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Daraus hat man aus (7.5) fiir * > ¢y

1 cgzloglogt* oz t')z
v 2(——) = g enalonlogt)?,
logt
Mit Beriicksichtigung von (6.9) ist weiter
&-""logt* 1 logt*
19 - (%) geslioglogta)? (M

Also endlich
glmot s, proj2

und nach (6.5), (6.4), (6.6), ist
wlogt® < (1—o*)logé = (1— o*)(k+2)A < (1— o) log i (logt**).
Daraus folgt

1t 19 logt*
7 7 270 Togw; (logt™ )’

was der Annahme (6.1) widerspricht. Damit ist unser Satz bewiesen.
Um Satz I’ zu bekommen, geniigt es nur die Abschiitzung (8.5) auf (1.12)
anzuwenden.

Die Abschitzung in (8.5) ist eigentlich ganz grob. Es muB so sein,
weil wir zu wenig von der Funktion s, () angenommen haben. Wenn wir
die Methoden der Differentialrechnung auf die Abschitzung von (3.1)
bzw. (8.6) anwenden wollen, dann zeigt sich, dass die Lokalisation des
Maximums in (8.6), von dem, wie schunell die Ableitung #;(r) zu Null
strebt abhingen muB. Auf diesem Weg konnte man eine Verbesserung
von (1.13) erwarten, jedoch auf Kosten zusiitzlicher Bedingungen fir
die Funktion #,(z). .
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The easier Waring problem in algebraic number fields
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ROSEMARIE M. StEMMLER® (Urbana, II1.)

I. Introduction. Let K be an algebraic number field of degree
n, W =N, 2n,, and J its ring of integers. Let K(’)., K®, ..., E™ (lv))e
the n conjugate fields of K, E” (r =1, 2, ..., n,) being real and KV,
K" (r = n,+1, ..., #,+n,) being conjugate complex. ].Jet ., be the
group generated under addition by the m-th pewers of the integers of E,
where m > 2. Actually J,, is a ring. We define »(m; K) as the Mst valxim
of s for which every integer » in J,, is representable in the form

v=+ A+t A,

where 1,, 4,, ..., A, are integers of K. By the easier Waring. problem we
mean the problem of determining »(m; K).

If there exists an identity

r .
Velapz—b)" =ca+d, ¢#0, =41 (Fk=1,2,..,7)
L

k=1

with rational integral coefficients, we see that J, consists of ecertain
residue classes modulo ¢. We let A (m, ¢) be the least value of s such thgt
every member of J,, is congruent modulo ¢ to an integer of the form
+ A" L.+ A", where 1;, 72, ..., 4 are integers in K. Then eclearly

v(m; K) < v dg(m, c).

From the (m—1)-th difference of z™ we have

-1

N (—qymei-k (m]: 1) (#+ k)" = m!z+ L(m—1)m!,
et
i=o
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which is an identity of the type desired. As
- m—1
(mk_l) =2""",  we have wo(m; K) < 2" '+ dg(m, m!).
k=0 .
Since the order of J/(m!) is finite, it is easy to see that v(m; K) is finite.
When m is prime we shall produce upper bounds for » (m; K) which
do not depend on the field K; specifically

?(2; K) = 3,
v(3; K) <6,
v(g; K) < 277"+ (¢—1)/3+1 when ¢ is a prime greater than 3,
W]ien m is not prime we only show that
o(m; K) < n(2m—1)+1+2™"  when m is odd,
o(m; K) < n(dm—1)+1+2""  when m is even.

At the same time we establish the fact that when s >n(4m—1) the
eongruence

W' 423 = v (mod P?)

has primitive solutions in integers Ay ..., g for every integer » in J,, and
for every prime ideal P and every positive integer a; from this we may
conclude that the singular series in Waring’s problem has a positive
lower bound when the number of summands exceeds n(dm—1).

Another problem suggesting itself iv the comparison of values of
v(m; K) with known upper and lower bounds for v(m; R), where R is
the rational number field. We show that there do exist algebraic number
fie]ds K in which »(m; K) is less than v{m; R). This is natural to suspect
in fields containing appropriate m-th roots of rational integers. The ques-
tion is open whether, on the other hand, there are fields in which more
m-th powers are needed to express the integers of J,, than is the case
in the rational number field.

Greek letters o, 8, ... will denote algebraic integers in K, o) being
the j-th conjugate of o in K®. Tf P ig o prime integral ideal in K, P%|a
will mean P?*|q, P4ltg. ’

Qf course results on the easier Waring problem follow from the work
of Siegel, Peck, Ayoub, and Tatuzawa on the Waring problem proper
(f81, [1'1], {73, 11, 112)). However, except for fields of low degree over
t}.le rationals, the results so obtained are poorer than the results obtained
du(?ctly in this paper. In fact, the strong dependence on the field degree
Which oceurs in the known results for the Waring problem proper is the
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main difficulty in the subject at the present time. The present paper shows
that by going over to the easier Waring problem we can at least partially
eliminate this dependence on the field degree.

IL. Determination of »(2; K) for all algebraic number fields.
In this section we shall prove that »(2; K) = 3. We first establish 3 as
an upper bound. Then we determine for every field K some integer which
belongs to J, but cannot be represented as the sum of two integers of
the form 422

TEEOREM 1. v(2; K) <3 for any K.

