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Introduction. As has been sghown in investigations of Bergman
(see [3] and the bibliography cited there), it is useful to introduce various
integral operators transforming analytic functions of one and several
complex varaibles into golutions of linear partial differential equations of
even order. These operators, representing a generalization of the real
part operator generating harmonic functions of two variables, preserve
some properties of analytic functions. In this way they give a new insight
into the theory of differential equations. Various results obtained in
this way are based on the fact that the operatiors preserve the location
and character of the singularities.

The general way of proceeding is based on the fact that, under the
Bergman. integral operator, there is a one-to-one correspondence in some
linear spaces between harmonic functions of three real variables defined
in a neighborhood of the origin and analytic functions of two complex
variables [1, p. 463]. This is & correspondence in the local sense, in the
small. But applying the method of continuation, one passes to a corre-
spondence in the large. Thus, some singularities of analytic functions
are translated into singularities of harmonic funetions in the large. In-
vestigations in this direction were conduicted by Bergman [2], [3], Krey-
zig [6], Mitchell [9], and others.

The present paper is devoted to the sfudy of these relations in the
case of harmonic functions in three real variables generated by rational
functions, in a form as general and exact as possible.

In the first part are investigated the sets of regularity and the locus
of gingular points of the Bergman integral operator considered as a one
valued harmonic function.

In the second part are considered the singular points of the multi-
valued harmonic functions generated by the above mentioned one valued
functions.

In the third part are discussed the loci of possible singular points
of the multi-valued harmonic function generated by a harmonic element
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i ials in the neighborhood of
xpressed as a series of Legendre polynom'm. ghborhoo
z}ﬁ) origin. The relation between the behavior of the coefflments 91 th.e
geries development and the singularities of the harmonic function is
investigated. ]

Particular examples of the general theory are given. ‘ .
The author is grateful to Professor Zygrount Charzynhski for his

valuable remarks during the preparation of this paper.
1. One valued harmonic funections. Let
(11) w=u(®,y,%0¢) =0+ +2){+3ly—2) 1/

where @, y,# are real variables in the whole space and ¢ is a complex
variable. Let P(u, ) and @(u,{) be polynomials in { la,nd .

‘We consider the following Whittalker-Bergman l‘n.tegrafl operaintor
which transforms analytic functions of «, { into uniform harmonie functions

[1, p. 4671, [15]

1 [ Pl
(1.2) F(m,y,z):EEmLQ(u’C) ac.
This integral is defined for all (x, y,2) for which the equation in {
(1.3) Qu, ) =0

has no root on the unit circumference |{| = 1. '

Denote by D the set of points (v, y,#) for which (1.3) has no root
on the unit circumference and denote by D* the boundary of I) One
gees that the boundary points (2*, y*,2*) e D* can be characterized by
a gimple necessary condition. '

For every (a*,y*,#*)eD* there must exist a root {* of Q(u*,{)
on the circle |{| =1, where

Wt = a* (i -+ o) O+ F iy —e*) 1L

This condition ean be expressed in an algebraic form as follows.
In view of (1.1), we put

(1.4) Quy &) = [apl™ 4+, 0" oo+ tpea £ A 2] 12
where

a’1=’a7(w1yaz)y jﬁ1,2,...,’)’b_

are polynomials in &, ¥, ¢, and » is the smallest integer for which @ can
be written in form (1.4). For a point (a*, y*, 2*) e D* and the corresponding
root {* on the unit circumference

(1.) Gl a4 g an =0

where
*

o] = ay{0*, y*,2*), j=1,2,..,m.
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From the conjugate of (1.5), since

Z‘* = 1/t*,
we obtain
(1.6)

-

Tl 4Ty b ERET =0

where @j is the conjugate of a;. Eliminating {* from equations (1.5) and (1.6)
by Sylvester’s dialytic method we obtain

ag & ... at 0 ... 0
0 af Oy af ... 0

(1.7) arai, ... @ 0 ...0]°0-
0 ay ... arar...o0

This equation defines the locus of points of the boundary D*.

Consider an arbitrary point (#*, y*,2*) of the space. We shall call
this point regular with respect to the operator (1.2) if this operator can
be continued through this point along each curve L' which goes from D
to this point. More exactly, this means that there is a harmonic function F*
(#,9, #) defined in a neighborhood of (w*, y*, 2*) so that for every point
(@', ¥y, %) e’ sufficiently near (o*, y*, 2*) we have

M2,y,%) =F(z,y,2)

for every (x,y, 2) sufficiently near (2,9, 2).

