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We are not able, however, to prove the existence of a continuous
solution defined in the whole interval {a, b>. Also we cannot say anything
about the number of solutions that are defined in the whole interval
{a,by. It is our conjecture that under hypotheses (i)-(ili) equation (1)
possesses exactly one solution defined in the whole interval <{a, b), i.e. that
each of the sets 4(») contains exactly one point. It can easily be shown
that if the solution defined in the whole interval {a, b) is unique, then
it is continuous and strictly increasing.
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On the continuous dependence of solutions of some
functional equations on given functions. II

by J. KoRDYLEWSKI and M. Kvuczma (Krak6w)

In the first part of this paper [2] we have proved (under suitable’
assumptions) continuous dependence on given functions for solutions
of the functional equation

@ plf@)]+ng(a) =F(a),
where 1 = +1. Presently we shall deal with a more general equation
2) p@) = H(=, ¢[f(@)]),

where ¢(z) denotes the unknown function and f(z) and H(z, y) are given.
Making use of the results obtained we shall prove a theorem about con-
tinuous dependence for solutions of equation (1) stronger than those
proved in [2]. Although equation (1) is a particular case of equation (2),
the hypotheses which we assume concerning equation (2) are not fulfilled
in the case of equation (1). Thus the theorems proved in [2] do not follow
from the results of the present paper. ’

IL. Equation ¢(2) = H(z, p[f(x)])

§ 1. We assume the following hypotheses regarding the functions
f(z) and H(z,y): i

(i) The function f(x) is defined, continuous and strictly increasing
in an interval {a, b> and f(z) >z for z <(a,b), f(b) =b.

(ii) The function H(z,y) is continuous and has the continuous
derivative 2H/oy # 0 in a region £ normal with respect to the z-axis.

(ill) Q5= 0, Q, = ['yq for @ e {a, b>, where £, denotes the z-section
of the region £:

Q= {y: (x,y) e},

and I, denotes the set of values of the function H(z,y) for y « 2, (*).

() In the case f(a) # a it is enough to postulate only Q_ cT’,(z), instead of the

relation Q = I}m.
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(iv) There exists @ such that (d, d)e 2 and

H(,d) =d;
moreover,
oH
(3) By 0@ <1

Now we define the sequence of functions h,(z):
ho(@) £ d,  Tppa(@) LH@, W@, v=0,1,2,..
LevmMa I. Under hypotheses (1)-(iv) equation (2) possesses exacily one
solution @(x) that is continuous in the énterval (a, b and fulfils the con-
dition @(b) = d. This solution is given by the formula

() = lim ().

y—>00

This lemma has been proved in [4].

Tn the sequel by the solution of equation (2) we shall understand
thig unique solution furnished by the above lemma.

We shall congider also the sequence of equations

(4) p(w) = Hale, p[fu(@)]), n=1,2,3,..
We shall assume that

(v) The functions fa(2) are defined, continuous and strictly increasing
ip the interval <a, b> and fu(z) > » for @ e(a,d), falb) =b (n=1,2,..).

(vi) The functions Ha(z, y) are continuous and have the continuous
derivatives aH,/0y # 0 in the region Q.

(vii) Qg = Iy for mela,b>, n=1,2,3,.., where [}, denotes
the set of values of the function H,(z, y) for y e, (3).

(vili) We have

(5) fa(2) = f(#),
. , <a,b)
2 o
6 a2, ) = H(x, — Hylx,y) = = H(x,
(6) Hala, ) A.H(‘Tyll/), ag/H (2, y) y a}/H(’l,!/)

for every compact set AT Q.
Lumma XL Let us suppose that hypotheses (i)-(viii) are fulfilled. Then
there exist for n sufficiently large dn such that (b, dn) € Q2 and