Proof. For any integers a and g in K we have

a? = —a?(mod?2)
and
(a4 p)? = a2+ B2 (mod?2).
Therefore every element of J, is congruent to a square modulo 2 or
A4(2,2!) =1. Since
2541 = (241)2— =z,

every element in the residue class module 2 represented by 1 is the dif-
ference of two squares. Therefore every number in J, is expressible by
not more than 3 squares.

Theorems 2 and 3 give sufficient conditions for an integer not to
be representable as the difference or sum, respectively, of 2 squares.

THEOREM 2. Let P be a prime ideal tn K such thot P*||2, and let
b be a rational integer such that 1 <b < a. If a is an indeger in K such
that P?7||a, then a is mnoi empressible as the difference of 2 integral
squares. ’

Proof. Assume « is the difference of 2 integral squares, that is

a=p—y*=(B+y)(B—7).
We have
B+y = p—y(mod2)
which implies
B+y = f—y (mod PY)
whenever 1 <j<a.

There exist non-negative rational integers b’ and b" satisfying the
conditions

P")(B+y), PII(B—9).

Acta Arithmetica VI 29
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Now max (b, ") < a; for if max(b’, ') > a, then
B—v = 0(mod P%) By = 0(mod P%),

and therefore P**|qa, contradieting P*~'|[a, since 24 >2b—1. There-
fore f+y = f—y (mod Pm*~®¥7) and so b’ = b”, which is impossible
since b'+ b must equal 2b—1.

and

TuEOREM 3. If V—1 is not in K, then there emist mfinitely many
prime ideals P in K such that any integer containing an odd pou;er of P
in ils prime ideal factorization is not the sum of two squares.

Proof. Applying a theorem stated by Hecke ([4], p. 251), we con-
clud(f, that there are infinitely many odd prime ideals P in K such that
—1 is not congruent to a square modulo P. If « contains an odd power
of P in its prime ideal factorization, a cannot be decomposed into a sum
of two squares. For assume on the contrary that a = f°+3* and

(0) = (B+") = P70,
where § and y are integers, a is a positive integer, and (C, P) = 1. Then
g = ~'y2(m0de"l).

Sinee —1 is not congruent to a square modulo P, this is impossible un-
le.ss P|p and P|y, which implies P%|p2 and P2|y2. If a = 1, this contra-
diets P|fa. If a >1and P* is the highest even power of P dividing both
B2 a.r'Ld v?% let @ be a number in K such that ()P is an integral ideal
relatively prime to P (ef. [4], p. 97). Then &°f and @° are integers and

¢2ba — (¢bﬂ)2+(¢b7)2~
But 24—1 > 2b, and therefore
(P°B)’ = — ()" (mod P).

As P does not divide both ®°8 and @y, this i i i
8 is again
e s Dot Aivide | Vs gain contradictory. Thus
Now we are able to prove the main result of this section.
THEOREM 4. v(2; K) = 3 for any K.
Proof. From Theorem 1 we know that
v(2; K)< 3 always.
treat the problem of the lower bound in two ca.se’s: ) ye W
Case 1. K contains vV —1.

o From the basic identity we k.uﬂv that the ideal 2J is contained in

f%trmg le. 1.‘he prime 2 = -—l/~1(1—|—l/-—1)2, and therefore there
existis a prime .1dea1 factor P of 2 in K such that P2, Tt (a) = 2PC
where C is an ideal prime to 2P chosen so as to make 2PC principal, th(;
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integer « is not the difference of 2 squares by Theorem 2. Buf a is not
the sum of 2 squares either, for if a = 2+ y® for integral g and y, then

o= F—~197
that is, a is the difference of two squares.
Case 2. K does not contain V 1.
By Theorem 3 there exists a prime ideal @ in K such that (@,2) =1

and such that any integer containing an odd power of @ in its prime
ideal factorization is not representable as the sum of 2 squares. We put

2QC,, where (C;,2Q) =1, if all the prime ideal factors of
2 have odd multiplieity,
whére (C,, 2Q) =1, if P is a prime ideal factor of

@ =1 2gpe,,
2 having even multiplicity,

¢, and C, being ideals chosen to obtain in each case a principal ideal
(a). Then a belongs to 2J and therefore to J,, but by Theorems 2 and 3
a cannot be decomposed into a sum or difference of 2 squares. In both
cases a cannot be expressed as — pf2—y?, because then —a would be
the sum of A% and y* and yet have the same prime jdeal factorization as a.
Therefore v(2; K) > 3 in Oase 1 and in Case 2, which proves the theo-
renl.

[II. Upper bounds for w(g; K) when ¢ is an odd prime. We
shall suppose throughout this section that ¢ denotes an odd prime,
p a prime. A formula for an upper bound of v(g; K) will be developed
which is independent of the field K; the cases ¢ =3 and ¢ = 5 will be
examined separately in order to obtain slightly better results than those
given by the general formula. Theorems 5, 6 and 7 deal with arbitrary
integers m rather than g.

DerixiTION. If P is a prime ideal in K, let J,(P) be the set of
integers » in K such that the congruence » = LD+
A"(j) (mod P’) has integral solutions 4,(j), A2(d), .- Js(j) in K for all
positive integers j and some positive integer s depending on » and j.

Tf P'{m!, let J}, (P) be the set of integers » in K such that the con-
gruence v = A A4 .. A (mod P has a solution in integers
Ay ...y A in K for some positive integer s depending on ». Both J,,(P)
and J,,(P) are rings.