If a point is not regular it will be called singular. We ghall need in
the future the discriminant of @ (u, {) by which we shall understand the
diseriminant of the expression in brackets in (1.4), which means the
following determinant

Iy y ap 0 ... 0
0 @ e lpyey Ay ... O
(1.8) nay (n—1)a, ... 0 0 ...0|’

0 Ny, v Opy 0 ... 0
where a; = a; (#,9,2) are polynomials in 2, Y, 2.

Suppose that the discriminant of Q(w,?) with respect to ¢ does not
vanish identically and denote by S* the set of all points x, v,z for
which (1.8) vanishes. Then we can prove the following:

THREOREM 1. A necessary condition that a point (x*, y*, 2*) will be
a singular point of the operator (1.2) 4s that the determinamnt (1.7) and the
diseriminant (1.8) vanish simulianeously af this poing.
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In other words, the loous possible of the singular points of the oper-
ator (1.2) is the intersection of the sets D* and S*.

Proof. The condition that determinant (1.7) vanishes is evident.
Hence it suffices to show that at the singular point (x*, y*,2*) e D*
the digeriminant (1.8) must also vanish.

Suppose that the digeriminant (1.8) does not vanish at a point
(*, y*, #*) ¢ D*. We shall show that in this case (#*, y*,2*) is a regular
point. Indeed, denote by
(1.9) [ % PR &4

all the roots of the equation in {
(1.10)  Q(u*,0) =0, w*=a* L@+ 0+ 0y —2)-1/C.

The roots (1.9) are all simple in view of the assumption that the
digeriminant does not vanish.

Consider an arbitrary root (f. It follows from the theorem of the
continuity of the roots of algebraic equations [14, p. 148] that for every
point (#, ¥, ) in a sufficiently small neighborhood & of (#*, y*, 2*) there
is a root
(1.11) & = pu(@, 4, #)
of the equation

(1.12) Qu, ) =0, w=o+4(iy+2)l+4(0y—2) 11,

where (z,y,#) ¢ 6, 50 that this root is an analytic function of =,y,#
and that

(1.13) i = ou(a*, y*, 2%
Now consider an arbitrary curve
(1.14) I s),y®),st), o0<i<il,

which goes through the interior of D to the point (z*,y*,2*) as ¢

increases from 0 to 1; L' does not cross the set D*, Then for the

points (¢',y", #') e L’ which lie in the interior of the intersection § of

the neighborhoods 6y, d;, ..., 0, the corresponding roots

(1.18) b= qul@, 4y 27),

of the equation

(1.186) Q) =0, w=u+§(y +e)+(y —e) 1/

never lie on the unit circumference; that is, for every &, either
Gl<1 or |&l>1.

This follows from the assumption that the line L' does not cross the
boundary set D*.

b=1,2,..,n
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Suppose that for the above mentioned points (2, y', #) the first y
roots

(1.15") Lo =oulz, 9. #),

lie in the interior of the unit circle. Then we have, according to [16, ch. VI],
[14, p. 148]

k=1,2,.,y<n

k=1 Qé(uk’ (2, Y z)) ’
e = &+ § 3y +2) G+ 3oy —2)- 1/

F(w,y,7) =
(1.17)

where {r = gu(®, ¥, #) in a sufficiently small neighborhood of (2", ¥, 2")
contained in 4.

On the other hand, for (x,y,z?)¢d, we can define the harmonic
function F*(x,y, 2) by the formula

7 P, L)

1 I+ = Tk SR/
(118) LD rwal

‘where

e=gu®,y,2), w=a+30y+2)pt+300y—2) -1/ .

Then in each sufficiently small neighborhood of every point (z°, ¥, 2")
of I sufficiently close to (#*, y*, 2*), we have, according to (1.17), (1.18)

(1.19) Fw,y,2) =F(z,9,2).

Hence, this shows that (1.2) can be continued along the arbitrary
curve I’ through the point (a*,y*,#*). Thus (z*, y*,#*) is a regular
point, and our assertion that the only singular points of D* are those
for which the discriminant vanishes iz proved.

In the following examples we determine the locus of the boundary
surfaces D* and of the possible singular points on this boundary for some
particular cases.