[0 B Hy(b, dn) = @n,
0H,

(8) 1-97/’—‘(1;,(1,,,) <1,

(9) limd, =d. ‘

(*) In the case f(a) # a it is enough to postulate -only s C I'njw@-

©

Continuous dependence of solutions of some functional equations. IT 169

Proof. According to (3) one can choose positive numbers fi, o and
# < 1 sueh that the rectangle

R | b—p<a<h,

la—d<y<a+o
is contained in £ and ) ‘
(10) [pHjey|<¥ in R.
Tt follows from (6) that for n sufficiently large
(11) {eHnfoy| <9 in EB.
We have by (11) for y e (d— 0, d-+6, and n sufficiently large
(12) (Halb, y)— Halb, @) < 8ly—d] . o
There exists N such that for » > N we have (12) and
(13) . Ha(b, d)—d} < (1—9)6. a

Consequently for n > N and y ¢ (d—9, d@-+6> we have by (12) and {13)
|Ha(, y)— | < |Halb, y)— Ha(b, @) +|Hnlb, d)—a] < 0.

This means that the function Ha(b,y) maps the interval {d—6, d+06)
into itself and on account of the fixed-point theorem there is in <d—d, d+-6).
exactly one dy such that relation (7) is fulfilled. Relation (8) follows
from (11) and the inclusion RC Q. Since the rectangle B may be chosen
arbitrarily small (of course, the index N depends on the choice of 6),
relation (9) is also fulfilled. This completes the proof.

T4 follows from lemmas I and II that for n sufficiently large equa-
tion (4) possesses exactly one solution @o(z) that is continuous in the
interval (@, b> and fulfils the condition @n(b) = du. This solution ig given
by the formula

Pnl) = limhy,,(2) ,
P00

where

hn,o(w) =dy, hn,v'-}-l(g‘.) =H, (wy /"n,v[fn ('”)]) ’ ry==0,1, 2, ..

In the sequel by the solution of equation (4) we shall understand the
above-mentioned unique solution.
Now we shall prove the following

TrmorEM L. Under hypotheses (i)-(viil)
(14) ¢az(56)<=>b>¢(m for every  oe(a,®) (),

where gn(x) and (@) denote the solutions of equation (4) and (2) respectively.

() In the case f(a,l) g, ¢ may also equal .
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Proof. We put

'rv(m) “£ hv-(-l (‘E)—— h,,(.’v) ’ )'n,w(w) 4 h’n,v-{—l(‘m)_hn,v(w) ) y o= 0, 1 y 2,

Thus we have

¢($) =d+ 27'1’(50) ’ (@) = dy+ Zrn,v(.m) .

=0 y=0

Hence

|pul@) = p(@)] < A=A+ D, [Tme(@) =7 ()] .

r=0

(15)

In [4] it has been proved that there exist z, e (¢, b) and # < 1 such that
for o e {w,, b>

(18) [oea(@)] < Bl (@)]],

From the uniform convergence (5), (6) it follows that this x, may be
chosen in such a manner that also

y=10,1,2,..

A7) |rapnr(@)] < B|rn,[fal@)]]  for

(at least for n sufficiently large; but since in the assertion of the present
theorem only a limit effect occurs, we may always restrict ourselves to n
sufficiently large).

Now let us take an arbitrary & > 0. We can find @, € (@,, b) and an
index N; such that for ze {2, b and »> N,

velny, by, »=0,1,2,..

()| <5 @)
and
(7 0l)| < % (1—9).
Next we can find indices », and N, > N; such that for » > v, n> N,
and @ e {wp, by, f(2) € <@y, b> and fp(w) € (g, b> (*). According to (16)
and (17) we have for z ez, b>
[ral)] < 8" @)]] < 7 (1—8)
and
(@] < | o f(0)]] < 3 (1—9).