DeFIxirios. If A is an integral ideal in K, an integral solution
dqy ...y Ag in K of a congruence

y = £+ 20 (mod 4)

is called primitive if (A, Aoy .-y Asy 4) = 1.
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THEOREM 5. If P°||m, if i is & positive integer equal to or greater than
2¢+1, and the congruence
(*) v=M4"+A+.
has o primitive integral solution Ay, Asy ..., % in K, where s =r >0,
$ >0, then the congruence

=+ — . — 22 (mod P
also has a primitive integral solution Ay, lg, ..., Ay in K.

Proof. We may assume that (4, P) = 1 and that /4" carries the plus-
sign in the congruence (x). Let

=), a=yv—A—k— =+ AR

o At A — . — A2 (mod PY),

Then
a = 2"()(mod P'),

and it will suffice to show that there exists an integer A(i+ 1) in K such
that (A(+1),P) =1 and « = 2" (i+1)(mod P'*Y), If ¢ = A" (4) (mod Py,
we take A(f+1) = A(f). If not, let §; and g; be integers satisfying the
relations
sim = gila—2"(), Pt

Take A(4+1) = A(4)-+ 6;0;, choosing o; such that

e = (i+1) (mod P+,
that is, such that

a = (A(3)+ 8;04" = A" (6)+m8; " (6) oy (mod P +) .

(As P*°) 8, succeeding terms in the binomial expansion are divisible
by at least P*~*, and sinee 4 > 241, 2i—2 >i+1.) Thus we choose
o; snch that
a—2A"(1) = gg(a— A" (@) 1™ (3)o; (mod Pity,
a congruence which will hold if
0: A" i)y = 1(mod P).

Sinee P4 g;4™7'(3), o;
{41, P) =1. ’

We have as a consequence to this theorem the fach that if (»,P) =1,
then. » belongs to J,,(P) if and only if (*) has an integral solution in X
fo.r % =2¢+1 and some integers r and 8, 82720, 8§ >0. Theorem 5
) will actually be applied only when ¢ = 0, that is, when Ptm.

can be chosen as required. Furthermore,

icm®
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THEOREM 6. Lot m! = PuP2 ... Ph, where P, P, if a£b. Then
I =PO'JM(.P) = ﬂ J;n(-P)y

P!
and if

v= AME) A — A (8) — .. — A (3) (mod PY)

has an integral solution A0y oy 2(8); oy A5 (0) dn K for i=1,2,...,7
and every v in J,,, then A{(m,m!) <s.

Proof. Obviously J,,C (M) Ju(P)C (M) Jn(P). On the other hand,
Plm! Pim
suppose » belongs to (M) J,(P). Then there exist integral solutions

Plm}
#a(8)5 ey s, (4) in K of
v = @ (0 - g () — gy (B) — - - — p; (6) (mod P)
for £=1,2,...,j. Let r=maxr;, s=max(s;—7)+7. Thus there
exist solutions 4, (3), .., Au(6) Of = A ..o AP — Ay — ... — 2 (mod PL).

‘We can solve
ke = Mx(8) (mod Pl)

fork =1,2,..,r,r+1,...,8;4=1,2,...,j.

Then
v = FA—A — = A (modm ).
Sinee (m!)J is part of J,,, v belongs to J,. Therefore () J,,(P)C Iy,
Pjm!

and we have proved the first part of the theorem. The second part follows
immediately, if we apply again the well-known theorem on the simul-
taneous solution of congruences.

Theorems 5 and 6 together show a method for calculating an upper
bound of o(m; K). If Pli|lm!, we determine numbers r; and s; such
that every » in J, is congruent to a sum A"+ ...4+A— A7 —...— Ay
modulo P%. If t; < 2¢;+1, where Pi|lm, we examine the ring J,,
modulo Pi. If t; > 2¢;+1, we consider J,, modulo P¥+!. Instead of
limiting ourselves to primitive solutions, we usually find « and v such that
for any » in J,,

v=Nt ot A — A — . — A (mod PFiT)
has some integral solution 4, A5, ..., 4, in K. If (», P;) = 1, this solu-
tion will be primitive; if P;|v, we may be able to deseribe particular

primitive solutions of the congruence for every such », and we can then
take 7; = u, s; = v. But if P;|v and a primitive solution is not at hand,
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we know that there is a solution A, ..
which satisfies the congruence

A — . A (mod PEHY).

.y 4 for v—1 in place of v, i.e,

po= 14+

By theorem 5 we conclude that we can taker; = w41, s, = v. By Theo-
rem. 6 finally

A(m, m!) < maxr,+ max(s;—7;).
i i

THEOREM 7. If P is a prime ideal dividing the rational prime p, P4 m,
p < m, end s = m, then the congruence

y o= b AP+ A (mod P)

has a primitive integral solution Ay Agy ..., As @ K for every v in J,,. If
P >m the conclusion holds when s = m+ 1.

Proof. The theorem is an application of a theorem by Tornheim
([13]); however, we shall prove it for our ease in a slightly different manner
which will more easily yield Theorem 8. Let NP = p'. Let the multi-
plicative group & of non-zero elements of the residue class field modulo P,
which is eyclie, be represented by ¢, &, ..., =1 (mod P). The sub-
group M of @ consisting of m-th powers has index @—1,m) =1 and
may be represented by ¢, &%, ..., :7’!"1. If on forming all possible sums
of two elements of M we do not obtain a residue class &' mod P where
1= 0 (modt), then one m-th power suffices to represent all elements
of J,, modulo P. If thig is not the case, then at least an entire coset of
M in @ has its elements expressible as the sum of two elements of M.

