8 A. Schinzel

It states, that every prime 18n 41, or else its triple, is expressible
in the form #8— 3xy? 448, If it is true, then for all 2, the form a®— 3wy? 4-¢?
represents at least a/(}2) numbers <z (#"(2) is the number of primes
18% 4+ 1 < #). But this is incompatible with Siegel’s theorem (cf. [10],
p. 139).
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1. Thig second mnote gives an elementary exposition of the compo-
sition of binary quadratic forms. It is shown that the classical theory (%)
carries over to the case that the coefficients are taken from a (com-
mutative) Huclidean ring (?).

Firstly, following Dirichlet and Dedekind, the forms to be eompounded
will be replaced by suitable equivalent ones, and it will be proved that
this leads o & unique composition of the corresponding (proper) equi-
valence clagses. In doing this, the use of quadratic congruences and,
of course, of irrational numbers will be avoided. Next, a theorem on the
decomposition. of a given clags will be deduced, and a characterization
of ambiguous classes will be given. The connection in the classical case
with ideal theory shall not be discussed (3).

Helpful advices were given by Dr. 0. G. Lekkerkerker who also
simplified the proof of theorem b.

2. Let I be a Buclidean ring with characteristic s 2. Then in I
factorization in prime elements is possible and unique, in the usual sense.
The one-element will be written 1. We consider quadratic forms

H@,y) = awt-bay+ey®  (a,b,¢,2,9¢€]),

() Por the history of the subject the reader is referred to L. E. Dickson, History
of the theory of mumbers, Vol. III, New York 1934, ch. IIX, p. 60-79.

(") Actually, the counsiderations of this note apply more generally to all principal
idenl rings with characteristic s 2, which moreover are integral domains and in which
the factorization property holds.

(" It may be recalled that in that case there i8 a one-to-one correspondence
between classes of forms and classes of ideals. See e.g. E. Landau, Vorlesungen iiber
Zahlenthoorie, Bd. 111, Leipzig 1027, p. 187-196; B. W. Jones, The arithmetic theory
of quadratio forms, Carug Math. Monographs, No 10 (1950), p. 153-168. .See also S Lu-
belaki, Uber Klussenzahlrelationen quadratischer Formen in quadratischen Korpern,
Journal reine ang. Math. 174 (1036), p. 160-184.
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shortly denoted by f=[a, b, c]. Such a form is called primitive if the
coefficients a, b, ¢ are relatively prime. Further, b2—4ac is called the
discriminant of the form. In the following we always suppose, without
saying it explicitly, that our forms are primitive forms whose discriminant
has a fized value D.

We say that m eI is represented properly by a form f if there are
z,y el with

m=f(e,y), (@9 =1.

"Two forms f, g are called properly or improperly equivalent if fis trans-
a/’; (“:) whose deter-
70l
minant ad— By is 1 or a unit & 5 1 respectively. A form f is called am-
biguous if it is improperly equivalent to itself; then, necessarily, & == —1.
Below we shall consider classes of properly equivalent forms, and denote
them by C, 0y, 0, ete.

Tt is well known that equivalent forms represent the same elements
and that, if m is represented properly by f, there is a form ¢ in the same
clags, which has first coefficient m (%).

formed into g by a linear transformation (Z) ==<

8. We first prove the following

Levma 1. If m # 0 is arbitrary, then any form f = [a, b, ¢] represents
properly a value n 0, such that (m,n) = 1. '

Proof. Clearly, @, ¢, a+b+¢ are represented properly by f. If m
is a unit, then one of these elements may be taken as n. So we may suppose
that m is not a unit.

Let Py, ..., pr be the different prime factors of m. Bach p; is not
a divisor of one at least of a, ¢, a+b+¢, as these elements are relatively
prime. So, for each p;, there exist @;, ¥; eI, such that

(@i, y:) == 0(modpy) .

Now, since the Eueclidean algorithm holds in I, the Chinese remainder
theorem is valid in I. Then we can find »,y such that

2= o, (modp;), y=y;(modp;) (i=1,2,..,7).

Let 6 be a g.c.d. of #,y. Then &' = @/, y = y/é are relatively prime.
Further f(z,y) == 0 (modp;), hence

‘ Ha'yy') 5= 0 (mod p;)
Thus n = f(2', y') fulfills the requirements.

