denote by N, and N, the numbers of elements of €, and C,, respec-
tively. We further choose for n the value
2n .
ﬁ > 6, 'B”__‘z— < 6'
An upper bound for N, is found as follows. In explicit form,

max (pX1 .. pitr, pio . pip) < 2880Q0mex(),

n =12, so that =6,

80 that

6log 288 - 66 max (7, s)log @
max (Xog oo+ Kypy Loyt X)) < £ ! .

log P
This implies that each of the integers Xy, ..., Xiny Xy yeey Xps i smaller
than the expression on the right-hand side and so has at most

log@
logP

1
’]306(7’!'5)

possibilities where ¢; is & positive absolute constant. It follows then that

f1 1ogQ}""“-
<L \== d .

N, < 112 66 (r+3) logP

An upper bound for N, is obtained immediately from Theorem 2.

It hag the form

L+1
N, < 0

where ¢, = 12¢, is another positive absolute constant.
Ag the solutions of (46) satisfy 12"*° equations (47), it follows finally
that the equation (46) has not more than .

]‘Dgg} CR ER SN
] P 23 '
0g

solutions {z;}; here ¢, is a further positive absolute congtant.

It wotld have great interest to decide whether this npper bound can
be replaced by one that is independent of the given r--s-- ¢ primes, thus
of P and @, and depends only on the number r-+s--¢ of the primes.

For the last result, compare algo Chapter 1, §§1-4, and Chapter 3,
§ 8, of the book on transcendental numbers by Gelfond, and p. 724 of
the paper M,.

{06(r+ s)
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