Such a coset determined by {° contains every ¢/ where j = % (mod).
For if .

¢ = 4 2 (mod P)
then

Cj = é—i-}-at = (.irl'i‘ Cu,t) Cut = C(r.pa)t_l_c(u ra)l (mod P) .

Continuing in this way we determine those cosets for which three, four,
---; m-th powers are needed by taking all possible sums of three, four,
.-+, m-th powers. If no new coset is obtained by sums of » m-th powers,
no larger number of powers will produce one, because any sum of » m-th
powers would be eongruent modulo P to a sum of fewer than » m-th powers.
Therefore the maximum number of summands needed <, number of
cosets of M in @ which is 1 <m. So we have primitive solutions
A1y Agy ...y A, when PYwv and s> m. However, when » = 0(mod P) and
P<m, »=1"4+1"+.. . +1™ = p(mod P), and this is a primitive solu-
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tion of the required form. Finally, when » = 0(mod P) and p >m, then
by the first part of the theorem there is a primitive solution of the con-
gruence with »—1 in plaece of » when s >> m. Therefore the congruence
as given may be solved primitively when s = m+1.

THBOREM 8. If P is o prime ideal dividing the rational prime p, P1q,
and the multiplicative order ord,p of p modulo q is j, then the congruence
v = A+ 20+... 4+ (mod P) has a primitive integral solution Ay, 2s, ...,
Js in K for every » in J,, provided s > (q—1)[j+1.

Proof. The index of M in @ is either 1 or ¢. If it is 1, the conclusion
follows. We shall assume that the index is ¢ and that &, &% ...,
represent the coprime residue classes modulo P. If the minimum aumber
of g-th powers needed modulo P to express the elements of a coset of
M is equal to or greater than 2, then it is the same for j cosets of M in G.
For assume that

& =242+ ...+ (mod P), Is=0(modg).

Then
o= (. P = () (D) (mod P)

since p!(f) for j=1,2,...,p—1.
4

Therefore each of the cosets of M in G represented by
(1] = Ip(modg)}, {L}¢ = W (modq)}, ..., {1 =1’ =1(modg)},

consists of elements that are expressible as sums of s g-th powers modulo P.
From the proof of Theorem 7 we know that if any coset needs a mini-
mum of s >3 powers to express its elements in the desired form, then
there must be a coset requiring s—1 powers. Therefore the maximum
number of summands from M needed to express the elements in any
coset cannot exceed (¢—1)/j-+1.

If P!y, we have this primitive solution:

y = 194 (—1)"(mod P),

and as (¢—1)/j—1 >2, we have succeeded in demonstrating the exi- -
stence of primitive solutions in every case and proved the theorem.
Tt is now almost immediate that we have the main theorem of this
section.
TuEOREM 9. If ¢ is an odd prime, then v(g; K) <207+ 1+
(g—1)/min(ord,p), where ordp denotes the multiplicative order of the
p<g

prime number p modulo gq.
If =7, v(g; K) <2741+ (¢—1)/3.


GUEST


456 Rosemarie M. Stemmler

Prooi. We have

—M = (=A% (1) = 2+ (modg)

because ¢ '(f) for i =1,2,...,¢—1. Therefore every element of J, is
congruent to a g-th power modulo g. For other primes dividing ¢! we
apply Theorem 8. Then the first inequality above follows from the basic
identity and Theorems 5 and 6.

To derive the second inequality we calculate the lower bound 3
for ord,p when p < g. If the order of some such p is 2, then p? = 1(modg),
that is, ¢|(p+1)(p—1), which is possible only when ¢ =3, p =2, an
occurrence precluded by the hypothesis; and we have the theorem.

We proceed now to calculate upper bounds for v(3; K) and v(5; K).

THEOREM 10. v(3; K) < 5 unless 2 has o prime ideal factor of even
degree = 4 or more than one ramified factor. In every instance v(3; K) < 6.
If 3 has an unramified prime factor of first degree, then v(3; K) = 4.

Proof. v(3; K) < 6 by Theorem 9. Now assume that 2 has only
prime ideal factors of odd degree or of degree 2, at most one of which
is ramified. Let P|2, NP = 2/, f being odd. The multiplicative group &
of the residue class field modulo P is generated by the residue class of
an integer ¢ of multiplicative order 2'—1 modulo P. The subgroup M
has index 1 in @ since 2’ —1 is not divisible by 3. Therefore every inte-
ger is congruent o an integral cube modulo P.

If P|2 and NP = 22, the cube of any integer relatively prime to
P is congruent to 1 modulo P, since 3 is the order of G. Also 1818
= 02(mod P). Again every element of J, is congruent to an integral cube
modulo P.

If no factor of 2 is ramified, we have therefore that if » is in J,,
then » is congruent to a cube modulo 2. As in the case of general ¢,

:‘:2?{:'[}-2 = (ﬂ:ﬂ-lﬂizz)s (mod3),

- which implies that » is congruent to a cube modulo 3. Therefore v is
congruent to a cube modulo 6, and with the identity 6z = (#--1)3+
+ (z—1)*—22% we get v(3; K) < 3.