Examrre 1. Consider an operator of the form

(1.20)  Fla,y,2) =~ w =+ 3y +2)l+$(iy—2)- 1/,

where o = A--iy is a complex number such that the right hand side is
defined.

According to the earlier remarks, the locus of the boundary points
of D* is the set of points (@, y,?) satisfying equation (1.7). However,
in some special cases it is more convenient to use another condition.
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For the operator (1.20) the boundary D* ix the set of points (x, ¥, 2)
where the equation
(1.21a) (u—a)f =0
hag a root { on the unit circumference.

Writing (1.21a) in expanded form we obtain
(1.21b) by +2) 2 (—A—iu) + F{fy—2) =0 .

Suppose that (1.21) has a root {; == ¢®. The modulus of the product
of the roots of (1.21) i

(1.22) w—#

w2

Since the product of the roots of (1.21) ix of modulusg unity, there must
be another root on the unit cireumference. Call this second root & == ¢fs,
It follows then, that

2w—A—ip) L W2 ;
(1.23) ErE A R

and dividing the first expression by the second we obtain

B0~ i—ip)

(1.24) w= — (gHO—0IE . glON=0)/2) o= D008 § (g — Oy) .

el
Y~y 4

Thus, in general, necessary conditions following from the assumption
that (»,y,2) ¢ D* in this case are that

(1.25) ﬁ?_%:;‘_/‘z is veal, and | SZAZI |y
— Y — -y —

Thus e Voyes

(1.26) (O ot/ P

Uivyra
and
(1.27) WA=ty F (e AP .
Wyt e
which implies
(1.28) %=, Yokt ot

’l‘]}@ locug f’f the boundary set D* in this cage iy the plane @ == 1
;xc%gdmg the dise 222 < w2 We shall call this the set of apparent singu-
arities. ‘

Note that for u =0 the disc reduces to the point (4, 0, 0).
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BExampLe 2. We will now congider the operator of the form

_ 1 &
(1.29) F(’”"‘J’z)“'ﬁﬁ'mi wlf T bul o’

where a, b, ¢ are some complex numbers, and « is given by (1.1).
The locus of the boundary set D* ig the set of points in z, ¥, 2 space
for which the equation
(1.30) awrlR+bul+e=0
has a root £ on the unit circumference.
Suppose that the equation (1.30) has & root { on the unit circumference.
We then have
(1.31) P bul+e=0, [|=1.
It follows that
— b+ yYb2—4dac
—b—yB¥—dac _

u(:=—“*—‘—%’——— P2+

(1.32) or

The conditions (1.82) can be written in the form
(1.33) iy +e)t+al+d(iy—2)—pr=0, k=1or2.
Since |¢| = 1, the conjugate of (1.33) yiélds A
(1.34)  [#(—2—iy)—Tel®+-al+${z—10y) =0, k=1or2.

A necessary condition that (1.33) and (1.34) have a common root
is that the resultant of the two equations should vanish.
The resultant is as follows:

(1.35) {4 (2 +20)—[$(ly—2)— Pl (3 (— iy —2) — Bul}*—
— {3y +2)o— [ (—y—2) = Bul} {3 (— 1y + 2) 5 — 2[$(%y — 2) — px]}
= (yp— 2he) — 2 (Y i — 2h0e) (W + ak) + (R +- i) —
— 0 [y + 2 —2(Ype— o) + e+ )] 5
‘where .
(1.36) P = Ag—tpe, l=1or2.
The gurfaces obtained by setting the resultant (1.33) equal to zero,
for k=1 and 2 give the expected locus of the points of D*.
They are ruled surfaces. This can easily be demonstrated as follows.
‘Writing equation (1.32) in an expanded form, we have

(1.37) u=w+%z‘y(é+ %)+—EZ(C—%)=%(M+W)7 h=1or2.
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For every fixed ¢ (1.37) defines a straight line in the @, y, # space.

It ¢ ranges over the circle |{| =1, the family (1.37) generates a ruled

surface which we will show to be identical to the corresponding surface

given by (1.35).
Put

(1.38)

Then we have

{=co80-isin0, 1/f=cosf-—ising.

(1.39)  a+i(ycosO428ind) = (Mg ius)(cos0—iging), k=1 or 2.

Equating real and imaginary parts, the ruled surface is found by
eliminating 6 from the system

A5c08 0 - upsin 0 = w ,

(1.40) (Y — o) €08 0 - (2 + Mg} sin == 0 ,
coR? 0 -+ Rin20 =1 .