() f' (=) f, (x) denote the »-th iterations of the functions f(z), f,(@). As has been

proved in [3], for each » «(a,b) the sequences f’(x), f.(») are increasing and con-
verge to b.
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Hence also

sup| 7, ()| < %(1— #)

<z, by
and

SUD |1y, ()] < 7 (1— )

@, b

for ¢ {xy, b> and n > N,. Thus we have, according to (16) and (17),
for ze (%, b> and n > N,

(18) Y lrmsa)l < D10 [ fi@)]] < 80D [r )] ) 077 < e
a)nd 0 y==vg
19) D In(@) < Y15 nll @] < suplrali)] X0 <ot

Moreover, since (on account of (6) and (9)) #,,.@) = »,(x) and d,—d,
(€N

we can find an index N > N, such that for » > N and z e {x,, b

(20) ln— ] < /4
and
vo~-1
(21) 2 Iras@) = 1u(o)] < gj4..

»=0
We have by (15)
ro—1

|92 (@) — @ (@)] < =] + D [rus(2)— 1. (@)| +

S+ Y in@l,

r=vg r=rp

whence, by (20), (21), (18) and (19), for = e {zy, b> and n > N
) lpa(e) — (@) <&,

which proves that

(22) wn(ﬂa)( = ().

@0, 0>
Now let us take an arbitrary c¢e(a,b) and let us put
o2 fo—y), p=0,1,2,..

We can find M such that oy € (2,, ). We further take y, > 0 (which may
be chosen -arbitrarily small) such that ¢+, < b. Of course

y>0, c—y>a,

fulesr—1 + 1) =T (€ar1+ 1) > Flen—1) = Car -

Consequently for n sufficiently large fu(¢u—1 -+ 1) € (%o, b) and on account
of the monotonity of the functions fa(z)

fn(@) € <@g, b)
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for e (i +y1, b and for n sufficiently large. Hence we lave, ac-
cording to (2), (4) and (22)

o).

on() =
{epr—1+71: 0>

Now we take y,> 0 such that ey—o+y,<b. Since

Fulest—s + y2) = F(Car—a=+92) > Ca—1,
we get for u sufficiently large

) * fulear—at ys) € Lop—r+1, b
and
for

fn(”:) e{ey—1+ Vi b) ZeCpmst 72’ b ,

provided we choose 9, so.small that f(cay—s+ye) > cp—1 -+ y;. Consequently

p(2) .

pa(z) =
R CT YA SN
Of course, algo y, may be chosen arbitrarily small.
After M steps of such a procedure we obtain
pu(z) = @la),
{e—p+van B
where y;; may be arbitrarily small. Consequently choosing ypy Ty we
get hence relation (14). . ‘
If f(a) #* o and we choose ¢ = ¢, we cannot apply the considerations
described above. In that cage, however, we may continue the functions f ()
and fa(z) to the left from the point @ in such a manner that in an interval
{a—a, b> hypotheses (i) and (v) will be fulfilled. Then we can apply
the above considerations and finally we obtain the desired result also
in that case. This completes the proof of the theorem.

§ 2. Now we shall apply theorem I in order to obtain a result con-
cerning equation (1). Besides equation (1) we shall consider also ‘the
gsequence of equations

(23) plal@)]+ i (z) = Falo),

=1,

We assume that:

7 (ix) The functiong' f(2) and fu(z) (n = 1,2,'3, ...) are of the clags *
in the interval <a,b), f(#) > 2 and fa(2) > 2 in {a, b), F(b) = fu{b) = b;
moreover, f'(z) >0 and f,(x) >0 in <a, by, f'(b) <1, fu(d) <1.

@ The functions F(z) and Fu(z) (n =1, 2, 3, ...) ave of the class C*
in the intérval <a,b>,"F(b) =0, Fa(b) = 0 (5). ' ‘

(°) As to the essentiality of the supposition F(b) = 0, Fu(h) = 0, compare the
final section of our paper [2]. DR
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Leava IXL. Under hypotheses (ix)-(x) equation (1) resp. {23) possesses
exactly .one solution q(x) resp. ¢a(x) that s continuous in the interval (@, b
and fulfils the condition ¢(b) =0 resp. on(b) = 0. These solutions are of
the class C* in (@, b>.