Now assume 2 has one ramified prime ideal factor P, where P‘]|2,
If v is in J,, we know as before that » = A3(mod P) for some A. If (v, P) =
=1, then, by Theorem 5, » = 2*(mod P") for some appropriate inte-
ger A'. As v is congiuent to a cube modulo 3 and » is also congruent to
& cube modulo @ for any prime ideal @ dividing 2 and different from P,
» i congruent to 2 cube modulo 6. Using the identity above, » can be ex-
pressed with not more than five integral cubes. But if P|», then
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(»—3,P)=1 and v—3 is congruent to an integral cube modulo 6, i.e.,
y—38 = 6£+ 2%, The identity

62+3 = 2 — (60— 4)3+ (20—5)*— (22— 4)®
shows that four integral cubes suffice to express integers of the form
6£43, so that five will do for ». Thus the first part of the theorem is
proved. We have in particular that »(3; K) <5 if K is quadratic or
cubic.

The lower bound 4 for »(3; K) if P||3 for some P with NP =3 is
obtained by considering the residue classes modulo P2. The multiplica-
tive group G of coprime residue classes modulo P? has NP*— NP = 6
elements and is therefore cyelic. The only cubes in G may be represented
by 4+ 1. Since P is not ramified in 3, we gee that the integers 0,1,...,7,8
represent the full residue system modulo P? and that any integers congru-
ent to 4 or 5 modulo P? eannot be expressed by fewer than 4 cubes. This
completes the theorem.

THEOREM 11. v(5; K) < 10 for any K.

Proof. We use the identity )

(@43 —2(x+2P+&f+(a— 1Y —2(z— 3+ (w—4)° = T20m— 360.
The only primes dividing 6! = 720 are 2, 3, and 5. Now 2 and 3 are both
of multiplicative order 4 modulo 5, and if » is in J;, then » = 2° (mod5)
for some integer i. By Theorem 8, v = -3 (mod P) has a pri-
mitive integral solution 4,, 1, for every P dividing 2 or 3 (we take » = 1°+
+(—1)° (mod P) if (»,P) # 1). Therefore by Theorems 5 and 6 every
residue class modulo 720 is representable by a sum of two fifth-power
residues. The identity yields eight fifth-powers for every element in
the residue class represented by 360. Therefore »(5; K) < 10.

IV. Upper bounds for #{m; K) when m is arbitrary. Turning
now to the case of arbitrary m, we shall find an upper bound to v(m; K)
which is not a function of m alone but depends also on the degree n of
the field K. The method is shifted from the discussion of congruences
modulo powers of prime ideals to congruences modulo powers of the prin-
cipal ideals generated by rational primes. The main result is applied to
the singular series in the generalization of Waring’s problem to algebraic
number fields. Brief mention will be given to some instances in which
a lower bound for »(m; K) is easily found.

LeswA. If p ds a rational prime such that p'||m, i is a positive integer
and i >1 when p = 2, then all coefficients of the polynomial

1 am—1

(@ +p'y)" —mp'w

i1

y —_ mﬂ’!
are divisible by p
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Proof. The terms of the polynomial are
(?)w"“"'(piy)", k=2,3,...,m.
The order to which p divides k! is

=1} Sk Ok
Sl v =i

i=

g—;i when p is odd,
<k when p=2.

Therefore, when p is odd, the order ‘to which p divides (Z’)p“‘ is
greater than

k k A
fhi—g =f+, i = f+i.

And when p = 2, the order to which 2 divides (VZ) 2% g greater than
fHki—k = f+2(—1) =f+1.
Tor the remainder of this section, whenever p’||m we shall define

f+1
w =

if p is an odd prime,
if p=2.
Then we have

TaEOREM 12. If p'||m, and a 4s relatively prime to p and congruent
to an infegral m-th power modulo p*, then a is congruent to an integral
m-th power modulo any power of p.

Proof. Suppose f™ = a(modp’), where j>=f-+1 if p is odd,
j=f+2 if p is even. By the lemma,

B+ )" = a(modp™),
provided

ﬁ*"-}—%} g7 o'y = a(modp’t).

The latter congruence will hold if
m L (l—ﬁm
o 7y = e (motp),
a congruence which is soluble for y because (mf™ '[p’,p)=1.
THEOREM 13. If p is any prime and u is any positive inleger, every
element in J,, is congruent modulo p* to a sum of n(dm—1)+1 = s(n, m)
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integral m-th powers, at least one of which is relatively prime to p. If m is
odd, this is true also for s(n,m) = n(2m—1)+1.

Proof. Let p’||m. By Theorem 12, the theorem will be proved if
we can show that every infeger in J,, is congruent to a sum of not more
than n(4m— 1)+ 1 integral m-th powers modulo p*, at least one of which
is relatively prime to p. If p is odd, it will be shown that actually only
n(2m—1)41 sueh summands suffice.

The numbers of J,, form modulo p* an additive abelian group of order
s, where s|p™. Let n}', %3, ..., 73 be a minimal set of m-th powers gener-
ating this group. Let the additive order of % be ¢, = p/1 and the index
of the subgroup

{m"y 'y ..., mr}  in the subgroup {n", ', ..., it}
be g, = pR+1for k =1,2,...,d—1. Then jx = 1 for every k, since we

have selected a minimal set, and the linear forms

xlﬁih+$z7];n+---+wdﬂ: (o =0,1,...,—1; k=1,2,...,d)

represent all numbers of J,, modulo p”. Define
my, = 2m—1 if p is odd,
my = 4dm—1.