We obtain

(1.41) [+ )+ (2 (y — o) = [(Yae— o) — (D + i)

from which follows

(Yo — 22— 2 (Y 222) (B + 1) + (B + o) —
— [y +2" — 2 (yu—ehe) + (i + )] = 0,
The left side of (1.42) is identical to the resultant (1.35).

Exawpr 1'. We shall now investigate the locus of possible singular
points of the one valued harmonic function defined by the integral (1.20):

1 J a

Gmi

=at

(1.42)
=1 or 2.

F(w,y,2) =
J6]=

Since the locus of the points (w,y,2) of D* for (1.20) has alveady
been determined, in order to find the locus of singular points it suffices
to obtain the locus of points (x,y,2) where the discriminant of the do-
nominator of (1.20) vanishes (assuming that the diseriminant does not
vanigh identically). The intersection of the two loci will be the loous
of the possible singular points of (1.20).

The discriminant of the denominator of (L.20) is

(1.43) (@— A~ du) 4 (3 +2%)
The vanishing of (1.43) yields
(1.44) =1, P4t = 2

as the locus of the points where the discriminant vanighes.
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The locus of the points of D* for (1.20) is given by (1.28):

z=2X, Y+EL>ut.

The intersection of (1.44) and (1.28) is obviously (1.44).

BExAMPLE 2. We shall now investigate the locus of possible singular
points of the one valued harmonic function defined by the integral (1.29):

1 i da;
F(@,y,2) “E?Jlﬂjl Bt bulto

Similarly as in example 1’, the locus of the points (#,y,2) of D*
for (1.29) has already been determined in example 2. Thus to find the
locus of singular points it suffices to obtain the locus of the points
where the discriminant of the denominator of (1.29) vanishes (assuming,
a8 before, that the diseriminant does not vanish identically). The inter-
section of the two locii is the locus of the singular points of (1.29).

The discriminant of the denominator is obtained by eliminating ¢
from the equation
(1.45) R - bul +¢ =0
and its derivative equation with respect to ¢
(1.46) (2aul +0)([iy +#1 +2) =0 .

Now there are two cases of (1.45), (1.46):

(1) aw?P+bul+e=0 and 2eul+b=0.

Eliminating ¢ from (i), we obtain
(1.47) b +dac =0

Hence, case (i) is impossible, because we assumed that the discriminant
does not vanish identically.

(ii) P +bul+e=0 and [iy+2)+w=0.

From the second equation of (ii) we obtain
(1.4%) -

and consequently substituting (1.48) into the expresgion for u we obtain

I

4 ne R 2 = gl e g2
(1.49) n Y(iya) R 2 -yt -2t
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which yields, using (1.45) and (1.32)
R? R2(iy—2)

(.59 TayF 2
or
(1.51) B _ By —2)

TSGyre 2(piA e
That means, exhibiting the real and imaginary parts, and using (L.36)

R By
(152) El}-z_i——z—z = "'2ll and m = 2{41 3
or
R% Ry
(1.53) m = —2 and m = 2/,Lg .
By division, we obtain from (1.52) or (1.53)
A
(1.54) 2=t
,tqy )
or
!
(1.55) g=-—2
Iua('/

Combining (1.52) and (1.54), or (1.53) and (1.55) we obtain

2 2! 2 2
(1.56) 2t gt (’li;ﬂ) — %y (iliﬂ_’ﬂ) =0
1 M1
or
2 2\ 2 2\
(1.87) 2yt (J'“L—z-—m) —2M,y(-}zi;ﬁ) =0.
1 "

Bquations (1,54) and (1.56), or (1.55) and (1.57) represent the inter-
sections of planes and elliptic cylinders which are, in general, ellipses,
but which can sometimes be circles or pairs of straight lines,

This is the locus of the zero points of the corresponding discriminant.
) The locus of the expected singular points of (1.29) is, of course, the
intersection of the curves (1.54), (1.56) and (1.6B), (1.87) with the sur-

facey (1.85). In general, it will consist of a finite number of points of w, y, ¢
space.

2. Multi-valued harmonic functions. We shall congider the
multi-valued harmonie functions generated by continuing the element
deﬁrfed in the small by the integral (1.2). First, of courge, we must define
continuation of harmonic elements, and harmonic functions generated
by the continuation of elements in the , ¥, # space. Our definitions are
analogous to those of analytic functions.
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A pair {F; p}, consisting of the point p = (v, y, 2) and the function F'
harmonic in a neighborhood of the point p, will be called a harmonie
element; the point p will be called the center of the element {F; p}.