The existence and the uniqueness of the continuous solution of (23)
in (a, b> have been proved in [2] (cf. also [1] and [3]). The proof that
this solution is of the class C! for the case y = —1 is to be found in [1].
Tn the case 7 = +1 the proof is analogical.

In the sequel by the solution of equation (1) resp. (23) we shall
understand this unique solution furnished by lemma IIT.

Now let us assume that

(xi) falw) = f(@), fu(@) = f'(2), Fulz) = F(2), Fi(z) = F'{z).
{a,b)> {a,b) {a,b) {a,by

We shall prove
TurOREM IL. Under hypotheses (ix)-(xi)

(24) pn(®) = p(@),
e, by

(25) pal) = ¢' (@)
{e,b>

for every ¢ e (a, b) (%), where () and @n(®) denote the solutions of equations
(1) and (23) respectively.

Proof. Convergence (24) has been proved in [2]. Thus it remains
to prove relation (25).

The derivatives ¢'(x) and gp{x) of the functions g(x) and gu(z) are
continuous in the interval (a,b> and satisfy the funetional equations

(26) e’ [f (@)1f' (@) + ' () = nF'(x) ,
(27) N fule)]fal@) -+ galz) = nFa(@)

regpectively. Putting

Hz, y) % gl (@) —uf @y,  Hale,y) *nFalo)—nfn@)y,
we see that equations (26) and (27) are of the form (2) resp. (4). One can
easily verify that hypotheses (ix)-(xi) imply hypotheses (i)-(viii) if we

take as £ the stripe
f a—o<z<bita,

| —co<y < oo
(the functions F'(z), Fr(x), f'(x), falx) can be continued onto the interval
(a—a, b-+a)). Consequently relation (25) follows immediately from
theorem I.

(¢) In the case j(d) # a, ¢ may also equal a.


GUEST


174 J. Kordylewski and M. Kuezma

References

[1] A. Bielecki et J. Kisynski, Sur le probléme de B. Goursat relatif ¢ P équation
o%2jowdy = f(x,y), Ann. Univ. M. Curie-Sktodowska, Sect. A, 10 (1956), p. 99-126.

[2] J. Kordylewski and M. Kuczma, On the continuous dependence of soly-
tions of some fumctional equations on given fumctions. I. Ann. Polon. Math. this volume
10 (1961), p. 41-48.

[38] M. Kuczma, On the functional equation ¢(x)-+@[f(x)] = F(x), Ann. Polon.
Math. 6 (1959), p. 281.287.

[4] — On the form of solutions of some functional equations, Ann. Polon. Math,
9 (1960), p. 55-63.

Regu par la Rédaction le 2. 6. 1960

[ ]
lm@) ANNALES

20LONICI MATHEMATICI
X (1961)

Bemerkung zu meiner Arbeit: ,,Ein Problem der zwei-
dimensionalen Minkowskischen Geometrie”
(Annales Polonici Mathematici 9 (1960), S. 39-48)

von L. Tamissy (Debrecen)

Ich beweise in Nr. 4. meiner Arbeit, dass wenn die Eigenschaft (E)
besteht, d. h. wenn fiir jedes Dreieck die drei Produkte: Seitenlinge
mal Preudohéhenlinge in Minkowskischem Mass gemessen einander gleich
sind, dann die Indikatrix ein zentrisches Ellipsoid ist. Im Buch von Buse-
mann: The geomelry of geodesics (New-Jork 1953) wird aber bewiesen
(Seite 103), dass die Indikatrix eines n dimensionalen Minkowskischen
Raumes (n> 2), in welchem die Transversalitit symmetrisch ist, ein
zentrisches BEllipsoid ist. Dies, und mein Hauptsatz in Nr. 2. geben aber
sofort den erwahnten Satz in Nr. 4., ohne des dort erbrachten Beweises.
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