(=1,2,..,7).

() Cf. lemma 1 in the first note on p: 218 (Acta Arith. 6 (1961), pp. 217-224).
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Wo now deduce

Tugorus 1. For each pair of dasses Oy, Cy (not necessarily different)
there are forms fre Oy (1 ==1,2) of the following type

(1) Tl by el fo= [0y, b, aye],

Proof, Take any form f, = [ay, b, c]e 0y with a; # 0. Then, by
lemma 1, any form fy = [ay, by, ¢5] € Oy represents properly a value n = 0
with (ay, n) == 1, We may suppose that f, ¢ 05 has already been chosen
in sueh o way that ay == n.

We now observe that

(aly a’a) =1.

bi—daye, = by—4dage, = D,
80 that
2) (by ~+ o) (by—by) = bi—b3 = 0 (mod 4) .
Further, b, -1 by == by— by (mod2).
Now take any prime factor p of 2, and let p* be the highest power
of i, which divides 2. Then we must have
by~ by =-0 (mod p*) .

For, if by~ b, 5% 0 (modp?), we should also have b;-+b, 5% 0 (modp?),
hence b— bl = 0 (modp™), in contradiction with (2). Since this is true
for each prime factor of 2, it follows that

(3) by~ by = 0 (mod?2) .
By (3), since (ay, @) = 1, there are &, & such that
b,—b
Wyl — By = — = 5 :.

1§

Transforming f; by ( ) and f, by (3 El’) we get two forms

01
(e, b, 72l 5
where b’ s 2a)é 4 by = 2ag6y by and i, saitisty

o, by y:]  and

b2 —dayy, = bt—dagy, = D,
80 that ay, = agyy. Since (@, &) =1, % and y, have the form
n=ao'y, = aio’ .
Hence the transformed forms are of the required type:
The two forms f; in (1) are closely related to the form

(4) f=[aas, b, ).
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This is shown by the following identity of Lagrange
(B) (@@ bay + aycy?) (ayw'® + by’ + alcy'z) = @, X2 - D XY - 012,

* where

Y = a0y’ a0y + by’ .
Tt is clear that f is again a primitive form with discriminant D. We agree
to call f the compound of f, and f,, and write

(6) X = an'—oyy’,

[a1, b, ay0] [z, by @ye] = [@4dy, b, €] -
Olearly, if m,, m, are values of f,, f; respectively, then mym, 15 a value of f.
LeMMA 2. If (my, my) =1 and my, my are represented properly by
f1y T2 respectively, them mymy is represented properly by f.
Proof. Let the proper representations of my, mp, be given by

22 + by + axcy? = my ,
Eliminating &', y" from (6) we get

(00 + by + a0%)0" = (ay0+0y) X + 0y ¥ ,

(ay8* + bay + ay0y?)y' = —apyX + Y .
So a common factor of X, ¥ would be contained in m;, because (»’, y') = 1.
Similarly, such a factor would be contained in m,. ence X, ¥ are
relatively prime, whereas f(X, Y) = mym,.

The compound is only defined for forms of the special type (1). Butb
the main objective of composition theory is to compose wclagses, not forms,
We now proceed to prove

TaroREM 2. Let Cy, Oy be given classes of forms. Then for each pair
of forms fie C; (4 =1,2) of the type (1) their compound f belongs to one
fized class C.

We call ¢ the compound of ¢, and C, and write C = 0;C,.

Proof of theorem 2. We consider any two pairs of forms

fr=1[1, b, g, fo =192, h, g:d] ,
Fy=[ay, b,a5], Fy=[ayb,a0],

"% - D'y’ - ayey’? = my .

such that
fusBreCy. fay Foe Oy (guyga) = (@, 89) = 1.

‘We shall prove that then [g,,, &, @] and [a,ay, b, ¢] belong to the same
class.

Let

h(w, y) = Fylaw + iy, yyo + 0) s fo(®@,y) =Fyleww -+ oy, yev + 00y)

80 that &d,— fiy; = aydy— By, = 1. A simple caleulation gives
hay = 2g,f, 4 bay + 2,0, ,
5

hyy = 210, — 2a,0,— by, .
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From h2—4g,0,d = b*—4da,a,0 = D it follows as in the proof of theorem 1
that

h—b=h+b=0(mod2).

b

Then - are elements of I, and we can write

“Z

h—b

h-+b
01y = T G oy 0, = ——5—‘71 + oo .