Let us congider the spheres with center at p to which the funetion F,
harmonic in a neighborhood of p, can be extended as a harmonie funection,
that is, spheres in which there exists a harmonic function identical with F
in the neighborhood of the point p. Among these spheres there exists
a largest one, which we shall call the sphere of the element {F;p}. The
harmonic function in the gphere of the element {F;p}, identical with
F in the neighborhood of the point p, will be denoted by Fy.

Two elements {F;a} and {G;b} are considered identical, {F'; a}
= {@; b} if ¢ = b and if the functions F and @ are identical in a neighbor-
hood of the point @ = b. Of course, there will also be F, = Fj.

Every harmonic element {F,; b}, where b is an arbitrary point of the
sphere K of the element {F; a}, will be called a direct continuation of the
element {F; a}. The function F, is defined in the entire sphere K, and
hence the element {F,; b} is defined at each point b e K.

A family of harmonic elements {R(?)}, & <t<b, depending on
a real parameter ¢ ranging over the interval <a, b), is a chain of elements
along the curve L given by the equations
a<t<h

y=y({t), =z==z(),

2 =x(t),
if

1. for every te <a, b) the point x(t), ¥ (), 2(?) is the center of the
element R (1),

- 2. to every fe<a,b) there corresponds a number &> 0 such that
if [a] < e and t+h e <a, b, then the element R (t+h) is a direct con-
tinuation of the element 2(t).

A harmonic element R, iz called a continuation of the element ¥,
if there exists a chain of elements {R(f)}, @ <t < b along some curve:
z=0), y=y(), 2=2(¢) where « <t <b such that %, =R(a) and
Ry = R(b). The chain {R(f)} joins the element K, to K,.

Every (non empty) family % of harmonic elements with centers
in a region G will be called a harmonic function in the region @ if

1. given any two elements of the family %, one is a continuation
of the other in the region G;

2. every harmonic element which is a continuation in the region G
of a harmonic element belonging to %, belongs to 7.

If R is an arbitrary harmonic element with center in a region @,
then the set of all continuations of this element in the region @ is a harmonie
function in @ containing R. It is the only harmonic function in G which
containg “R. Consequently, every harmonic element, with center in
a region @, defermines a harmonie function in this region.
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If 7 is a harmonic function in the full space & and I is a subregion
contained in @, then every element of ¥ with center in H delermines
a harmonic function in H. Bvery such function iy called a branch of the
harmonic function & in the subregion H; all of its clements also belong
to the function 7.

For a harmonie function ¥ in &, a point ¢ belonging to & will he
called an ordinary point of the harmonic function 7 if it has a neighbor-
hood in which every branch of the function 7 iy arbitrarily continuable;
in the confrary case the point g will be called a singular point of the
function ¥ (compare [12]).

Consider, again, two arbitrary polynomials in %, & which we denote
a8 before by P(w,l) and @(w,{). Further, pubting u == w-}- §(dy --2)¢ 4
+ §(iy —#) 1/, and representing @ (u, £) in the form (1.4), form the gets D*
and 8* described in theorem 1,

Then the Whittaker-Bergman integral operator
=1 [P

B ) A, )%

(2.1) Fo(w,y,2)

where P (u, {) and @ (u, {) are polynomials in ¢, defines a barmonie function
in the neighborhood of a point p, = (#y, ¥y, %) which does not belong
to the set D* and S* The pair {Fy; p,} consisting of the function (2.1)
and the point p, is a harmonic element which generates the harmonic
function #. We prove the following:

THEOREM 2. The singular points of the harmonic function are contwined
in the set S*,

Proof. Obviously it is sufficient to prove that the harmonic clement
{#o; po} can be continued along each curve in R-— §* emanating from
the point (z,, 9y, %), where B is the full space. (Sec Remark 1.).

Suppose, for a moment, that @, ¥,z are complex variables. Congider
the equation

(2.2) RSN L Ry

where the coefticients a; = ay(z, v, 2), § =1,2,...,n, are analytic functions
f)f %,Y,# in a neighborhood of (%, ¥y, 2,) defined in the same way 08
in (1.4). This equation defines a multi-valued algebraic function f. For
the point (@, ¥, %) equation (2.2) can have some simple roots which
lie in the interior of the unit circle: [¢] = 1, which roots we denote by

(2.3) Sy, k=1,2,..,m.