It is known ([5], pp. 19-20) that every positive rational integer is con-
gruent to a sum

Py g (modp) (B =1,2,..)

for rational integers y,, y,,-.., Yy Therefore every element of oJ,, is
congruent to a sum of not more than

d

O
% min (g, — 1, m,)

8, =

integral m-th powers modulo p*. The upper bound for S, established
in the following lemma will then give the result of the theorem. (We
need the extra summand in order to guarantee that at least onc of the
m-th powers is relatively prime to p.)
Levma. If Pmea 9k ijk (k=1,2,..

nw

@), and ¢1Qs...qa <P
then

d
max S, = max » min(g.—1, m,) < am
» k) D v 2l
k=1
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the mawimum being taken over the sets of positive integers @, ji,Jay vy da
d
satisfying D jix < nw.
k=1 a.
Proof. We need -consider only the case D jr = mw, that is, ¢, ... ¢,
k=1

= p™. Now suppose

¢ =¢ and ¢ <p¥Y, ¢ <p®t for some 4, j with 1 <4, j <d.

Then
mjn(qi—lr mp)+1nin(Qj— 1, mp) = ¢;+ %‘"21
since
<m if pis odd,
pw-—l
< 2m  if p is even.
But
Gg—2 < 2T -2 < my
and

Gt g—2<ag—1=¢-1
since ¢; and ¢; arve positive integers greater than 1.
Therefore

min(g; —1, mp) +min(g;—1, my) < min (g’ —1, my).

Thus §, eannot be maximum as long as more than one ¢ is equal to or
less than p“~!, and we may therefore assume

Pw(d— 1)+1 < pnw ,

which implies d < #. Therefore the result follows.

Theorem 13 is an improvement of Lemma 3 of Siegel ([8]) and ena-
bles us to get a positive lower bound for the singular series in Waring’s
Problem for algebraic number fields when the number of summands

exceeds n(dm—1). '
The following is the main result of this section.

CoROLLARY. If n is the degree of K,
o(m; K) < 2" +n(dm—1)+1  if m is even,
o(m; ) < 2" 1'4n@m—1)+1  if m is odd.
Let
n(dm—1)+1 if m is even, .
n(2m—1)4-1 if m is odd,

7=
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and m! = pi'py2 ... pj, where p,,...,p; are distinct primes. By theo-
rem 13 any »in J,, is congruent modulo p}i to a sum of » integral m-th
powers, at least one of which is relatively prime to P; (§ =1,2,...,4).
Thus 4 (m,m!) <r. Together with the basic identity this yields the
corollary.

TEEOREM 14. If 2m-+1 is a prime and 2m--1 Las at least one prime
ideal factor P of first degree, then v(m; K) = m.

Proof. The coprime residue class group modulo P is cyelic of order
2m and may be represented by 1,2,...,2m; the m-th powers mod-
ulo P are congruent to 0, 1 and —1. Integers congruent to m modulo
P cannot be expressed with fewer than m m-th powers.

This theorem applies to the rational case, in particular.

V. Existence of algebraic number fields K for which »(m; K)
<< o(m; R). We shall show now by an example that there exist alge-
braic number fields in which every element of J,, is expressible by fewer
m-th powers than is the case in the rational number field. It is known
that 9 < o(4; B) < 12. But

TEROREM 15. v(4; B (V3)) < 8.
LuMmMa. If P*|[2, then the 4-th powers modulo P** may be represented by
o+ yi+ oy @,

where 7 is an integer exactly divisible by the prime ideal P and Vi TUNS over
a complete residue system modulo P for j = 0,1,...,k—1.

Proof. The 4-th powers are representable modulo P by

ot rimte e Fymam® Y = (bt A+ ) (mod P,

‘where ¢ << 3k—1 and ¢ may be defermined as follows. The multinomial
coefficients appearing in the expansion of the left-hand member of the
congruence are

4! - 3k 4! 2%
Ty — (el PR, ey = Ofmed P,
4 ap* L _ .
ﬁ:()(rn(} ), 2~!2—!=0(modP).

Therefore ¢ can be taken as the largest integer < 3%k—1 for which at
least one of the following two statements is true:

4 3k 21 3k
35 == 0(mod P™), 2191 %" == 0(mod P*).
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Thus 4 can be taken as the largest integer < 3k—1 for which

oh+i<8k—1 or k420 <<3k—1,
that is,
i<k—1 or i<<(2k—1)/2=1Fk—%.

This implies that we may take ¢ = k—1. . .
We return to the proof of Theorem 15. From the identity

410436 = (+3)*— 38 (x4 2)*+ 3 (z+ 1) —a*,

we conclude that in R(i‘/g) every integer congruent to 12 modulo 24 can
be decomposed into 4 integers of the form -+ 4* modulo 24. To prove
our theorem, it will then only be necessary to show that all numbers

of J,in R(i/g) are congruent modulo 24 to sums of four or fewer inte-
gors of the form 4 2*.

Now 3 = (41/5)“, and so (1/5) is a prime ideal of first degree. Every

— 4
integer in R(;/S) is congruent to 0, 1 or 2 modulo (V3). Therefore every
integer is congruent modulo %/5 to a sum of at most three integral 4-th