Let &, 7 be the values of the expressions (6), where for ,,,y we
substitute ay, v, ay, ¥5. Then we have

h—b h—b
T f—on = T (@105 — 0y1y2) — 0 (@101 ys + G305y, + Byyyy)

h—b h+b
= ("“ﬁ" 3= “2071) az—( ; 7+ ala1)07’2
= y(Prtta—CO1ys)
For reasons of symmetry we also have

h—b
5 E—cn = galofa— 6y16y)

Then, since (g, gs) = 1,

h—b

i?;— §—on = 0 (mod g,g,) .
Similaxly, one proves that

h4b
E N+ @@ = 0 (mod g,g,) -

So in I there are elements

‘ p=hmbi=2on o (R )y 2a,E

20195 ! 20,95

Now (5 ’:) is & transformation with determinant 1 which transforms
[ay@s, b, 6] into [ggs, h, &) This is easily verified if only one observes
that, by (B),

0,8+ bén+ont = g9, .
The theorem iz now proved.

4, We discuss some properties of the composition of classes. First
we Prove

TamorEM 3. The olasses form a commutative growp, with the com-
position as growp operation.


GUEST


14 §. Lubelski

Proof. It follows immediately from the definition that the compo-
sition of classes is commutative.

We now prove the associativity. Let Cy, C,, C; be .threo. clagges.
By theorem 1 and lemma 1 we can choose forms f; € O; (1=1,2,3) of

the following type
fr=1lay,b,ac], fo=I[a, b, mel, fa = (s, bs, Gl

where ay, @,, a; are all # 0 and any two of them are relatively prime.
Further b—b, is divisible by 2. Then there exist &, # el such that

b— by
2

Wyt — Qg = — .
Transforming f; by ((1) '11‘5), f2 by ((1) “f), fs by (3 Z) we get three forms of
the following type:

(0 [ay, by el], [an,b"y0], [a,0",03].

Since a0, = 0,04 = a5 and any two of the a; are relatively prime, we
can write

C3 = Qye0’ .

€] = Gy’ ,  Ch = Qg0

It is then clear that composing the three forms (7) we get the law
(0102) Oa = 01(0203) .

Next, we note that the forms representing 1 constitute a single class B.

&
For [1,b,¢} is transformed. into [1,d’, ¢’] by the transformation ((1) ;)

with & = —(b—b')/2. I C is an arbitrary elass, then in H, C we can choose

forms f;, f, of the type f, = [1, b, acl, f, = [a, b, 6] (note that in theorem 1

we may require that a; is any element = 0 represented properly by fy).

Their compound is f,. Hence, .
CE=0C.

Finally, two forms [@, b, ¢] and [¢, b, o] have the compound [a¢, b, 1].
Hence each class C has an inverse C-%.

Another theorem on composition is given by

THEOREM 4. Let m == 0 be represented properly by some form f, such
that m and D are relatively prime. Let m = pi* ... py' be a canonical decom-
position of m. Then there are forms representing properly any m;
(8 =1,2,..,7). Further, if Oy, ..., 0, are the corresponding classes, then
each form representing m properly belongs to a class of the fype

0= 0" .. 05" .

oa
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Proof. The first assertion follows from the observation that if
[mamy, b, €] is a primitive form with discriminant I, then so is [my, b, mye].
In order to prove the second assertion we distingmish first some special
CAReS.

Case I. m i8 a prime element p. Let us consider two forms with
first coefficient p, say

lpyg,r], [p,d,r].

Since both forms have diseriminant D, we have
(¢+4)(¢—¢') = 0 (mod4p) .
Hence

g+¢ =0(mod2p) or g—¢ =0 (mod2p).

In the second case [p,q,r] is properly equivalent to [p, ¢’,7'], in the
first case to [p, —¢', 7'} and so te [+, ¢’, p]. We thus find that [p, ¢, ']
belongs to the same class a8 [p, g, 7] or to its inverse.

Case II. m is a power of a prime element, say m = p°. Then p does

not divide D. Let C, be a class containing some form [p, ¢, r]. We have
¢* = D (modp) , g 5% 0 (modp) .

‘We first show that then the congruence

(8) P4 gt 47 = 0 (mod p¥)
has a solution ¢ for all positive integers %.