From well known theorems it follows there is a system of analytic
functions

(2.4) Golw, ¥,2), k=1,2,..,m,
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defined in a neighborhood of (g, %o, %) 80 thatb

Crol@or Yos 20) =Croy E=1,2,..,m,
and
(2.5) Q[u(w,y,z,:m(m, f‘/:z))i Cko(x,(l/,z)] =0.
Hence, the pairs

(2.6) ol ¥, 2)5 (@os Yoy 20)}

can be considered as the analytic elements of the algebraic function .
Suppose the curve in the real @,y,# space

(2.7) L: y=y{t), z=2(@),

where

k=1,2,..,m,

@ = (i), 0L,

y(0) =4o, 2(0)=2,

containg no points of the set S*. Therefore L contains no gingular points
of o [4,p. 25]. Then the elements (2.6) can be continued along the curve L.
This means that for every k of (2.6) there is a chain of analytic elements
of (See [12], [10]),

#(0) = g,

(2.8) {Gl@, v,y 2, 1) (@), 3 (0),20)}, 0<i<1,
go that
(2.9) Q[“(w:1/7z7Ck(m7y7z7t))7€k(miy7z)]=0

in a sufficiently small neighborhood of (w(t), y(¢), #(t)), and

(2.10) tlw, ¥, 2, 0) =lwl®,y,2), k= 1,2,.,m.

‘We shall now show that the harmonic element {F,; p,} can be con-
tinued along the arbitrary curve L described in (2.7).
For this purpose we form the family of harmonic elements

(2.11) ?(t)z{F(m,?]:z)t)i (w(.t)1y(t):z(t))}: 0<t<1,

where - ) ]
3 P[u(mﬂ/:z’é‘k(wzyyz:t) y Cul@, Y, 2, 1)
(2.12) F(m,y,z,t):Z Qé[u(m,y,z,ék(m,y,z,i)),ck(w,y,z,t)]

Ko,

Tor a fixed & and for every t, 0 < ¢ < 1, there corresponds a number
&> 0 such that for |h|< e and 0 <i+h <1, the element

(2.13) {Cul@, y, 2, t4+R); (@(E+ D), y(E+1), a(t 1))}
is a direct continuation of the element

(2.14) {Ck(m: ¥, 2); (w(t)y y(t), z(t>)} .
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This means that
(2.15) Ul 4y 2,1+ h) =G, ¥, 2, 1)}
for every (, y,#) in a sufficiently small neighborhood of
B(t+h), y(b-+h), 2 +1) .
Thus, according to the definition (2.12), in the same neighborhood
(2.16) F(m,y,#,1+h)
mP[( Y, 2, L@, Y, 2, t-+h) )ékmq/,zt B

Qc[u 2 Yy %y Cil@, 4, 2, tHRY), G, 9,y 2, 4 B)]

__2 7fl/;z lul@, Y, 2, i)) w(@, Y, 2, 1) J
ey 7?/7z b, 9,258 ) W@, Y5 2, l)]

Hence, for the same A’ the harmonie element
{F(@,y,2,t+h); @0 -+h), y(t+h), 20+ b))
ig a direct continuation of the element

(2.18) (F(@,y,2,1); (@), 20)} .

At this time we note that the element {Fo; po} is equal to the initinl
element {F (2, ¥, 2, 0); (2(0), ¥(0), 2(0))} of (2.11).

This shows that (2.11) is a chain of harmonie elements and can be
continued along the arbitrary curve L' described above. Therefore, the
harmenic function 7 determined by the harmonic element {Fy; po} (see (2.1))
has no singular points in the =z, y, 2 space R— 8*.

Remark 1. In the last theorem, we assumed that the center
(% Yoy %) of the initial harmonic element did not belong to both sets D*
and 8* But the second assumption that the point (2, ¥, %) does not
belong to 8* can be removed. Indeed, if we have a point (&,,§,, 2o) Wwhich
only does not belong to .D*, there is, of course, also a harmonic function
defined by the integral

J m_)
Q(u )

in a neighbo?hoo‘d of (Bo, Fo, 20). Since we agsume that the discriminant
doges not vanigh identically, then in. this neighborhood lie infinitely many
points (&, ¥,%) which do not belong to S*. Then every harmonic clement

(2.20) (@, 4,2); (@ Yoy 20)}
‘where

=H(w,y,e,t).