4
powers, at least one of which is not divisible by V3, and by Theorem 5
every integer is congruent to the sum of three 4-th powers modulo 3.
We shall prove that modulo 8 every element of J, is eongruent to
a sum of three integral 4-th powers plus a term -+ ut. Now, since the

minimal equation for i/§+1 is ot—4wt+622—4z—2 =0, we have
that ({/5—}- 1)t is two times a unit, so that we may apply the lemma with
k=4 and n = i/ 5—{- 1. Thus the 4-th powers are congruent modulo 8 to
(69t &y 70+ £ 702+ £5703)*

where g =0 or 1 (4 = 0,1, 2,3). The 4-th powers are congruent mod-
ulo 8 to one of the following: 0, 1,

o = 144+ 6724 4n® -t

g = 14 4n?+ 67+ 7°,

y = 144dad 1 6a°,

§ = 1+4a+ 22+ Tod 4 208 + b,

e = 1+ 4n+6a%+ nt-+2a°,

{ = 1l44a?+ 4P+ 62+ 275 - 7°,

7 = 1+ dn+ 202+ 4P+ Tt 4 2°

P=ant, (=8 x=att+att+6a°.
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Now a complete residue system modulo 8 is also obtained from the num-
bers ay+ &, 7w+ ayn®+ asn®, where a; runs over 0,1,2,...,7 (i =0, 1,
2,3). For the total number of residues modulo 8 expressible in this way
is 8¢ = 212; and
g+ Gy T+ Ao+ @y 7® = by by byw®+ byw® (mod 8)
if and only if ¢; = b? (modS) (t=0,1,2,3). This last follows from the
fact thab if (a;—b;)n" = ¢;2*, then the non-zero terms in the expression
Co+ € T+ Cy - ey w®
are divisible by different powers of P.
Using the relation m* = 4n3—6a%-+4n-+2, we express the set of
4-th powers modulo 8 in the form ¢y ¢;m+cyn2+c3n® and get
0,1, a—3, fp—1, y—1+4a?+4n®, O6—3-4n2Ldnd,
e—3+4n'+4dad, [—144n*+4ad, y—3,
—2+4dn4 222+ 4n®, 1 —4, %— 6+ dx - 62 4nd.
The additive group generated by this set modulo 8 consists of the resi-

due classes represented by the numbers ay--a,m-+a;7®+ ay7® with the

possible values taken on by a,, a,, a,, a; modulo 8 listed in the table
below:

ag

s
k5
&

(i) arbitrary
(ii) arbitrary

(it

arbitrary
(iv) arbitrary
(v) arbitrary

(vi

arbitrary

" (vil) arbitrary

S R RO R RO O
[T N I - U
=R A )

(viii) arbitrary

At most two summands from {1, 3, 4} express any rational integer mod-
uwlo 8. Since y falls under (ii), ¥ under (iii), » under (iv), #+¢ under
(v), #+¢ under (vi), and =+ under (vii), any element of J, falling in
one of the classifications (i)-(vii), is congruent modulo 8 to a sum of
at most four 4-th powers of integers.

Classification (viii) is somewhat special. If a, = 4, then ejther

O+ 4n® = 204y -+ k(ay) (mod8), where k() =0,1,3 or 4,
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or

Gy +47? = 20+ 6+ (@) (mod8),  where  K'(¢) =0,1,3 or 4.

However, 4 4a? is not congruent to a sum of four 4-th powers modulo 8,
and we must allow one minus-sign:

4447 = 20-+y—1(mod8).

In any case, if » is in J, then there exist integers Ay, As, Ay 1, fa,
U3y iy in K such thatb
» = A4 A4+ A4 (mod3)
" and

v = pit+ g+ py & pi(mod 8).

Therefore there exist integars y,, ya, ys, ys With

fi

y; = h(mod3), ;= u(mod8) (i=1,2,3),

y, = 0(mod3), y; = u,(mod8).
Then
v = yi+ v+ vi vt (mod 24),

and we have the theorem.

VI Relation of v(m;K) to g(m; K) in totally complex fields.
We call a number » of K totally positive if +" >0 (j =1,2,...,%,).
Let g(m; K) be the least number s such that the equation v = A"+ 15’ +
+...+ 4™ has an integral solution A, 4, ..., 4, in K, cach A; being totally
positive or zero (¢ =1, 2, ..., s), for every totally positive » of J,,. Now
when K is totally complex, every integer in K is totally positive. Given
the existence of v(m; K), which we have demonstrated in the preceding
pages, the existence of g(m; K) will therefore follow if we can show that
—1 is the sum of a bounded number of m-th powers. We shall show this
in this section and thus obtain an elementary proof of the existence
of g(m; K) for totally complex fields. In particular, if V1 in K,
o(m; K) = g(m; K). In the example of the Gaussian integers with m = 4
we shall find actual upper bounds of »(4; R(Y —1))and g(4; R(Y —1)).

THEOREM 16. In totally complex fields K (that is, fields for which
ny = 0) the ewmistence of v(m; K) implies the existence of g(m; K).
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Proof. Let oy, w,,..., wy be an integral basis of K if n = 2&. '

The system of 2k linear equations in the 2k unknowns x, ..., 2

zReol) +... Lz, Rewll) = cosm/m
zReo® - ...+ o, Rewl) = cosz/m
s, Rew 4 ...+ 2, Rewl) = cosn/m
2 ImoP 4 ...+ 2y, Imef) = sinz/m
2, ImoP + ...+ 2 Imwf) = sinz/m
s ImoP 4. ..+ 2y Mmool = sinz/m

hag a unique solution in real numbers ©;, s, ..., Za.

Let T = 2k max |of)| and choose R > Tcsem/2m. If we set
i

D = B0+ By ws+ . . .+ Bax Vg,
D = g0+ 2,00+ .. B0l
then

aV =1
N =g m  (j=1,2,..., k),

—ay =1
O —=¢gm (j=k+1,k+2,...,2k).
The integer

B = [Boy]oy+[Boy]wy+ ...+ [ Rty ] war
satisfies the inequality
ROV — 9] < 2kmax o] = T.
i

This implies

(G=1,2,...,%).