For &k =1 the congruence reduces to ¢t~ =0 (modp) and so is
solvable because of ¢ %0 (modp). Suppose now that for some % there
is a solution %,. Taking ¢ = #,+p* we have

hence

P+ gt +7 = pig+ gty + 7+ p"gy (modp*) .
Clearly, we can choose ¥ so that the expression on the right is = 0 (mod p*+).
Hence (8) is solvable for all %.
Now take a solution ¢ of (8), with % = s— 1. The transformation ((1) f)
trangforms the form [p, ¢, ] into the form

P12+ q (o 8y)y +-ry? = pa* - (2pt -+ Q) wy +(ptr+ g+ 7)y* .

Tt follows that C, eontains a form of the type [p,@, p*~1R]. Then the
clags OF containg the form

(9) |:2’7Q5198_1318=[19379a13]7
a8 follows from the formula
[pa (u)y 33—1]‘)‘] '['27{, Q: ps—iR] = [Z’{"H) Q’ ps—i~1R] (7" = 1: 27 ey 8 1) .

Conversely, let ug consider an arbitrary form [p°, ', B'l. According
to (9) it can bo obtained from the form [p, @', p*~2R']; by what we have
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proved above, this last form belongs to O or Oy ' It follows that any
form [p°,Q’, B'] belongs to one of the classes 0.

General case. m arbitrary. Liet m = pi*... p;” and let f; e C; be
a form representing p; (¢ = 1,2, ..., 7). Then, by case II, there are forms
F; e 0% representing properly pf (i=1,2,..,7). Then it follows from
lemma 2 that there is a form in Of* ... O; representing m properly. The
same is true, of course, for each other class of the type OE ... OF,

Conversely, consider any form [m, @, R]. We have

(m, Q, R] = [p;", 9, %R}-[Z%,Q,pi‘lﬁ]
1 1

Tt follows that [m, @, R] belongs to one of the classes CF™ ... 0F%. Thig
completeg the proof of the theorem.

5. Finally, we deal with ambiguous classes. A class O is called
ambiguous, if it contains an ambiguous form. Then each form in C iy
ambiguous. Further, if f = [a, b, ¢] is a form in C, then also each form
which is improperly equivalent to f, e.g. the form [¢, b, a]. It follows that
the ambiguous classes ¢ are characterized by the relation

C=0+.
Another characterization is given by

TeEEOREM 5. Suppose that D # 0. Then the ambiguous classes are
1hose containing a form of the type [a, ag, ¢]. Here o can be taken in a given
residue system mod 2.

Proof. Let ¢ be an ambiguous class. Let f = [a, b, ¢] be any form
in ¢ and let A denote the matrix (2§ 22)’ so that det.d s 0. Further,
let T’ be a transformation with determinant —1 leaving f invariant. Then
we have (the symbol * denoting the passage to the transposed matrix)
{10) T*AT = A, detT=—1.

‘We first deduce from (10) that spZ' = 0. In fact, if B is the adjoint
matrix of 4, then () (detA)-T = BAT = BI*-14, hence

det A -sp T = sp(BT*-14) = sp(ABT*~1) = det 4 spI™*-t,
and so ! -

spT = spT*1,

(*) We can take the inverse of 7% as detZ' is a unit.
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since det A # 0. One easily deduces from det 7' = — 1, that sp T = —gp T
So one finds spT = 0.
Next, we prove the existence of a matrix § such that
. m 1
(11) det§ =1, 878 = (O _‘~1’) (oel).
Since detZ = —1 and spZ' = 0, the characteristic equation of T reads

&—1==0, and so T has two eigenvalues 4-1. Then there is an eigen-
vector X = (g) with TX = X and («, ) = 1. Further, there are elements

¥, 8 with ad—py = 1. Then, since detZ = —1, the matrix § = (g 7(;)
satisfies (11). ‘

Now § transforms f into a form ¢ which is invariant under the trans-
formation §-17'8 = ((1) *f) One easily finds that then g is of the type
[@, ag, ¢]. Conversely, a form of this type is invariant under the trans-
formation (é _i) This proves the first assertion. The second assertion.
now follows from the fact that two forms [a, ap, ], [a, ag’, ¢’] are equi-
valent if ¢ = o’ (mod2).
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