(2.17)

(2.19) b o, Y,y 2

Flw,y,2) =Fye,y,2
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in a neighborhood of (w, ¥, 2) defines the same multi-valued harmonic
function as the element

{f' @, Y,

Consequently, the set of singular points of the multi- valued harmonic
function generated by

2); (o Yo, 20)} -

{ﬁo(w; Y, 2); (@oy Fos Zo)}
is identical to the analogous function generated by
{Folz, Y, 2); (o) Yoy %)} -

But for the second function we can already apply our theorem.

Note that the initial elements of the multi-valued harmonic functions
considered in this part are defined by the one valued functions considered
in part 1. Thus we can say that the class of multi-valued functions is
generated by the corresponding one valued function considered in part 1.

Remark 2. From our theorem and the previous remark immedia-
tely follows that for the classes of multi-valued harmonic functions gene-
rated by the one valued harmonic functions of examples 1,1’ and 2, 2',
the corresponding locus of singular points ave the lines given by the equa-
tions (1.44) and (1.54), (1.56) and (1.55), (1.57).

In the cage of Example 2, it is possnble to evaluate the integral F'
in a closed form and thus exhlblt the actual singular curves of the har-
monic function of which F iz an element (see [2], for Example 1)

1 il s L1
(2.21) F= 5t dﬁmy U = %(zy—l—z)c—km—{—%(w‘ z)f ,
10 dc
2.22 F=— ,
@22) = ml Lok Gy + o) — L) (=) - —?)
where
(2.23) M, 9=1,2,38,4,

are the four roots, assumed distinet, of the denominator.

The integral (2.21) can now be evaluated by the residue theorem.

The value of the integral will then depend upon which roots are
within the contour. The roots (2.23) are functions of the coefficients
@, b, ¢ and the real variables «, ¥, 2. If all the roots or none of the roots
are within the.contour, then the value of the integral will be zero.

If for every point (#,y,2) the integral is identically zero because
every root is in magnitude greater than unity or because every root is
in magnitude less than unity, then we can obtain a harmonie funetion
not identically zero by considering another contour which contains some
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but not all of the roots in its interior. This can be done since the roots
are distinct.

The residue at each root is & harmonic function ag can be easily
verified by formal computation. The residue at each root is the harmonic
function

1
2.24 H, = =
@24 Y e p) VEE 2+ p,
1
.24 Hg = —_—
@24 a(p—p)VEF 20T iy)p,
1
2.24 Hy= S —
(224 P a(p—p)VE 2 (e - iy)ps
1
2.24, =
(324 PTOREPR LY T P
where
(2.25) R = gLy 422
and p,, p, are the roots of
(2.26) ap*+-bp+ec=0

(see (1.32), (1.36)).

It is evident that the harmonic function generated by (2.21) is
singular along the branch curve given by setting the appropriate de-
nominator of (2.24) equal to zero. This locus is identical with part of
the locus where the discriminant of the denominator of (1) vanishes
(see (1.50), (1.51)).

The locus of possible singular points congists, in general, of two
distinet curves. The actual singular locus is seen to congist of one of the
curves completely, or both of the curves completely, or neither curve,
depending on which roots are within the contour. If neither curve is
the locus of singular points, we see that the harmonic function, which
is the sum of the residues within the contour, ig identically zero.

It is interesting to note that the integral
P= L d

(2.27) : _ _ 7
2Ly @(ul) +0(ul) T - e

% & positive integer, can be treated similarly to (2.21), and that the actual
singular curve ig of the same nature as the singular curve of (2.21).
The integral (2.27) can be written in the form

=2 T ¢

(2.28)
2mi o a (3 +2)) (L — W) (E~(9)... (c =By

icm®
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where
=(n) <
(2.29) My ov=1,2,..,2n,

are the roots of the denominator.

Assuming that the roots (2.29) are distinct, the integral (2.28) can
be evaluated by the residue theorem. The value of the residue at one
particular root is

1
@30 A= a(} iy +2))" (€0 — D)V — £ (g0 = BT (0 — )
_ 1
a(g— ¢) (1~ @) (G — @) VEE 22+ iy) g,
where
(2.31) R2 =242 422
and
(2.32) Gy v=1,2,..,n
are the roots of
(2.33) ag*+bgrt+ ... +e=0.