T T 4 T
2 Avesin— 0 o in —
po. ¢ sin 7 < arg ¥ < p” +Arcst

But AresinT /R < =/2m by our choice of 7 and thus

7T . 3n
— < arg ) < —
- gp

P19
2 2m U=1,2,..

LK),

Since the arguments of the first k conjugates of § lie in the open inter-
val (7/2m, 3x/2m) and the arguments of the remaining conjugates lie

Acta Arithmetica VI 30
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the arguments of the conjugates of g™ have
iy an integer of K satisfying the equation

in (—n/2m, —3wx[2m),
negative real part. Now i

(o) (@) (o™ =) .. (0= (@ =BT

- [] -

Tach of these k& quadratic factors has positive coefficients, whence the
equation

‘3(%)"» ﬂ(z)m 2+ ﬁ(l)m ﬁ(t)M} —

2 g o by, =0

which is satistied by g™ and its eonjugates has positive integral coeffi-

cients @y, Gy, ..., typ. The equation

— g = (B + (B o e
2k—1
expresses the negative integer —ay, as a sum of 1+ ) a; integral m-th
izt
powers. If »(m; K) = s, then every integer in J, is expressible in the
form 4+ AP 4.+ 4. Now

—1 = — g+ (0, — 1)1,

2k
implying that —1 is a sum Of,Zl a; integral m-th powers and hence that

every integer in J, is expressible as & sum of not more than
2k
s Z a; m-th powers.
i=1
Therefore g(m; K) exists.
The essence of the proof was the demonstration of the existence
of some negative integer which was a sum of integral m-th powers. Such

an integer is easy to find in the case of the Gaussian integers: —1 = (1/ 1)
1= (=1, A=AV =1 ), (—1) = (—1F, —1 = (/=1 (—1)
= (—1)", —1054 = (2+V —1)*+(2—V —1), for example. In paatmula,l
we have

TeEROREM 17. o4; R/ —1)) < 10. gl4; R(Y —1)) < 14

Proof. We have the identity

245136 = (z+3)t+ 3 (@1 —3(w+2)—

Now

—4 = 1V -1,
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and so
245+ 36 = (#+3)+ (1~V—-—1)4(w+ 2+ (+2)4+3(w+ 1)t —

To show that »(4; R(Y—1)) <10, we must therefore show that every
integer in J, is congruent to o474 4 modulo 24 for some integers
Ay, As, Ag. Since the discriminant of R(Y—1) is —4 and

B

3 is a prime ideal of second degree. The only 4-th powers modulo 3 are 0,
1 and —1; they generate themselves under addifion. Therefore every
integer of J4 is congruent to a 4-th power modulo 3.
Next we examine J, modulo 8. Clearly 2 = — V—1 131+ 1/_11)2
By the lemma to Theorem 15 the 4-th powers modulo 8 are representable
by
(gote1m)t (e 8 =0,1)

with % =1—V —1. Furthermore =?= 2(z—1) and the expressions
o+ @, 7 Tepresent all residue classes modulo 8 if we let a, and a, run over
full rational residue systems modulo 8. The 4-th powers modulo 8 are
represented by

0, 1, 4,
144w+ 6724 4n8+ ot = 1(mod8).

The ring generated by these consists of the rational integers modulo 8.
At most three summands from the set {0, 41, 4} express every ration-
al integer modulo 8. Therefore three 4-th powers suffice modulo 24,
giving »(4; R(Y —1)) <10. Now

—at = (14V —1 )t 3at,

and from the identity we get 24z 36 as a sum of ten 4-th powers. Four
elements from the set {0,1, 4} express any number in J, modulo 8. We
deduce g(4:R(l/ —1)) < 14. This may be compared with the result of

Niven ([6]) that g(4; R(V—1)) <18.
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Remarques sur le travail de M. J. W. S. Cassels
»On a diophantine equation”

par

W. SIERPINSKI (Warszawa)

Dans son travail On a diophantine equation qui a paru dans ce volume,
p. 47-52, M. J. W. 8. Cassels démontre le théoréme suivant:

TaEoREME 1. Le systéme d'équations
(1) rdstt=rst =1

n’a pas de solutions en nombres rationnels r,s,1.

It est & remarquer que la question de savoir 8’il existe trois nombres
rationnels dont la somme ainsi que le produit soient égaux & 1 a été posée
en 1956 par M. Werner Mnich; voir Elemente der Mathematik XIT
(1956), p.134, oit A. Schinzel démontre aussi que pour fout nombre
naturel donné s >3 il existe une infinité de systémes de s nombres
rationnels »,, ,, ..., 4, tels que

(2) Byt Byt B = L%y, %, = 1.
Par exemple, pour s = 4, les nombres
.r 1 n? 1—»° w1
X = ————— Xy = &Ly = &y =
n—1’ -1’ n 0 n

ol n =2,3,4,..., satisfont aux conditions (2).

L’équivalence des théorémes I et IT de M. Cassels est démontrée
dans mon article Sur gquelques problémes non résolus d’arithmétique paru
dans I’Enseignement Mathématique, tome V, fase. 4 (1959), p. 221-222.

En 1957 dans le journal Matematyka paraissant & Varsovie, X,
Nr. 1 (45), p. 55, W. Mnich a posé la question de savoir si 'équation
3) .

y oz oz

a des solutions en nombres entiers =, y, 2.
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