Thus, it is seen that the singularity locus of the harmonic function
generated by (2.30) is similar in nature to the singularity locus of the
harmonic function generated by (2.24).

3. Multi-valued harmonic functions generated by series
development. We consider the Bergman integral operator

(B.1) Foz,9,0) =g | b, D, w=a-+3iy+2)5+ liy—a)-1
l¢l=1

where fo(u, () is an analytic function of u and ¢ definem in the product
domain of a complex neighborhood o of 0 and a complex annulus ¢ con-
taining the circle |[¢| = 1. Then the function f,(u,{) ean be expressed in
the product domain in the form

=5}
=

[\d 8

(3.2 folu, &) = T .

n j=—c0

[
o

Suppose further, that there is given an arbitrary polynomial
M(u,(,1/) which vanishes for w = 0 and all {. In addition, suppose
that A[p]/Blp] is an arbitrary rational function which is regular at p = 0.
Then for « sufficiently close to 0 and for |{| =1, the composite function

ATM (w0, 2,101
(3.3) BIM (u, 2, 10)]

Annales Polonici Mathematici X 7
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can be developed in a series of the form

[o]
7]
Z S ¢ .

jm

De

(3.4)

8

ns

1
o

Thus the function (3.2) can be expressed in the form

folu, £) = Z.c’ ZQOW Snij% €1+ Z 2 (Tpj— Snj) 4 Cj

n=0 j=—00 n=0 j=—00

(3.5)

o

Suppose that the second sum is an analytic function for all » and for £
belonging to an annulus eontaining the circle [f] = 1.

We shall now consider in the #, ¥, # space the multi-valued harmonic
function %, generated by the harmonic element {Fo; (0,0, 0)} where F,
is given by (3.1) in a sufficiently small neighborhood of (0,0, 0) and an
analogous function 7, generated by the element {Fi; (0,0, 0)} where

1 AM(,¢,10]
omi ) BIM(u,L, 107

u=xz+}(y+e)l+3(y—2)-1/.

Fyz,y,2) = ac,

(3.6)

Then we can obtain the following:
THEOREM 3. The only possible singular poimts of the multi-valued
function F, must be identical with the singular points of the function F;.

Proof. The function Fy(z, ¥, 2) of (3.1) can be expressed, according
to (3.4), (3.8), in the form

1 ) .
Blo,y,2) 4 5m | D D (T s "0

[E1=1 n=0 j=—o0

(8.7) Fy2,y,2) =

The second term in (3.7) is obviously a harmonic function defined in the
full #,y, 2 space.

If we continue the element {F,; (0, 0,0)}, we obtain in this way
3 multi-valued harmonic funetion %, whose initial elements equal the
sum of the initial elements of %, and the second term of (3.7).

Thus, all regular points of ¥, will be regular points of ¥, and con-
versely. This ends the proof.

4. Remark. Bergman shows that every harmonic funetion F(x, y, ©)
of three real variables defined in a neighborhood of the origin can be
represented in the form

(1) P@,9,2) = 5 [ 10, d, w=o+3ly+40+Hlig—2) 11,
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nek
Grzk“ k3

[{18

o0
’lt,t, E

is the so called B-associate or normalized B-associate [1, p. 468]. In other
words, there is & one-to-one correspondence between the mentioned
harmonie functions and the B-associates in corresponding linear spaces.
Thus, having the harmonic function F(z, y, 2), we can obtain, at first,
the corresponding function (4.2); and secondly, we cas try to apply theo-
rem 3 to obtain the singularities of the multi-valued harmonic function
generated by F(z,y, ).

More exactly, we can try to divide the series development of (4.2)
into two parts

l‘ﬁg

/\—’ s 5’ 2 Vot

~
i= N=—00 J=—00

(4.3)

n

[
a

in which the first part of (4.3) represents for % in a neighborhood of the
origin and for { in an annulus containing the unit circle, the development
of a rational function A[p]/B[p] of the type described in theorem 3. To
distinguish the first part of (4.3) having this property, one can use various
known ecriteria ([5], [11], [13]; compare also [2], [6]).

Final remarks. We gave here only the necessary conditions charac-
terizing the locii of singular points of the integral operators. But it is clear
that these locii do not consist of only singular points. Thus, it could be
interesting to obtain simple necessary and sufficient conditions charac-
terizing the locii of singular points. Also, the investigation of the nature
of the singularities presents an interesting problem in this domain. These
problems will be investigated in a future paper.
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